

# CLASS 32 CATEGORICAL EXEMPTION REPORT



## 4335-4345 El Camino Real Residential Project

| PREPARED BY       | City of Palo Alto                          |
|-------------------|--------------------------------------------|
|                   | Planning & Development Services Department |
|                   | 250 Hamilton Avenue                        |
|                   | Palo Alto, California 94301                |
|                   | Contact: Emily Kallas, AICP, Planner       |
|                   |                                            |
| PREPARED WITH THE | Rincon Consultants, Inc.                   |
| ASSISTANCE OF     | 66 Franklin Street, Suite 300              |
|                   | Oakland, California 94607                  |
|                   |                                            |
| REPORT DATE       | February 2025                              |

# **Table of Contents**

| 1 | Introd | uction                                                     | 1  |
|---|--------|------------------------------------------------------------|----|
| 2 | Projec | t Description                                              | 2  |
|   | 2.1    | Project Location and Setting                               | 2  |
|   | 2.2    | Project Characteristics                                    | 2  |
| 3 | Consis | tency Analysis                                             | 11 |
|   | 3.1    | Criterion (a)                                              | 11 |
|   | 3.2    | Criterion (b)                                              | 12 |
|   | 3.3    | Criterion (c)                                              | 12 |
|   | 3.4    | Criterion (d)                                              | 13 |
|   | 3.5    | Criterion (e)                                              | 31 |
| 4 | Except | tions to the Exemption                                     | 32 |
|   | 4.1    | Cumulative Impacts Criterion                               | 32 |
|   | 4.2    | Significant Effects due to Unusual Circumstances Criterion | 32 |
|   | 4.3    | Scenic Highways Criterion                                  | 32 |
|   | 4.4    | Hazardous Waste Sites Criterion                            | 33 |
|   | 4.5    | Historic Resources Criterion                               | 33 |
| 5 | Summ   | ary                                                        | 35 |
| 6 | Refere | ences                                                      | 36 |

## TABLES

| Table 1 | Proposed Project Characteristics                                  | 9  |
|---------|-------------------------------------------------------------------|----|
| Table 2 | Project Operation Trip Generation                                 | 13 |
| Table 3 | Bicycle Facilities Summary                                        | 17 |
| Table 4 | Palo Alto Land Use Compatibility for Community Noise Environments | 19 |
| Table 5 | Construction Equipment Reference Noise Levels <sup>1</sup>        | 21 |
| Table 6 | Construction Equipment Reference Noice Levels <sup>1</sup>        | 22 |
| Table 7 | Air Quality Thresholds of Significance                            | 24 |

## FIGURES

| Regional Location     | .3                                                                                                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------|
| Project Site Location | 4                                                                                                              |
| Existing Conditions   | . 5                                                                                                            |
| Existing Conditions   | 6                                                                                                              |
| Proposed Site Plan    | .7                                                                                                             |
|                       | Regional Location<br>Project Site Location<br>Existing Conditions<br>Existing Conditions<br>Proposed Site Plan |

#### TABLE OF CONTENTS

### APPENDICES

- Appendix A Trip Generation Study and VMT Analysis and Site Access Evaluation
- Appendix B Environmental Noise Assessment
- Appendix C Air Quality Assessment
- Appendix D Construction Health Risk Technical Report
- Appendix E Cultural Resources Evaluations

## **1** INTRODUCTION

This report serves as the technical documentation of an environmental analysis for the 4335-4345 El Camino Real Residential Project in the City of Palo Alto. The intent of the analysis is to document whether the project is eligible for a Class 32 Categorical Exemption (CE). The report provides an introduction, project description, and evaluation of the project's consistency with the requirements for a Class 32 exemption. The report concludes that the project is eligible for a Class 32 CE.

The State of California's CEQA Guidelines Section 15332 states that a CE is allowed when:

- a. The project is consistent with the applicable general plan designation and all applicable general plan policies as well as with applicable zoning designation and regulations.
- b. The proposed development occurs within city limits on a project site of no more than five acres substantially surrounded by urban uses.
- c. The project site has no value as habitat for endangered, rare, or threatened species.
- d. Approval of the project would not result in any significant effects relating to traffic<sup>1</sup>, noise, air quality, or water quality.
- e. The site can be adequately served by all required utilities and public services.

Additionally, *CEQA Guidelines* Section 15300.2 outlines exceptions to the applicability of a Categorical Exemption, including cumulative impacts, significant effects due to unusual circumstances, scenic highways, hazardous waste sites, and historical resources. A full listing of these exceptions and an assessment of their applicability to the proposed project is provided in this report.

The City, in coordination with Rincon Consultants, Inc., evaluated the project's consistency with the above requirements, including its potential impacts in the areas of biological resources, traffic, noise, air quality, and water quality to confirm the project's eligibility for the Class 32 exemption.

<sup>&</sup>lt;sup>1</sup> Impacts related to parking are not discussed in this report, as such impacts are generally not considered as a physical effect on the environment under CEQA.

## 2 **PROJECT DESCRIPTION**

## 2.1 PROJECT LOCATION AND SETTING

The project site encompasses two Assessor's parcels (APNs 148-09-010 and 148-09-011). The site addresses are 4335 and 4345 El Camino Real; the site is on the northeast side of El Camino Real between Del Medio Avenue and Monroe Drive in Palo Alto. The site is bisected by Cesano Court, a private road; the full site size is 1.35 acres, while the developable areas (with the Cesano Court right of way excluded) is 45,218 square feet, or 1.04 acres. The project site has a Palo Alto Comprehensive Plan land use designation of Service Commercial and is also zoned Service Commercial (CS). Palo Alto's boundary with the City of Mountain View forms the southeastern border of the site, and its boundary with the City of Los Altos is along El Camino Real to the southwest. The project site is bounded by El Camino Real and the City of Los Altos to the southwest, multifamily residential development to the southeast (in Mountain View) and northeast, and a hotel to the northwest. Figure 1 shows the regional location of the project site and Figure 2 shows the project site in its immediate context.

The smaller existing parcel, 4335 El Camino Real (APN 148-09-010), is developed with two two-story commercial buildings totaling approximately 6,000 square feet and surface parking accessed from Cesano Court. The larger existing parcel, 4345 El Camino Real (APN 148-09-011), is developed with an approximately 11,000 square-foot L-shaped one- and two-story motel building with an outdoor pool and surface parking accessed from driveways on both El Camino Real and Cesano Court. The project site is generally flat and includes landscaped areas throughout the site, particularly the larger, southern portion of the site, generally characterized by shrubs and mature landscape trees. The landscape trees are non-native, with the exception of two coast live oaks and one valley oak. A number of trees, including these oak trees, are "protected trees" under the Palo Alto Municipal Code (PAMC). Photos of existing site conditions are shown on Figure 3a and Figure 3b.

## 2.2 PROJECT CHARACTERISTICS

The proposed project would involve demolition of the existing buildings, parking areas and landscaping and construction of 29 townhome-style residential units in five separate three-story buildings. Units would have either three or four bedrooms and a two-car attached garage. The proposed site plan is shown on Figure 4.

Proposed buildings 1 and 2, which would have four units each, would be on the smaller (northern) parcel (APN 148-09-010) and would be accessed from a private street via a driveway from Cesano Court. Proposed Building 3 would have 5 units, and proposed buildings 4 and 5 would have eight units each; these buildings would be on the larger (southern) parcel (APN 148-09-011). These units would also be accessed from Cesano Court, via two private streets, one of which would have a fire truck turnaround area. Two guest parking spaces would also be on this parcel.



### Figure 1 Regional Location

Imagery provided by Esri and its licensors © 2024.





CITY OF PALO ALTO





Imagery provided by Microsoft Bing and its licensors © 2024.

Fig X Project Location



## Figure 3a Existing Conditions

**Photo 1:** Buildings on the smaller (northern) parcel (APN 148-09-010), viewed looking northeast from El Camino Real.



**Photo 2:** Rear of buildings on the smaller (northern) parcel (APN 148-09-010) and surface parking lot, viewed looking northwest from Cesano Court.

## Figure 3b Existing Conditions



**Photo 3:** Existing building on the larger (southern) parcel (APN 148-09-011) and surface parking lot, viewed looking west from the interior of the site.



Photo 4: Landscaped area in parking lot of the larger (southern) parcel (APN 148-09-010), looking west.



#### Figure 4 Proposed Site Plan

Four of the 29 units would be offered at below-market rates, and the applicant would pay an in-lieu fee for an additional fractional unit, thus making the project eligible for a density bonus pursuant to the State Density Bonus Law and PAMC Chapter 18.15. The applicant has requested waivers, concessions, and incentives in accordance with these regulations to allow for the following modifications to PAMC standards:

 Concession: To provide no retail or retail-like uses on the site where approximately 9,000 square feet would be required based on development standards for the preservation of retail and retail-like uses

#### Parcel 1

- Waiver 1: To waive the 30% "build-to" development standard along Cesano Court.
- Waiver 2: To reduce the number of street trees required along the project frontage, 7 proposed where 8 are required.

#### Parcel 3

- Waiver 1a: To reduce the side yard setback adjacent to the condominium common use parcel from 10 feet to 4' 8".
- Waiver 1b: To reduce the rear setback adjacent to the condominium common use parcel from 10 feet to 0 feet.
- Waiver 2: To waive the 30% "build-to" development standard along Cesano Court.
- Waiver 3: To waive the maximum site coverage standard to allow 55.1% lot coverage where 50% is allowed.
- Waiver 4: To reduce the minimum requirements for the dimensions and quantity of Useable Open Space from 150 sf per unit to 116 sf per unit.
- Waiver 5: To reduce the number of street trees required along the project frontage, 8 proposed where 12 are required.
- Waiver 6: Waive the screening landscaping requirement along the southeast property line (adjacent to 2700 W El Camino Real).
- Waiver 7: Reduce restrictions on windows and balconies adjacent to residential buildings (adjacent to 2700 W El Camino Real).

The project would comply with all other development standards required in the CS zone. Selected CS standards are summarized in Table 1.

|                                 |                                                                                                   | Proposed                                                      |                                                                 |  |
|---------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|--|
| Project Characteristic          | Required                                                                                          | Parcel 1                                                      | Parcel 3                                                        |  |
| Address                         | _                                                                                                 | 4335 El Camino Real                                           | 4345 El Camino Real                                             |  |
| Assessor's Parcel No.           | -                                                                                                 | 148-09-010                                                    | 148-09-011                                                      |  |
| Gross/Net Lot Area <sup>1</sup> | N/A                                                                                               | 17,406 sf gross                                               | 41,370 sf gross                                                 |  |
|                                 |                                                                                                   | 14,614 sf net                                                 | 30,744 net                                                      |  |
| Lot Coverage                    | 29,388 sf (50%)                                                                                   | 48.2%                                                         | 55.1% (waiver requested)                                        |  |
| Floor Area <sup>1</sup>         | 1.25:1                                                                                            | 0.939:1                                                       | 1.176:1                                                         |  |
| Front Yard Setback              | 15 ft                                                                                             | 15 ft                                                         | 15 ft, 6 inches                                                 |  |
| Interior Side Yard<br>Setback   | 5 ft                                                                                              | 5 ft                                                          | 10 ft                                                           |  |
| Interior Rear Yard<br>Setback   | 10 ft                                                                                             | 27 ft                                                         | Varies 0-5 ft (waiver requested)                                |  |
| Height                          | 50 ft                                                                                             | 36 ft, 2 inches                                               | 37 ft, 2 inches                                                 |  |
| Residential Units               | 30 units per acre                                                                                 | 23.8 units per acre                                           | 29.8 units per acre                                             |  |
| Vehicle Parking                 | 1.5 spaces per 3-bedroom<br>unit, 2.5 spaces per<br>4-bedroom unit <sup>2</sup>                   | 16 spaces                                                     | 42 spaces                                                       |  |
| Bicycle Parking                 | Long Term: 1 space/unit<br>(29 spaces total)<br>Short Term: 1 space/<br>10 units (3 spaces total) | 8 in-unit for<br>residents,6 short-term<br>outdoor for guests | 21 in-unit for residents, 6<br>short-term outdoor for<br>guests |  |

#### Table 1 Proposed Project Characteristics

<sup>1</sup> The total gross floor area is calculated pursuant to Palo Alto Municipal Code §18.04.030. "Gross floor area" means the total area of all floors of a building measured to the outside surfaces of exterior walls. Net lot area is the area of a lot measured horizontally between bounding lot lines, but excluding any portion of a flag lot providing access to a street and lying between a front lot line and the street, and excluding any portion of a lot within the lines of any natural watercourse, river, stream, creek, waterway, channel, or flood control or drainage easement and excluding any portion of a lot within a public or private street right-of-way whether acquired in fee, easement, or otherwise.

ft = feet or foot; sf = square feet

<sup>2</sup> Parking requirements per CA Gov. Code §65915(p).

#### LANDSCAPING AND OPEN SPACE

The proposed project would require removal of 32 trees and would include planting 54 replacement trees, and 5,286 square feet of usable open space in the form of common and private open space is proposed. Open space would generally be around the perimeter of each parcel and on balconies. An existing 6-foot-tall wooden fence along the southeastern property line would be replaced or upgraded to also function as a sound barrier.

#### SITE ACCESS AND CIRCULATION

Vehicle access to the site is currently provided by three driveways (two on Cesano Court and one on El Camino Real). The proposed project would result in the elimination of these three existing driveways and construction of two new driveways on either side of Cesano Court approximately 90 feet west of El Camino Real. Both driveways would provide full access, as shown on Figure 4. The project would provide 58 parking spaces for residents and two guest spaces. The removal of the driveway on El Camino Real would also create the opportunity for one or two additional on-street parking spaces.

#### UTILITIES AND STORMWATER MANAGEMENT

City of Palo Alto Utilities (CPAU) provides electricity, natural gas, water, and wastewater services to the city. The City is currently contracted with GreenWaste of Palo Alto for collection of garbage, recycling, and composting services. Domestic water service would connect to an existing public water main in Cesano Court with individual public meters for each unit. Wastewater service would connect to an existing public sewer main in Cesano Court. Stormwater would be treated on site via bioretention areas and other treatment measures before being discharged to the existing public storm drain that currently serves the site. Surface runoff for 100-year storm events would be primarily directed towards Cesano Court.

#### CONSTRUCTION

Construction is expected to occur over approximately 16 months. The project would include demolition of the existing buildings on site as well as grading and site preparation for the new construction. Pile drivers would not be used in building construction. The project has committed to using construction equipment with U.S. EPA Tier 4 emission standards for particulate matter.

## **3 CONSISTENCY ANALYSIS**

## 3.1 CRITERION (A)

The project is consistent with the applicable general plan designation and applicable general plan policies as well as with applicable zoning designation and regulations.

The project site has a Comprehensive Plan land use designation of Service Commercial and is zoned Service Commercial (CS). Pursuant to the Comprehensive Plan, "higher density multi-family housing may be allowed in specific locations" in the Service Commercial designation. Specifically, these uses are encouraged in locations within close proximity to transit. The project is located along El Camino Real, which meets the definition of a high-quality transit corridor. Therefore, the proposed use in this location is consistent with this land use designation.

The project is also consistent with applicable 2030 Comprehensive Plan policies as well as with applicable zoning designations and regulations, except where waivers and concessions are requested in accordance with State density bonus law. As described above in the Project Description, the project would comply with zoning ordinance requirements set forth in the Palo Alto Municipal Code (PAMC) related to use, density, building height, FAR, site coverage, usable open space, setbacks and other standards with density bonus concessions and waivers as required under State Density Bonus Law and PAMC Chapter 18.15.

Applicable 2030 Comprehensive Plan policies include:

- Goal L-2 Promote an enhanced sense of "community" with development designed to foster public life, meet citywide needs and embrace the principles of sustainability.
  - **Policy L-2.3** As a key component of a diverse, inclusive community, allow and encourage a mix of housing types and sizes integrated into neighborhoods and designed for greater affordability, particularly smaller housing types, such as studios, co-housing, cottages, clustered housing, accessory dwelling units and senior housing.
  - **Policy L-2.5** Support the creation of affordable housing units for middle to lower income level earners, such as City and school district employees, as feasible.
  - **Policy L-2.11** Encourage new development and redevelopment to incorporate greenery and natural features such as green rooftops, pocket parks, plazas and rain gardens.
- Goal L-3 Safe, attractive residential neighborhoods, each with its own distinct character and within walking distance of shopping, services, schools, and/or other public gathering places.
  - **Policy L-3.1** Ensure that new or remodeled structures are compatible with the neighborhood and adjacent structures.

**Policy L-3.4** Ensure that new multi-family buildings, entries and outdoor spaces are designed and arranged so that each development has a clear relationship to a public street.

Consistent with these policies, the project would involve multi-family development, including affordable units, in a neighborhood with mixed residential types and densities; would include landscaping and trees; would be within walking distance of key services including grocery stores (Safeway, Trader Joe's) and a Walmart within 0.5-mile; and would have front doors directly on El Camino Real, creating a relationship with the public street.

The project would be consistent with the site's Comprehensive Plan land use designation, Comprehensive Plan policies, zoning designation, and zoning regulations. Therefore, the project would meet the requirements of *criterion* (*a*).

## 3.2 CRITERION (B)

The proposed development occurs within city limits on a project site of no more than five acres substantially surrounded by urban uses.

The project is located on an approximately 1.35 gross-acre site within a developed urban neighborhood in the City of Palo Alto. It is immediately surrounded by urban uses on all sides. Therefore, the project would be consistent with *criterion (b)*.

## 3.3 CRITERION (C)

The project site has no value as habitat for endangered, rare, or threatened species.

The project site is located within a developed urban area that lacks suitable habitat for sensitive animal or plant species. The project site is currently developed with buildings and paving with limited, generally non-native landscaping and does not contain suitable habitat for sensitive species.

The project would include the removal of trees on the property. The trees to be removed are in areas of high human activity and presence, and isolated from forestlands, water bodies, and other foraging habitat; they do not provide structure or habitat for substantial numbers of special status birds. The project would also include planting new trees.

A search on the U.S. Fish and Wildlife Services (USFWS) National Wetlands Inventory for the project site and surrounding area for the occurrences of wetlands concluded that there are no wetlands on the project site (USFWS 2024a). The closest mapped wetland is a riverine wetland associated with Adobe Creek located approximately 600 feet to the north of the site. Additionally, according to the USFWS Threatened & Endangered Species Critical Habitat map, the project site does not contain and is not adjacent to critical habitat for special status species (USFWS 2024b). The project site has no value as habitat for endangered, rare, or threatened species, and the project would meet the requirements under *criterion (c)*.

#### CRITERION (D) 3.4

Approval of the project would not result in any significant effects relating to traffic, noise, air quality, or water quality.

The following discussion provides an analysis of the project's potential effects with respect to traffic, noise, air quality, and water quality.

#### Α. TRAFFIC

This analysis is based primarily on a Trip Generation Study and Vehicle Miles Traveled (VMT) Analysis prepared by Hexagon Transportation Consultants, Inc. for the project in November 2024. This report is included in Appendix A.

#### **PROJECT TRIP GENERATION**

Vehicle trip generation rates were based on estimates from the Institute of Transportation Engineers' (ITE) Trip Generation Manual online database, which are based on a compilation of empirical trip generation surveys at locations throughout the country to forecast the number of trips that would be generated by the project. Driveway counts collected on January 16, 2024, were used to estimate the trips generated by the existing retail and hotel uses. The average trip rates for "Single Family Attached Housing" (Land Use 215) were applied to the proposed project. As shown in Table 2, the project is expected to generate a gross total of 209 daily trips, 14 morning (a.m.) peak hour trips, and seven afternoon (p.m.) peak hour trips from the proposed residential use. After subtracting the trips generated by the existing on-site uses, which would be demolished, the project is estimated to result in a net increase of 76 daily trips, with no net new trips occurring during the morning peak hour and one net new trip during the afternoon peak hour (Table 2).

|                                                                         |                            |                          | Daily | A.IVI. P | еак но | ar Trips | P.IVI. P | еак ног | ir Trips |
|-------------------------------------------------------------------------|----------------------------|--------------------------|-------|----------|--------|----------|----------|---------|----------|
| Land Use                                                                | ITE Code                   | Size                     | Trips | In       | Out    | Total    | In       | Out     | Total    |
| Existing Land Use                                                       |                            |                          |       |          |        |          |          |         |          |
| Retail and Hotel<br>(Driveway counts and ITE<br>estimates)              | 822,<br>driveway<br>counts | 24,626<br>square<br>feet | (133) | (9)      | (6)    | (15)     | (10)     | (7)     | (17)     |
| Proposed Land Use                                                       |                            |                          |       |          |        |          |          |         |          |
| Single Family Attached<br>Housing                                       | 215                        | 29 du                    | 209   | 3        | 11     | 14       | 4        | 3       | 7        |
| Net New Vehicle Trips<br>(Proposed Land Use<br>minus Existing Land Use) |                            |                          | 76    | (6)      | 5      | (1)      | 2        | (1)     | 1        |
| du = Dwolling Unit () donotos sub                                       | traction                   |                          |       |          |        |          |          |         |          |

### Table 2 Project Operation Trip Generation

Dwelling Unit, () denotes subtractior

All rates are from Institute of Transportation Engineers, 2024. Average rates used.

Source: Hexagon 2024 (Appendix A)

- •

#### VEHICLE MILES TRAVELED (VMT)

The City of Palo Alto has adopted thresholds of significance related to VMT in 2020 pursuant to Senate Bill (SB) 743 and the Governor's Office of Planning and Research (OPR) guidelines. The Palo Alto VMT criteria indicates that residential projects located in areas where the baseline VMT is 15 percent or more below the existing county average VMT per resident would be considered as a low-VMT area and therefore presumed to have a less than significant VMT impact.

According to the Santa Clara Countywide VMT Evaluation Tool (Version 2), the countywide VMT per capita is 13.33 miles. Using the Palo Alto VMT criteria, a project generating a VMT of 11.33 miles per capita (15 percent or more below existing county average) or less would have a less than significant impact on VMT. As shown in Appendix A, the project is located in a Transportation Analysis Zone (TAZ) where the daily VMT per resident is 9.85, which is below the threshold of 11.33. Therefore, the project would have less-than-significant VMT impact. Impacts related to VMT would be less than significant.

### SITE ACCESS

Access to the site was evaluated by W-Trans Transportation Consultants in January 2025 (also in Appendix A) based on the proposed site plan to determine the adequacy of the project driveways with regard to sight distance and emergency vehicle access. As mentioned above under *Project Characteristics*, three existing driveways would be eliminated, and two new driveways would be constructed on either side of Cesano Court approximately 90 feet west of El Camino Real. Both driveways would provide full access.

### SIGHT DISTANCE

At unsignalized intersections and driveways, a substantially clear line of sight should be maintained between the driver of a vehicle waiting at the crossroad and the driver of an approaching vehicle. Adequate time should be provided for the waiting vehicle to either cross, turn left, or turn right without requiring through-traffic to radically alter speed.

Sight distances along Cesano Court at the proposed project driveway locations were evaluated based on sight distance criteria contained in the Highway Design Manual published by Caltrans. Although sight distance requirements are not applicable to urban driveways, the stopping sight distance criterion was applied for evaluation purposes and as a safety matter where feasible. The posted speed limits on the street approaches were used as the basis for determining the recommended sight distance. Additionally, the stopping sight distance needed for a following driver to stop if there is a vehicle waiting to turn into a side street or driveway was evaluated.

Cesano Court has a speed limit of 25 miles per hour (mph). For speeds of 25 mph, the minimum stopping sight distance needed is 150 feet. A review of aerial photographs determined that sight distances at both proposed project driveways would exceed 150 feet in every direction. Therefore, the sight lines at both driveways would be adequate.

Although adequate sight distance is available at the project driveways for all turning movements entering and exiting the site, and impacts would therefore be less than significant, W-Trans recommended that to further enhance site distance the City should consider restricting on-street parking for 20 feet on both sides of each project driveway on Cesano Court, and that existing or planned vegetation along the project frontages on Cesano Court be trimmed and maintained to ensure continued adequate visibility.

#### **EMERGENCY VEHICLE ACCESS**

The project's driveways and internal parking lot circulation network are required to be designed to meet current City standards and so would accommodate the access requirements for passenger vehicles. Vehicle access would be provided within the internal parking lot via a pair of 26-foot-wide drive aisles. These internal aisles would have sufficient width to accommodate two-way traffic operations for circulating vehicles, as well as parking maneuvers to/from various parking spaces.

All buildings would be accessible by fire apparatus since each exterior wall would be within 150 feet of either Cesano Court or El Camino Real, thereby satisfying the conditions specified by the California Fire Code (CFC), Section 503.1.1, which states that "Approved fire apparatus access roads shall be provided for every facility, building or portion of a building hereafter constructed or moved into or within the jurisdiction. The fire apparatus access road shall comply with the requirements of this section and shall extend to within 150 feet (45,720 mm) of all portions of the facility and all portions of the exterior walls of the first story of the building as measured by an approved route around the exterior of the building or facility." (The Santa Clara County Fire Department has sole responsibility for determining the suitability of the project site for adequate fire apparatus vehicle access.)

Since all roadway users must by law yield the right-of-way to emergency vehicles when using their sirens and lights, the added project-generated traffic would not materially impact access or response times for emergency vehicles.

#### PEDESTRIAN, BICYCLE, AND TRANSIT ANALYSIS

The Comprehensive Plan *Transportation Element* contains the following applicable goals and policies to encourage the use of non-automobile transportation modes, including walking and bicycling, to achieve Palo Alto's mobility goals.

- Goal T-1 Create a sustainable transportation system, complemented by a mix of land uses, that emphasizes walking, bicycling, use of public transportation and other methods to reduce GHG emissions and the use of single-occupancy motor vehicles.
  - **Policy T-1.16** Promote personal transportation vehicles as an alternative to cars (e.g., bicycles, skateboards, roller blades) to get to work, school, shopping, recreational facilities and transit stops.

**Policy T-1.17** Require new office, commercial and multi-family residential developments to provide improvements that improve bicycle and pedestrian connectivity as called for in the 2012 Palo Alto Bicycle + Pedestrian Transportation Plan.

#### **P**EDESTRIAN FACILITIES

Given the proximity of the site to surrounding residential and retail uses as well as the presence of various nearby transit options, it is reasonable to assume that some residents would choose to walk to destinations near the site and use the existing sidewalk network. Sidewalk connectivity is continuous throughout the surrounding neighborhood. The project would result in changes to the existing pedestrian network, including sidewalks that would be constructed along the perimeter of the project site that would connect to the existing pedestrian network as well as to the entrances and exits to each project building. Internal pedestrian access within the site would be provided via a network of sidewalks and curb ramps. All pedestrian facilities would be required to be built to satisfy the current City of Palo Alto Public Works Department standards. Existing and proposed pedestrian facilities serving the project site would be adequate, and the project would not conflict with policies for pedestrian access. Although impacts would be less than significant, W-Trans recommended that Americans with Disabilities Act (ADA)-compliant curb ramps should be provided within the project site.

#### **BICYCLE FACILITIES**

According to the City of Palo Alto Bicycle and Pedestrian Transportation Plan (City of Palo Alto 2012), bikeways are classified into four categories:

- Class I Bikeways/Multi-Use Paths: A completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.
- Class II Bike Lanes: A striped and signed lane for one-way bike travel on a street or highway.
- Class III Bike Routes: Signing only for shared use with motor vehicles within the same travel lane on a street or highway.
- **Bicycle Boulevards:** Bicycle boulevards are signed, shared roadways with especially low motor vehicle volumes such that motorists passing bicyclists can use the full width of the roadway. Bicycle boulevards prioritize convenient and safe bicycle travel through traffic calming strategies, wayfinding, and other measures.

Table 3 summarizes bicycle facilities in the project vicinity which are currently existing and planned as described in the City of Palo Alto Bicycle and Pedestrian Transportation Plan.

| Bicycle Facility                              | Туре      | Length (miles) | Begin Point            | End Point      |  |
|-----------------------------------------------|-----------|----------------|------------------------|----------------|--|
| Existing                                      |           |                |                        |                |  |
| Arastradero Road and<br>Charleston Road       | II        | 2.4            | Foothill<br>Expressway | Fabian Way     |  |
| Maybell Avenue                                | Bike Blvd | 0.6            | El Camino Real         | Donald Drive   |  |
| Planned                                       |           |                |                        |                |  |
| Cesano Court                                  | Bike Blvd | 0.1            | Terminus               | El Camino Real |  |
| Miller Avenue                                 | Bike Blvd | 0.2            | Del Medio Avenue       | Monroe Drive   |  |
| Monroe Drive                                  | Bike Blvd | 0.1            | Monroe Drive           | Miller Avenue  |  |
| Wilkie Way                                    | Bike Blvd | 0.7            | South Terminus         | Maclane Street |  |
| Sources: W-Trans 2024, City of Palo Alto 2012 |           |                |                        |                |  |

#### Table 3 Bicycle Facilities Summary

Existing bicycle facilities together with shared use of minor streets provide adequate access for bicyclists within the vicinity of the project site. Planned bicycle facilities, as documented in the Bicycle & Pedestrian Transportation Plan (City of Palo Alto 2012), would further improve access for bicyclists. Bicycle facilities serving the project site would be adequate, the project would not conflict with policies for bicycle access, and this impact would be less than significant.

#### TRANSIT SERVICES

Development sites which are located within a one-half mile walk of a transit stop are generally considered to be adequately served by transit.

#### SANTA CLARA VALLEY TRANSPORTATION AUTHORITY (VTA)

VTA provides fixed-route bus service and light-rail train service in Santa Clara County. Two to three bicycles can be carried on most VTA buses. Bike rack space is on a first come, first served basis. Additional bicycles are allowed on VTA buses at the discretion of the driver.

Within one-half mile of the project site are bus stops for Routes 22, 21, 40, and Rapid 522. The combined service areas of these routes provide access between the project site and a variety of destinations in Santa Clara County. Bus service for these routes is generally available daily during typical travel times, with some available 24 hours, at 15- to 30-minute headways.

Dial-a-ride, also known as paratransit, or door-to-door service, is available for those who are unable to independently use the transit system due to a physical or mental disability. VTA ACCESS Paratransit is designed to serve the needs of individuals with disabilities within Palo Alto and greater Santa Clara County.

#### STANFORD TRANSPORTATION SHUTTLES

Stanford Transportation provides Shopping Express shuttle service that runs between the Palo Alto Transit Center, Stanford campus, and the San Antonio Shopping Center. This route

runs Friday to Sunday with one-hour headways between 3:00 p.m. and 10:00 p.m. The nearest shuttle stops for these services are located approximately 0.35 miles away from the proposed project site at the intersection of El Camino Real/San Antonio Road. Although initially intended to transport students and staff, these free shuttles are available for use by the public.

#### CALTRAIN

Operated by the Peninsula Corridor Joint Powers Board, Caltrain provides commuter rail service along the San Francisco Peninsula and the Santa Clara Valley. It connects Palo Alto with San Francisco to the north and San Jose and Gilroy to the south. The San Antonio Caltrain Station is located at 190 Showers Drive in Mountain View which is approximately 0.9 miles from the project site. Daily train service is provided at this station for northbound and southbound trains at approximately 15- to 30-minute headways from roughly 5:00 a.m. to 1:30 a.m. Both bicycle racks and lockers are provided at the train station. Bicycle racks are available on a first-come, first-served basis, while lockers must be reserved.

#### **ON-DEMAND TRANSPORTATION SERVICES**

On-demand private vehicle services (e.g., taxi, Uber, Lyft, etc.) are available in Palo Alto 24 hours a day. These vehicles can be used for trips both locally and regionally.

If (as a conservative example) 20 percent of the project's peak hour trips were made by transit, there would be approximately three additional transit riders during each peak hour, spread out over multiple buses and times. The volume of riders expected to be generated by the project would therefore be unlikely to exceed the carrying capacity of the existing transit services near the project site, especially when spread over multiple buses and service times. Transit facilities serving the project site would be adequate, and the project would not conflict with policies related to transit service. Impacts would be less than significant.

#### CONCLUSION

Impacts related to traffic would be less than significant. VMT per capita from the project would be below the Palo Alto VMT significance criteria resulting in less than significant VMT impacts. There would be no significant access, on-site circulation or safety impacts. The project would not have an adverse effect on the existing transit, pedestrian, or bicycle facilities in the area. Therefore, the project would meet the requirements for Traffic under *criterion (d)*.

### B. Noise

This analysis is based primarily on an Environmental Noise Assessment prepared by Salter, Inc., for the project in December 2024 and peer reviewed by Rincon Consultants, Inc. This report is included in Appendix B.

#### NOISE CHARACTERISTICS AND MEASUREMENT

Noise is defined as unwanted sound that disturbs human activity. A noise level (or volume) is generally measured in decibels (dB) using the A-weighted sound pressure level (dBA). The A-weighting scale is an adjustment to actual sound power levels to be consistent with that of human hearing response, which is most sensitive to frequencies around 4,000 Hertz (about the highest note on a piano) and less sensitive to low frequencies (below 100 Hertz).

One of the most frequently used noise metrics that considers duration as well as sound power level is the equivalent noise level ( $L_{eq}$ ). The  $L_{eq}$  is a steady A-weighted noise level that is equivalent to the amount of energy contained in the actual varying levels over a period of time (essentially,  $L_{eq}$  is the average sound level). The maximum instantaneous sound level measured during a measurement period is defined as  $L_{max}$ . Community noise is usually measured using Day-Night Average Level ( $L_{dn}$ ), which is the 24-hour average noise level with a +10 dBA penalty for noise occurring during nighttime (10:00 p.m. to 7:00 a.m.)

#### **NOISE STANDARDS**

The City's Comprehensive Plan Natural Environment Element includes goals and policies related to noise. This element establishes land use compatibility categories for community noise exposure (see Table 4). For residential uses, noise levels up to 60 dBA Ldn are identified as normally acceptable and noise levels between 60 and 75 dBA Ldn are identified as conditionally acceptable.

|                                                                                   | Exterior Noise Exposure Ldn or CNEL or dB |                             |              |
|-----------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|--------------|
| Land Use Category                                                                 | Normally<br>Acceptable                    | Conditionally<br>Acceptable | Unacceptable |
| Residential, Hotel and Motels                                                     | 50-60                                     | 60-75                       | 75+          |
| Outdoor Sports and Recreation, Neighborhood Parks and Playgrounds                 | 50-65                                     | 65-80                       | 80+          |
| Schools, Libraries, Museums, Hospitals, Personal Care,<br>Meeting Halls, Churches | 50-60                                     | 60-75                       | 75+          |
| Office Buildings, Business Commercial, and Professional                           | 50-70                                     | 70-80                       | 80+          |
| Auditoriums, Concert Halls, and Amphitheaters                                     | N/A                                       | 50-75                       | 75+          |
| Industrial, Manufacturing, Utilities, and Agriculture                             | 50-70                                     | 75+                         | N/A          |
| Source: City of Palo Alto 2017                                                    |                                           |                             |              |

#### Table 4 Palo Alto Land Use Compatibility for Community Noise Environments

The Palo Alto Municipal Code (PAMC) regulates noise primarily through the Noise Ordinance, which comprises Chapter 9.10 of the Code, under Title 9, Public Peace, Morals and Safety. Section 9.10.060 of the PAMC restricts construction activities to the hours of 8:00 a.m. to 6:00 p.m. Monday through Friday and 9:00 a.m. to 6:00 p.m. on Saturday. Construction is prohibited on Sundays and holidays. Construction, demolition, or repair activities during construction hours must meet the following standards:

- No individual piece of equipment shall produce a noise level exceeding 110 dBA at a distance of 25 feet. If the device is housed within a structure on the property, the measurement shall be made outside the structure at a distance as close to 25 feet from the equipment as possible.
- The noise level at any point outside of the property plane of the project shall not exceed 110 dBA.
- The holder of a valid construction permit for a construction project in a non-residential zone shall post a sign at all entrances to the construction site upon commencement of construction, for the purpose of informing all contractors and subcontractors, their employees, agents, materialmen, and all other persons at the construction site, of the basic requirements of this chapter.

Project operational impacts from traffic and stationary sources (e.g., HVAC equipment) noise would be significant if operation of the project results in the exposure of sensitive receptors to a perceptible increase in noise levels. Roughly a doubling of traffic volume would be necessary to generate a perceptible increase in roadway noise levels of 3 dBA or more.

#### **EXISTING AMBIENT NOISE LEVELS**

The primary source of noise in the vicinity of the project site is motor vehicle traffic, including automobiles, trucks, buses, and motorcycles. Among area roadways, El Camino Real produce noise from vehicles adjacent to the project site. Secondary sources of noise include but are not limited to garbage trucks and other delivery trucks, pedestrian activity and conversations.

To determine existing ambient noise levels on the project site, Salter, Inc., conducted two long-term measurements from August 23 through August 27, 2024. Measurements were taken at two locations (LT-1 and LT-2) northeast of the project site on Cesano Court, as shown in Figure 1 of the Environmental Noise Assessment (Appendix B). Noise levels reported by the Environmental Noise Assessment were the lowest measured 6-minute period during the five-day measurement period of 42 dBA for LT-1 and 39 dBA for LT-2.

#### **CONSTRUCTION NOISE**

As discussed above, PAMC Section 9.10.060 regulates temporary construction noise. Construction of the project would generate temporary noise that would be audible at the nearest adjacent receivers which include multi-family residential buildings to the northeast and southeast, and a hotel to the northwest of the project site. Noise associated with construction is a function of the type of construction equipment, the location and sensitivity of nearby land uses, and the timing and duration of the construction activities. While all phases of construction would generate noise, the site preparation and grading phases would typically generate the highest noise levels. Reference noise levels for construction equipment are shown in Table 5 at varying distances, including as close as 12 feet, that the Environmental Noise Assessment identified as the closest sensitive receiver distance. As shown in the table, construction noise could be as high as 97 dBA  $L_{max}$  during construction. Construction noise levels would be below the City's standard of 110 dBA  $L_{max}$  at any point outside the property line during allowable construction hours (PAMC Section 9.10.060). Therefore, impacts related to construction noise would be less than significant.

|                           | Estimated Maximum Instantaneous Lmax (in dBA) |            |            |  |  |
|---------------------------|-----------------------------------------------|------------|------------|--|--|
| Equipment                 | At 50 Feet                                    | At 25 Feet | At 12 Feet |  |  |
| Aerial Lift               | 83                                            | 89         | 95         |  |  |
| Air Compressors           | 81                                            | 87         | 93         |  |  |
| Cement and Mortar Mixers  | 85                                            | 91         | 97         |  |  |
| Concrete/Industrial Saws  | 76                                            | 82         | 88         |  |  |
| Excavators                | 73                                            | 79         | 85         |  |  |
| Forklifts                 | 83                                            | 89         | 95         |  |  |
| Generator Sets            | 81                                            | 87         | 93         |  |  |
| Graders                   | 76                                            | 82         | 88         |  |  |
| Paving Equipment          | 75                                            | 81         | 87         |  |  |
| Rollers                   | 74                                            | 80         | 86         |  |  |
| Tractors/Loaders/Backhoes | 84                                            | 90         | 96         |  |  |
| Welders                   | 73                                            | 79         | 85         |  |  |

| Table 5 | Construction Ec | quipment | Reference Noise | Levels <sup>1</sup> |
|---------|-----------------|----------|-----------------|---------------------|
|---------|-----------------|----------|-----------------|---------------------|

<sup>1</sup>Equipment noise levels for paving equipment, excavators, and graders were provided by the construction contractors on 4 November 2024. All other equipment noise levels are derived from Section 9, Federal Highway Administration Highway Traffic Noise Construction Noise Handbook (August 2006) and Table 12-2, Transit Noise and Vibration Impact Assessment, United States Department of Transportation, Office of Planning and Environment, Federal Transit Administration, May 2006.

Source: Appendix B

#### **CONSTRUCTION VIBRATION**

The City of Palo Alto does not have vibration-specific thresholds for construction activities. Therefore, this analysis uses the structural damage vibration limit recommendations of 0.3 inches per second peak particle velocity (in/sec PPV) for older structures (Caltrans 2020). vibration level exceedances at close distances to nearby structures (vibratory rollers and hydraulic breakers). The Environmental Noise Assessment recommended a construction best management practice that would be adhered to by the applicant and would require that vibratory rollers and hydraulic breakers are not permitted to operate closer than 14 feet to the southeastern property line. Vibration levels from the proposed project with these construction best management practices to nearby structures are shown in Table 6.

| Equipment         | PPV at 50 Feet (in/sec) | PPV at 25 feet (in/sec) | PPV at 12 feet (in/sec) |
|-------------------|-------------------------|-------------------------|-------------------------|
| Vibratory Roller  | 0.098                   | 0.21                    | _2                      |
| Hydraulic Breaker | 0.042 to 0.11           | 0.089 to 0.24           | _2                      |
| Large Bulldozer   | 0.042                   | 0.089                   | 0.20                    |
| Loaded Trucks     | 0.036                   | 0.076                   | 0.17                    |
| Excavator         | 0.042                   | 0.089                   | 0.20                    |
| Jackhammer        | 0.016                   | 0.035                   | 0.08                    |
| Small Bulldozer   | 0.001                   | 0.003                   | 0.007                   |

| Table 6 | Construction | Equi | pment Reference | Noice Levels <sup>1</sup> |
|---------|--------------|------|-----------------|---------------------------|
|---------|--------------|------|-----------------|---------------------------|

<sup>1</sup> Table 12-2, Transit Noise and Vibration Impact Assessment, United States Department of Transportation, Office of Planning and Environment, Federal Transit Administration, May 2006

 $^{\rm 2}$  As a construction best management practice, this equipment would not be operated within 14 feet.

Source: Appendix B

Based on the vibration levels shown in Table 6, construction equipment would not exceed the Caltrans vibration standard of 0.3 in/sec PPV at older residential structures. Therefore, impacts would be less than significant.

#### **OPERATIONAL NOISE**

#### **STATIONARY SOURCES**

The primary on-site operational noise source from the project would be from HVAC units that are anticipated to be located at grade and adjacent to the proposed residences. For a conservative approach, this analysis assumed three HVAC units would operate simultaneously at Building 4 which is the closest building to the adjacent noise-sensitive receivers. An existing six-foot tall wooden fence along the southeastern property line would be replaced or upgraded to also function as a sound barrier as part of project design. Therefore; this was included in the noise modeling.

With the inclusion of the upgraded sound wall and assuming HVAC units could conservatively run 24 hours a day, project operational noise would equate to 45 dBA L<sub>dn</sub> (Appendix B). PAMC Section 9.10.020 (Definitions) states that the local ambient cannot be determined to be less than 40 dBA in all areas outdoors. Therefore, the lowest measured ambient noise level applicable at neighboring property lines can conservatively be surmised to be 40 dBA. Assuming residential zoning and applying the +6 dBA noise threshold indicated in PAMC Section 9.10.030.a, the HVAC units are to be limited to 46 dBA at adjacent property planes. Therefore, noise generated by HVAC equipment would not produce a noise level that exceeds the noise limit of 46 dBA. Therefore, impacts would be less than significant.

#### **OFF-SITE TRAFFIC NOISE**

The project would generate traffic noise from vehicles traveling to and from the project site. The project would generate 76 daily trips. Based on the existing peak-hour traffic volume along El Camino Real of 1,362 vehicles (Appendix B), the project would result in a net increase in overall traffic noise of less than 1 dBA L<sub>dn</sub> (Appendix B), which is generally not noticeable. Therefore, traffic noise impacts would be less than significant.

#### CONCLUSION

The project would result in less than significant impacts from construction noise and vibration and from operational noise. The project would meet the requirements for Noise under *criterion (d)*.

### C. AIR QUALITY

This analysis is primarily informed by the Air Quality Assessment performed by Illingworth & Rodkin, Inc. from December 2024 (Appendix C) and peer reviewed by Rincon Consultants, Inc. A significant adverse air quality impact may occur when a project individually or cumulatively interferes with progress toward the attainment of the ozone standard by releasing emissions that equal or exceed the established long term quantitative thresholds for pollutants or causes an exceedance of a state or federal ambient air quality standard for any criteria pollutant. Primary criteria pollutants are emitted directly from a source (e.g., vehicle tailpipe, an exhaust stack of a factory, etc.) into the atmosphere. Primary criteria pollutants include reactive organic gases (ROG), nitric oxides (NO<sub>x</sub>), carbon monoxide (CO), sulfur oxides (SO<sub>x</sub>), and particulate matter ( $PM_{10}$  and  $PM_{2.5}$ ).  $PM_{10}$  is particulate matter measuring no more than 10 microns in diameter, while PM<sub>2.5</sub> is fine particulate matter measuring no more than 2.5 microns in diameter. The project site is located within the San Francisco Bay Area Basin and falls under the jurisdiction of the Bay Area Air Quality Management District (BAAQMD). The BAAQMD has adopted guidelines for quantifying and determining the significance of air quality emissions in its *California Environmental Quality* Act Air Quality Guidelines (BAAQMD 2022). BAAQMD recommends that lead agencies determine appropriate air quality emissions thresholds of significance based on substantial evidence in the record. BAAQMD's significance thresholds in the updated guidelines are the most appropriate thresholds for use in determining air quality impacts of the project.

This air quality analysis conforms to the methodologies recommended by *BAAQMD's California Environmental Quality Act Air Quality Guidelines* (BAAQMD 2022). Table 7 shows the significance thresholds that have been recommended by BAAQMD for project operations and construction in the San Francisco Bay Area Air Basin.

|                         | Construction-Related Thresholds             | Operation-Related Thresholds      |                                      |
|-------------------------|---------------------------------------------|-----------------------------------|--------------------------------------|
| Pollutant/<br>Precursor | Average Daily Emissions<br>(pounds per day) | Maximum Annual Emissions<br>(tpy) | Average Daily Emissions<br>(Ibs/day) |
| ROG                     | 54                                          | 10                                | 54                                   |
| NOx                     | 54                                          | 10                                | 54                                   |
| PM <sub>10</sub>        | 82 (exhaust)                                | 15                                | 82                                   |
| PM <sub>2.5</sub>       | 54 (exhaust)                                | 10                                | 54                                   |

#### Table 7 Air Quality Thresholds of Significance

Notes: tpy = tons per year; lbs/day = pounds per day; NO<sub>x</sub> = oxides of nitrogen; PM<sub>2.5</sub> = fine particulate matter with an aerodynamic resistance diameter of 2.5 micrometers or less; PM<sub>10</sub> = respirable particulate matter with an aerodynamic resistance diameter of 10 micrometers or less; ROG = reactive organic gases; tpy = tons per year.

Source: BAAQMD 2022, Table 3-1

In addition, BAAQMD provides a preliminary screening methodology to conservatively determine whether a project would exceed CO thresholds at the local level. If the following criteria are met, a project would result in a less than significant impact related to local CO concentrations:

- Project is consistent with an applicable congestion management program established by the county congestion management agency for designated roads or highways, regional transportation plan, and local congestion management agency plans.
- 2. The project traffic would not increase traffic volumes at affected intersections to more than 44,000 vehicles per hour.
- 3. The project traffic would not increase traffic volumes at affected intersections to more than 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited (e.g., tunnel, parking garage, bridge underpass, natural or urban street canyon, below-grade roadway).

#### METHODOLOGY

Because the project would involve demolition of the existing structure on the project site, none of the screening criteria would apply (BAAQMD 2022). Air pollutant emissions generated by project construction and operation were estimated using the California Emissions Estimator Model (CalEEMod), version 2022. CalEEMod uses project-specific information, including the project's land uses, construction inputs, traffic information, location and other inputs to model a project's construction and operational emissions. This information is provided in Appendix C.

Dispersion modeling of TAC and PM<sub>2.5</sub> emissions was conducted using the AERMOD dispersion model for the construction health risk assessment (HRA), which is included as Appendix D. Potential health risks to nearby sensitive receptors from the emission of TACs during construction were analyzed in accordance with the BAAQMD CEQA Air Quality Guidelines (2022). Where available, modeling assumptions and model inputs were made consistent with the project-specific details in the Appendix C. Results from the construction health risk assessment were then combined with the operational and cumulative risk

results from the Appendix C to determine whether the project would exceed BAAQMD's individual project and cumulative-source thresholds. The analysis reflects the construction and operation of the project as described under *Project Description*. Results of the construction HRA are provided in Appendix D.

#### **CONSTRUCTION EMISSIONS**

Construction emissions modeled for this analysis include emissions generated by construction equipment and emissions generated by vehicle trips associated with construction, such as worker, vendor trips and haul trips based on exported demolition material. For information regarding CalEEMod estimation inputs and methodology, please refer to Appendix C. Construction would occur over approximately 16 months. This analysis assumes that the project would comply with all applicable regulatory standards. In particular, the project would comply with BAAQMD Regulation 8 Rule 3 for architectural coatings and BAAQMD Regulation 6 Rule 3 for wood-burning devices. In addition, pursuant to Policy N-5.5 of the Palo Alto 2030 Comprehensive Plan (City of Palo Alto 2017), the project would also comply with the Basic Best Management Practices for Construction-Related Fugitive Dust Emissions (BAAQMD 2022):

- All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
- All visible mud or dirt trackout onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- All vehicle speeds on unpaved roads shall be limited to 15 mph.
- All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- All excavation, grading, and/or demolition activities shall be suspended when average wind speeds exceed 20 mph.
- All trucks and equipment, including their tires, shall be washed off prior to leaving the site.
- Unpaved roads providing access to sites located 100 feet or further from a paved road shall be treated with a 6- to 12-inch layer of compacted layer of wood chips, mulch, or gravel.
- Publicly visible signs shall be posted with the telephone number and name of the person to contact at the lead agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's General Air Pollution Complaints number shall also be visible to ensure compliance with applicable regulations.

#### **CONSISTENCY ANALYSIS**

#### **OPERATIONAL EMISSIONS**

Operational emissions modeled include mobile sources (i.e., vehicle emissions), energy emissions, and area source emissions from project land uses. The project land uses were input into CalEEMod based on the construction period modeling parameters. Emissions were calculated using CalEEMod, considering the earliest year of full operation as 2028, with higher emission rates for earlier years due to assumed phased-in emission control technologies over time. The project-specific daily trip generation rate, provided by the traffic consultant, was entered into CalEEMod, including default trip lengths and types. Energy use was modeled using CalEEMod defaults, incorporating the 2019 Title 24 Building Standards (a CalEEMod default) and the City of Palo Alto Utilities Department's 2021 emissions rate for electricity. The number of wood-burning devices was set to zero in CalEEMod, as these are prohibited by BAAQMD Regulation 6, Rule 3, and the project would not include natural gas infrastructure. Default model assumptions for solid waste emissions were used, and wastewater treatment was modeled under 100-percent aerobic conditions to reflect city services. For further information please refer to Appendix C.

#### **PROJECT EMISSIONS**

This section analyzes the potential construction and operational emissions associated with the project.

#### **CONSTRUCTION EMISSIONS**

Project construction would involve demolition, site preparation, grading, and building construction that have the potential to generate air pollutant emissions. Table 3 of Appendix C summarizes the estimated maximum daily emissions of ROG, NO<sub>X</sub>, CO, PM<sub>10</sub> exhaust, and PM<sub>2.5</sub> exhaust during project construction. As shown in the table, project construction emissions for criteria pollutants would be below the BAAQMD average daily thresholds of significance, and therefore impacts would be less than significant.

#### **OPERATIONAL EMISSIONS**

Operational emissions are those associated with the general use of the project after construction. Table 4 of Appendix C summarizes the project's net operational daily emissions and compares them to BAAQMD thresholds. As shown in Table 4 of Appendix C, project operational emissions for all criteria pollutants would be below the BAAQMD average daily thresholds of significance and therefore would be less than significant.

#### PROJECT CONSISTENCY WITH THE 2017 CLEAN AIR PLAN

The California Clean Air Act requires that air districts create a Clean Air Plan that describes how the jurisdiction will meet air quality standards. The most recently adopted air quality plan is the Bay Area Air Quality Management District Final 2017 Clean Air Plan (2017 Plan). The 2017 Plan focuses on two paramount goals, both consistent with the mission of BAAQMD:

- Protect air quality and health at the regional and local scale by attaining all national and state air quality standards and eliminating disparities among Bay Area communities in cancer health risk from TACs
- Protect the climate by reducing Bay Area GHG emissions to 40 percent below 1990 levels by 2030, and 80 percent below 1990 levels by 2050

Under BAAQMD's methodology, a determination of consistency with the 2017 Plan should demonstrate that a project:

- Supports the primary goals of the air quality plan
- Includes applicable control measures from the air quality plan
- Does not disrupt or hinder implementation of any air quality plan control measures

A project that would not support the 2017 Plan's goals would not be considered consistent with the 2017 Plan. On an individual project basis, consistency with BAAQMD quantitative thresholds is interpreted as demonstrating support with the 2017 Plan's goals. The project would not result in exceedances of BAAQMD thresholds for criteria air pollutants and thus would not conflict with the 2017 Plan's goal to attain air quality standards.

The 2017 Plan includes goals and measures to promote building decarbonization, conservation of water, use of on-site renewable energy, and energy efficiency. The project would be supplied electricity by City of Palo Alto Power, which has provided 100% carbon neutral power since 2013.

The project is a small residential development that would not introduce any substantial sources of air pollutants or sources permitted by BAAMQD. The project site is identified as a housing inventory site in the City's Housing Element, suitable for residential development at the proposed density. Additionally, the project would have construction and operational emissions below the BAAQMD thresholds (see below), would be considered urban infill, and would be located near transit with regional connections. The project would also comply with Mitigation Measures AIR-2a through AIR-2c of the Comprehensive Plan Update EIR (refer to Appendix C). Therefore, the project is consistent with the Comprehensive Plan Update EIR and would not conflict with the latest Clean Air planning efforts, impacts would be less than significant.

#### **CO EMISSIONS**

According to BAAQMD, a project would have less than significant CO impacts if projectgenerated traffic would not increase traffic volumes at affected intersections to more than 44,000 vehicles per hour. The San Francisco Bay Area Air Basin has been designated attainment for both federal and State standards for CO since 1998 (BAAQMD 2017). Furthermore, the project would use construction equipment with engines meeting U.S. EPA Tier 4 standards. The project would also implement BAAQMD basic BMPs, per the Comprehensive Plan Update EIR Mitigation Measures AIR-2a and Comprehensive Plan Policy N-5.5. As discussed in the Traffic section, after subtracting the trips generated by the existing on-site uses, which would be demolished, the project is estimated to result in a net increase of 76 daily trips, with no net new trips occurring during the morning peak hour and one net new trip during the afternoon peak hour (Table 2, above). The project would not result in a significant CO impact and impacts related to CO emissions would be less than significant.

#### **TOXIC AIR CONTAMINANTS**

Certain population groups such as children, the elderly, and people with health issues are particularly sensitive to air pollution. The majority of sensitive receptor locations are schools, residences and hospitals. The closest existing sensitive receptors to the project site are located in the adjacent multi-family residences to the southeast. There are additional sensitive receptors located at further distances to the north and south of the site. This project would introduce new sensitive receptors (i.e., residents) to the area. The following subsections discuss the project's potential to result in impacts related to TAC emissions during construction and operation.

#### CONSTRUCTION

The primary health risks associated with construction projects are cancer risks from diesel exhaust (DPM) and exposure to high concentrations of particulate fugitive dust (PM<sub>2.5</sub>). These pose potential health and nuisance impacts to nearby sensitive receptors, including existing residences adjacent to and surrounding the site (see Appendix C for details).

Sensitive receptors closest to and downwind of the project site, particularly the multi-family residences southeast of the construction site, would experience the greatest risks. Weather data from Moffett Federal Airfield indicates winds primarily flow from the northwest. The CalEEMod model estimated total uncontrolled annual PM<sub>10</sub> exhaust emissions (assumed to be DPM) at 0.02 tons (31 pounds) and fugitive dust emissions (PM<sub>2.5</sub>) at 0.01 tons (12 pounds). The project would use construction equipment meeting U.S. EPA Tier 4 emission standards, reducing DPM emissions by approximately 67% or more, significantly decreasing health risk impacts on nearby sensitive receptors (see Appendix C for details).

Construction is expected to last approximately 16 months. The dose to which receptors are exposed is the primary factor in determining health risk, with longer exposure periods resulting in higher risks (BAAQMD 2022). The 16-month construction period is only about 5% of the 30-year exposure period used for health risk calculations. The Maximally Exposed Individual (MEI) near the project site would be exposed to a 30-year excess cancer risk of approximately 5.97 in one million, which does not exceed BAAQMD's recommended cancer risk criteria of ten excess cases of cancer in one million individuals. The maximum chronic health risk is approximately 0.044, and the maximum PM<sub>2.5</sub> annual average is approximately 0.06 µg/m<sup>3</sup>, both below BAAQMD thresholds (See Appendix D for details).

The project would comply with CARB regulations limiting diesel equipment idling and the In-Use Off-Road Diesel Vehicle Regulation, further minimizing TAC emissions during construction. All off-road diesel-powered construction equipment would be equipped with Tier 4 engines, reducing DPM emissions by 81-96% compared to Tier 2 standards.

Furthermore, cumulative health risk impacts would remain below the BAAQMD significance thresholds (Appendix C Table 5). Therefore, project construction would not expose sensitive receptors to substantial TAC concentrations, and impacts would be less than significant.

#### **O**PERATION

Sources of operational TACs include, but are not limited to, land uses such as freeways and high-volume roadways, truck distribution centers, ports, rail yards, refineries, chrome plating facilities, dry cleaners using perchloroethylene, and gasoline dispensing facilities. The project would not involve stationary sources of TACs, such as diesel-powered emergency generators. The primary concern for local traffic-generated TAC impacts for the project would diesel-powered vehicles. The Air Quality Assessment conservatively assumed that the project would generate approximately 264 daily trips (See Appendix C for details). Project-generated traffic would be distributed across the roadway system, with most trips being from light-duty vehicles, such as passenger automobiles. Additionally, projects that would potentially increase cancer risk from traffic typically involve high numbers of dieselpowered on-road trucks or the use of off-road diesel equipment on-site, such as warehouse distribution centers, quarries, or manufacturing facilities. These types of projects may expose existing or future planned receptors to significant cancer risk levels and/or health hazards. However, the project is not a concern for mobile sources due to the low number and type of trips generated. Furthermore, the newly sited residential receptors would not be exposed to significant health risk impacts (Appendix C Table 6). Therefore, project operation would not expose sensitive receptors to substantial TAC concentrations, and impacts would be less than significant.

#### **O**DORS

BAAQMD's 2022 CEQA Air Quality Guidelines identifies land uses that have the potential to generate substantial odor complaints. The uses in the table include wastewater treatment plants, landfills or transfer stations, refineries, composting facilities, confined animal facilities, food manufacturing, smelting plants, and chemical plants (BAAQMD 2022). Odors are typically associated with industrial projects involving the use of chemicals, solvents, petroleum products, and other strong-smelling elements used in manufacturing processes, as well as sewage treatment facilities and landfills.

The project does not involve, nor would locate, new sensitive receptors in proximity to odor-emitting uses as identified in BAAQMD's 2022 CEQA Air Quality Guidelines. The project would not substantially cause new sources of odors or significantly expose sensitive receptors to existing or new odors. Emissions of ROG, NOx, and PM from the project would primarily originate from automobiles driven by future residents. During construction, traffic-related emissions would result from worker trips and truck traffic, and haul trips for demolition material, soil, concrete, and asphalt. These mobile emissions would be minimal and dispersed over a broad geographical area, blending with surrounding emissions. Therefore, the project would not substantially cause new sources of odors and would not significantly expose sensitive receptors to existing or new odors, and impacts would be less than significant.

### CONCLUSION

The project would not generate significant air quality impacts or health risk impacts, or require analysis for CO hotspots based on BAAQMD criteria. Therefore, the project would meet the requirements for Air Quality under *criterion* (*d*).

### D. WATER QUALITY

The project site is currently developed with structures, surface parking and limited landscaping. It does not contain ponds, a creek, or other surface water, although it does include a concrete swimming pool. The closest watercourse is the Adobe Creek approximately 600 feet north of the project site. Construction of the proposed project would not alter the course of a stream or river.

The project site is connected to an existing stormwater drainage system managed and maintained by the city of Palo Alto. Currently the project site is mostly covered in impervious structures and paving. The project would replace the impervious surface with new imperious paving, landscaping, and new buildings.

Pursuant to PAMC Chapter 16.11, the project is considered a "significant redevelopment project" because it would result in the replacement of 10,000 square feet or more of impervious surface. Significant redevelopment projects must treat, either through capture, flow-through filtration, or a combination of capture and flow-through filtration, the volume of stormwater specified in the PAMC. Stormwater would be treated with bioretention areas and other low-impact development treatment measures before being discharged to an existing public storm drain; stormwater runoff would generally continue to flow toward Cesano Court. The proposed project would not substantially increase stormwater runoff from the site.

Stormwater leaving the project site would enter the City's existing stormwater conveyance system via storm drains on site. The City applies standard conditions of approval that require that capacity is assessed at Building Permit stage and implementation of any needed upgrades. In addition, the project would adhere to all Bay Area Municipal Regional Stormwater Permit requirements and comply with specifications regarding installation and maintenance for C.3 features as described in the Santa Clara Valley Urban Runoff Pollution Prevention Program C.3 Handbook.

Because the project would not substantially increase stormwater runoff and would comply with City requirements to control and filter runoff, development of the proposed project would not significantly degrade the quality of stormwater runoff from the site. Impacts related to water quality would be less than significant.

### CONCLUSION

The proposed project would not introduce new surface water discharges, would not increase runoff volumes, result in substantial erosion or siltation, or result in flooding on- or off-site. Additionally, the project would not substantially alter the existing drainage pattern

of the site. Therefore, the project would meet the requirements for Hydrology and Water Quality under *criterion (d)*.

## 3.5 CRITERION (E)

The site can be adequately served by all required utilities and public services.

The project site is in an existing urban area served by existing public utilities and services. The proposed project is relatively small with 29 units and would not result in a substantial increase in demand for services or utilities. The City of Palo Alto, City of Palo Alto Power and City of Palo Alto Waste-Gas-Water provide police, fire, electricity, water, sewer, and solid waste collection (through GreenWaste of Palo Alto) services to the existing commercial and motel uses as well as neighboring residences and commercials buildings. The existing infrastructure would continue to provide these services for the proposed project.

### CONCLUSION

The proposed project involves infill development on a project site in an urban area that is already served by existing utilities and public services. As discussed under *criterion (a)*, the project is within the allowed density for the site and is consistent with the 2030 Comprehensive Plan land use designation for the site. The project would not change the site's use or increase the intensity of use such that existing utility and public service providers would not be able to serve the project site. Therefore, the project would meet the requirements for utilities and public services Systems under *criterion e*.

## 4 **EXCEPTIONS TO THE EXEMPTION**

CEQA Guidelines Section 15300.2 outlines exceptions to the applicability of a Categorical Exemption, including cumulative impacts, significant effects due to unusual circumstances, scenic highways, hazardous waste sites, and historical resources. These exceptions are discussed below. As shown, none of the exceptions would apply.

## 4.1 CUMULATIVE IMPACTS CRITERION

*CEQA Guidelines* Section 15300.2 states that "all exemptions for these classes are inapplicable when the cumulative impact of successive projects of the same type in the same place, over time is significant." Based on a search of buildingeye, a citizen-facing mapping interface provided by the City of Palo Alto and available online at https://paloalto.buildingeye.com/planning and verified with City planning staff (City of Palo Alto 2024), and a review of pending projects lists available from the website of the cities of Los Altos and Mountain View (City of Mountain View 2024, City of Los Altos, 2024), there are no major planned or pending projects within a 500-foot-radius of the project site (there are several small projects such as signage and façade improvements). There are no successive projects of the same type in the same place that would result in significant cumulative impacts to which the project could make a significant cumulative contribution.

## 4.2 SIGNIFICANT EFFECTS DUE TO UNUSUAL CIRCUMSTANCES CRITERION

State CEQA Guidelines Section 15300.2 states that "a categorical exemption shall not be used for an activity where there is a reasonable possibility that the activity will have a significant effect on the environment due to unusual circumstances." As discussed under *Project Location and Setting* above, the project site is currently developed with buildings and surface parking. The project site is generally level and does not possess characteristics which would qualify as unusual circumstances under Section State CEQA Guidelines Section 15300.2. Therefore, no known circumstances at the project site or related to project operations would result in a reasonable possibility of significant effects to the environment. This exception would not apply to the project.

## 4.3 Scenic Highways Criterion

State CEQA Guidelines Section 15300.2 states that a categorical exemption "shall not be used for a project which may result in damage to scenic resources, including but not limited to, trees, historic buildings, rock outcroppings, or similar resources, within a highway officially designated as a state scenic highway." There are no designated State Scenic Highways in the vicinity of the project site. The closest scenic highway is I-280, which has been recognized as eligible for designation as a State Scenic Highway, located approximately 2 miles southwest of the project site (Caltrans 2018). Due to distance and intervening structures, the project site is not visible from 1-280. Therefore, the project would not damage scenic resources within a highway officially designated as a state scenic highway. This exception would not apply to the project.

## 4.4 HAZARDOUS WASTE SITES CRITERION

State CEQA Guidelines Section 15300.2 states that a categorical exemption "shall not be used for a project located on a site which is included on any list compiled pursuant to Section 65962.5 of the Government Code." A search of the EnviroStor environmental database, the California Department of Toxic Substances Control Hazardous Waste and Substances Sites (Cortese) List, and the State Water Resources Control Board's (SWRCB) Geotracker Database was conducted in September 2024. The records review indicated that this project is not located on a site included on any list compiled pursuant to Section 65962.5 of the Government Code (Department of Toxic Substances Control 2024, State Water Resources Control Board 2024). Therefore, this exception does not apply to the project.

### 4.5 HISTORIC RESOURCES CRITERION

State CEQA Guidelines Section 15300.2 states that a categorical exemption "shall not be used for a project which may cause a substantial adverse change in the significance of a historical resource." In 2024, Douglas Bright of Urban Programmers recorded the two existing buildings located within the project site on California Department of Parks and Recreation (DPR) Form 523 forms and evaluated both for historical resources eligibility (Appendix E). As detailed in that documentation, the buildings were constructed in 1950s and 1960s respectively and found ineligible for listing in in the National Register of Historic Places, California Register of Historical resources, or local designation under any eligibility criteria due to a lack of historical or architectural significance. In accordance with the Historic Resources & Permit Review Requirements of the City of Palo Alto, the buildings are therefore not considered historical resources for the purposes of CEQA and demolition would not result in the substantial adverse change in the significance of a historical resource.

Additionally, Rincon Consultants, Inc. conducted a search of the files at the California Historical Resources Information System (CHRIS) - Northwest Information Center (NWIC) in October 2024 (Appendix E). The records search did not identify previously recorded historical resources, or archaeological resources which have the potential to qualify as historical resources, within or adjacent to the project site.

Based on the results of the historical resource evaluations and records search, the project does not have the potential to impact historical resources, and this exception does not apply to the proposed project. Nevertheless, the project would be subject to the following City of Palo Alto Standard COA related to unanticipated discovery of archaeological resources.

## STANDARD CONDITION OF APPROVAL – UNANTICIPATED DISCOVERY OF BURIED ARCHAEOLOGICAL, PALEONTOLOGICAL, AND TRIBAL CULTURAL RESOURCES

No known archeological or paleontological resources are present on or within the immediate vicinity of the site. However, in the unlikely event that an archeological
resource or paleontological resource is unearthed during ground disturbing activities, work in the immediate area must be halted and an archaeologist meeting the Secretary of the Interior's Professional Qualifications Standards for archeology (National Park Service 1983) shall be contacted immediately to evaluate the find. If the find is Native American in origin, then a Native American representative must also be contacted to participate in the evaluation of the find. The qualified archaeologist, and, if applicable, the Native American representative, shall examine the find and make recommendations regarding additional work necessary to evaluate the significance of the find and the appropriate treatment of the resource. Recommendations could include, but are not limited to, invasive or non-invasive testing, sampling, laboratory analysis, preservation in place, or data recovery. A report of findings documenting any data recovered during monitoring shall be prepared by a qualified archaeologist and submitted to the Director of Planning prior to final planning inspection.

## 5 SUMMARY

Based on the analysis in this report, the proposed 4335-4345 El Camino Real Residential Project meets all criteria for a Class 32 Categorical Exemption pursuant to Section 15332 of the State CEQA Guidelines. Further, none of the exceptions to the Categorical Exemption listed in CEQA Guidelines Section 15300.2 apply to the proposed project.

## 6 **R**EFERENCES

Bay Area Air Quality Management District (BAAQMD). 2017. Air Quality Standards and Attainment Status. https://www.baaqmd.gov/about-air-quality/research-anddata/air-quality-standards-and-attainment-status (Accessed January 2025).

\_\_\_\_. 2022. California Environmental Quality Act Air Quality Guidelines. https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/ceqaguidelines-2022/ceqa-guidelines-chapter-3-thresholds\_final\_v2-pdf.pdf?la=en (Accessed January 2024).

California Air Resources Board (CARB). 2005. Air Quality and Land Use Handbook: A Community Health Perspective. April 2005.

https://sfmohcd.org/sites/default/files/20%20-

%20CARB%2C%20Air%20Quality%20and%20Land%20Use%20Handbook%202005.pd f. (accessed January 2025).

California Department of Transportation (Caltrans). 2018. California State Scenic Highway System Map.

https://caltrans.maps.arcgis.com/apps/webappviewer/index.html?id=465dfd3d807c 46cc8e8057116f1aacaa (Accessed October 2024).

\_\_\_\_. 2020 Transportation and Construction Vibration Guidance Manual. (CT-HWANP-RT-20-365.01.01) September. Available at: https://dot.ca.gov/-/media/dotmedia/programs/environmental-analysis/documents/env/tcvgm-apr2020-a11y.pdf (accessed January 2025).

- Department of Toxic Substances Control. 2023. EnviroStor. https://www.envirostor.dtsc.ca.gov/public/map/ (Accessed October 2024).
- Engineering ToolBox, 2005, Voice Level at Distance. https://www.engineeringtoolbox.com/voice-level-d\_938.html, (Accessed December 2024).

Federal Transit Administration (FTA). 2018. *Transit Noise and Vibration Impact Assessment*. November. Available at:

https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/researchinnovation/118131/transit-noise-and-vibration-impact-assessment-manual-ftareport-no-0123\_0.pdf. (accessed December 2024).

- Illingworth & Rodkin, Inc. 2024. 4335 & 4345 El Camino Real Air Quality Assessment. December 6, 2024 (accessed January 2025).
- Los Altos, City of. 2024. Development Projects. https://www.losaltosca.gov/developmentservices/page/planning-division-monthly-project-submittals (Accessed October 2024).
- Mountain View, City of. 2024. Development Projects. https://www.mountainview.gov/ourcity/departments/community-development/planning/active-projects (Accessed October 2024).

- Palo Alto, City of. 2012. City of Palo Alto Bicycle + Pedestrian Transportation Plan. https://www.cityofpaloalto.org/files/assets/public/v/1/transportation/projects/bicy cle-pedestrian-transportation-plan\_adopted-july-2012.pdf
- Palo Alto, City of. 2017. City of Palo Alto 2030 Comprehensive Plan. https://www.cityofpaloalto.org/files/assets/public/planning-amp-developmentservices/3.-comprehensive-plan/comprehensive-plan/full-comp-plan-2030\_withjune21-amendments.pdf (Accessed October 2024)
  - \_\_\_\_\_. 2024. Palo Alto Planning Applications Buildingeye. https://paloalto.buildingeye.com/planning (accessed October 2024).
- State Water Resources Control Boad (SWRCB). Geotracker Database. 2023. https://geotracker.waterboards.ca.gov/. (Accessed October 2024).
- U.S. Fish and Wildlife Services (USFWS). 2024a. National Wetlands Inventory. https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/. (Accessed October 2024).
  - \_\_\_\_\_. 2024b. Threatened & Endangered Species Active Critical Habitat Report. https://fws.maps.arcgis.com/home/webmap/viewer.html?webmap=9d8de5e265ad 4fe09893cf75b8dbfb77. (Accessed October 2024).

This page intentionally left blank.

## Appendix A

Trip Generation Study and VMT Analysis and Site Access Evaluation

# HEXAGON TRANSPORTATION CONSULTANTS, INC.

#### Memorandum

| То:      | Jared Brotman, SummerHill Homes                                                                                                      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|
| From:    | Gary K. Black, Nivedha Baskarapandian                                                                                                |
| Subject: | Trip Generation Study and VMT Analysis for a Proposed Residential Development at 4335 & 4345 El Camino Real in Palo Alto, California |

Hexagon Transportation Consultants, Inc. has completed a trip generation study and vehicle miles traveled (VMT) analysis for the proposed residential development at 4335 and 4345 El Camino Real in Palo Alto, California. The project proposes to demolish the existing retail stores and inn and construct 29 dwelling units.

## **VMT Analysis**

The evaluation of VMT for this project is based on the City's VMT Policy adopted in June 2020. The Palo Alto VMT Policy establishes screening criteria for projects that are expected to cause a less-than-significant transportation impact under CEQA based on the land use and/or location. Projects that meet the screening criteria are not required to prepare further VMT analysis. For a project that does not meet the screening criteria, a project's VMT impact is determined by comparing the project VMT to the appropriate thresholds of significance based on the type of development. The City's VMT Policy screening criteria state that the following types of projects may be presumed to have a less than significant VMT impact:

- projects near major transit (i.e., within a ½ mile walkshed of the El Camino Real),
- affordable housing,
- small projects (i.e., fewer than 110 trips per day),
- neighborhood serving retail projects (e.g., dry cleaners, coffee shop)

Projects in proximity to major transit stops have additional criteria that all need to be met to be exempt from a VMT analysis.

- high density (minimum floor area ratio of 0.75)
- does not exceed parking requirements
- consistent with Plan Bay Area 2040
- does not replace affordable units with smaller numbers of moderate- or above moderateincome units.

The project would not meet the minimum floor area ratio criterion for projects near major transit. Therefore, a VMT analysis was conducted using the Santa Clara Countywide VMT Evaluation Tool that evaluates the project's impact on VMT and is described below.

According to the City TIA Guidelines, the impact threshold for the residential project component is 15 percent below the existing average VMT per resident for the City of Palo Alto. The City average









Ň

Ņ

daily VMT for residential uses is 13.33 per resident. Therefore, the impact threshold for residential uses is 11.33 (13.33 x 0.85) daily VMT per resident.

The project is located in a TAZ (Transportation Analysis Zone) where the daily VMT per resident is 9.85, which is below the threshold of 11.33. Therefore, the project would have less-than-significant VMT impact for the residential component. The Santa Clara Countywide VMT Tool report is attached as Appendix A.

#### **Trip Generation**

Through empirical research, data have been collected that quantifies the amount of traffic produced by many types of land uses. The research is compiled in the Institute of Transportation Engineers' (ITE) Trip Generation Manual online database. The standard trip generation rates can be applied to help predict the future traffic increases that would result from a new development. The rates published for "Single-Family Attached Housing" (ITE Land Use 215) were used to estimate the trips generated by the proposed project. Driveway counts collected on January 16, 2024, were used to estimate the trips generated by the existing retail and inn. The definition of single-family attached housing land use is housing units that share a wall with an adjoining dwelling unit, whether the walls are for living space, a vehicle garage, or storage space. After applying the ITE trip rates and trip credits to the proposed project, it is estimated that the project would generate 76 net new daily vehicle trips with no net new trips occurring during the AM peak hour and one net new trip during the PM peak hour (see Table 1).

#### Table 1

|                                             |        |       | Da   | ily   | A    | M Peak- | Hour Tri | os    | P    | M Peak- | Hour Trij | os    |
|---------------------------------------------|--------|-------|------|-------|------|---------|----------|-------|------|---------|-----------|-------|
| Land Use                                    | Size   | Units | Rate | Trips | Rate | In      | Out      | Total | Rate | In      | Out       | Total |
| Proposed                                    |        |       |      |       |      |         |          |       |      |         |           |       |
| Single-Family Attached Housing <sup>1</sup> | 29     | du    | 7.2  | 209   | 0.48 | 3       | 11       | 14    | 0.57 | 10      | 7         | 17    |
| Existing                                    |        |       |      |       |      |         |          |       |      |         |           |       |
| Retail and Inn <sup>2</sup>                 | 24,626 | s.f.  |      | 133   |      | 9       | 6        | 15    |      | 8       | 8         | 16    |
| Net New Vehicle Trips                       |        |       |      | 76    |      | (6)     | 5        | (1)   |      | 2       | (1)       | 1     |
| Notes:                                      |        |       |      |       |      |         |          |       |      |         |           |       |
| du = dwelling unit                          |        |       |      |       |      |         |          |       |      |         |           |       |
| a financiana fa at                          |        |       |      |       |      |         |          |       |      |         |           |       |

#### **Trip Generation Summary**

s.t. = square teet

Single-family housing trip generation is based on the rates published in the ITE Trip Generation online database for Single-Family Attached Housing (Land Use Code 215).

<sup>2</sup> Existing retail and inn trip generation is based on driveway counts collected January 16, 2024. Daily trips were estimated using the ratio of PM peak-hour and daily trip rates published in the ITE Trip Generation online database for Strip Retail Plaza (<40k) (Land Use 822) and applying it to the existing PM peak-hour total trips.

### Conclusion

The results of the trip generation study for the project are summarized below.

- According to the Santa Clara Countywide VMT Tool, the project's VMT per resident is 9.85 which is lower than the VMT impact threshold of 11.33. Therefore, the project would have a less-than-significant VMT impact.
- The project would generate 76 net new daily vehicle trips with no net new trips occurring • during the AM peak hour and one net new trip during the PM peak hour. Because of the small number of added trips, the project is not required to prepare a transportation analysis, according to Palo Alto guidelines.



Appendix A SCC VMT Tool Report



## **Project Details**

Timestamp September 16, 2024, 09:44:31 AM of Analysis

Project 4335 & 4345 El Camino Real Name

Project Project proposes to demolish the existing Description retail and inn and build 29 dwelling units.

## **Project Location Map**



## **Analysis Details**

| Data Version            | VTA Countywide Model December<br>2019 |
|-------------------------|---------------------------------------|
| Analysis<br>Methodology | TAZ                                   |
| Baseline Year           | 2015                                  |

## **Project Land Use**

| Residential:      |    |  |  |
|-------------------|----|--|--|
| Single Family DU: |    |  |  |
| Multifamily DU:   |    |  |  |
| Total DUs:        | 29 |  |  |
| Non-Residential:  |    |  |  |

Office KSF: Local Serving Retail KSF: Industrial KSF:

Residential Affordability (percent of all units):

| units).               |     |
|-----------------------|-----|
| Extremely Low Income: | 0 % |
| Very Low Income:      | 0 % |
| Low Income:           | 0 % |
|                       |     |

Parking: Motor Vehicle Parking: Bicycle Parking:

## **Proximity to Transit Screening**

Inside a transit priority area?

Yes (Pass)



## Residential Vehicle Miles Traveled (VMT) Screening Results

| Land Use Type 1:                                            | Residential               |
|-------------------------------------------------------------|---------------------------|
| VMT Metric 1:                                               | Home-based VMT per Capita |
| VMT Baseline Description 1:                                 | County Average            |
| VMT Baseline Value 1:                                       | 13.33                     |
| VMT Threshold Description 1 / Threshold Value 1:            | -15% / 11.33              |
| Land Use 1 has been Pre-Screened by the Local Jurisdiction: | N/A                       |

|                                                        | Without Project | With Project & Tier 1-3<br>VMT Reductions | With Project & All VMT<br>Reductions |
|--------------------------------------------------------|-----------------|-------------------------------------------|--------------------------------------|
| Project Generated Vehicle<br>Miles Traveled (VMT) Rate | 9.85            | 9.85                                      | 9.85                                 |
| Low VMT Screening<br>Analysis                          | Yes (Pass)      | Yes (Pass)                                | Yes (Pass)                           |



- Land Use 1 Threshold VMT: 11.33 ••• Land Use 1 Max Reduction Possible: 7.88 VMT Values

January 10, 2025



Mr. Abe Leider Rincon Consultants, Inc. 449 15<sup>th</sup> Street, Suite 150 Oakland, California 94612

## DRAFT Site Access Evaluation for 4335-4345 El Camino Real

Dear Mr. Leider;

As requested, W-Trans has prepared a site access evaluation for the proposed residential development to be located at 4335-4345 El Camino Real in the City of Palo Alto. According to the City of Palo Alto's Local Transportation Analysis policy, a Level of Service operational analysis is not required since this project would generate fewer than 50 net-new a.m. or p.m. peak hour trips. Similarly, a detailed operational analysis is not required per the policies outlined in the Santa Clara Valley Transportation Agency's (VTA's) *Transportation Impact Analysis Guidelines* since fewer than 100 new a.m. or p.m. peak hour trips would be generated by the project.

#### **Project Description**

The project is located at 4335-4345 El Camino Real in the City of Palo Alto and entails the construction of 29 new townhome dwelling units. The site is currently occupied by a 27-room motel and approximately 6,500 square feet of retail use which would be demolished to make way for the proposed project. A total of 60 parking spaces would be provided comprised of two garage spaces for each dwelling unit plus two additional uncovered guest spaces. Storage for bicycles would be provided inside each garage.

#### **Non-Automobile Modes**

#### **Pedestrian Facilities**

Given the proximity of the site to surrounding residential and retail uses as well as the presence of various nearby transit options, it is reasonable to assume that some residents would choose to walk to destinations near the site and use the existing sidewalk network. Sidewalk connectivity is continuous throughout the surrounding neighborhood. The project would result in changes to the existing pedestrian network, including sidewalks that would be constructed along the perimeter of the project site that would connect to the existing pedestrian network as well as to the entrances and exits to each project building. While not indicated on the site plan, ADA-compliant curb ramps should be provided within the project site.

**Project Summary** – Internal pedestrian access within the site would be provided via a network of sidewalks and curb ramps. All pedestrian facilities would need to be built to satisfy the current City of Palo Alto Public Works Department standards.

**Finding** – Existing and proposed pedestrian facilities serving the project site would be adequate, and the project would not conflict with any policies for pedestrian access.

**Recommendation** – As part of the project, ADA-compliant curb ramps should be provided within the project site.

#### **Bicycle Network**

The City of Palo Alto Bicycle & Pedestrian Transportation Plan, 2012, classifies bikeways into four categories.

- **Class I Bikeways/Multi-Use Paths** a completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.
- **Class II Bikeways** a striped and signed lane for one-way bike travel on a street or highway.

#### SANTA ROSA · OAKLAND

- **Class III Bikeways** signing only for shared use with motor vehicles within the same travel lane on a street or highway.
- **Bicycle Boulevards** bicycle boulevards are signed, shared roadways with especially low motor vehicle volumes such that motorists passing bicyclists can use the full width of the roadway. Bicycle boulevards prioritize convenient and safe bicycle travel through traffic calming strategies, wayfinding, and other measures.

In the immediate project area, Class II bikeways exist on both Arastradero Road and Charleston Road. Bicyclists ride in the roadway and/or on sidewalks along all other streets within the project study area. Table 2 summarizes the existing and planned bicycle facilities in the project vicinity, as contained in the *Bicycle & Pedestrian Transportation Plan*.

| Table 1 – Bicycle Facility Summary  |                        |     |                |                |  |
|-------------------------------------|------------------------|-----|----------------|----------------|--|
| Status<br>Facility                  | Type Length<br>(miles) |     | Begin Point    | End Point      |  |
| Existing                            |                        |     |                |                |  |
| Arastradero Rd and<br>Charleston Rd | II                     | 2.4 | Foothill Expy  | Fabian Wy      |  |
| Maybell Ave                         | Bike Blvd              | 0.6 | El Camino Real | Donald Dr      |  |
| Planned                             |                        |     |                |                |  |
| Cesano Ct                           | Bike Blvd              | 0.1 | Terminus       | El Camino Real |  |
| Miller Ave                          | Bike Blvd              | 0.2 | Del Medio Ave  | Monroe Dr      |  |
| Monroe Dr                           | Bike Blvd              | 0.1 | Monroe Dr      | Miller Ave     |  |
| Wilkie Wy                           | Bike Blvd              | 0.7 | South Terminus | Maclane St     |  |

Source: City of Palo Alto Bicycle & Pedestrian Transportation Plan, Alta Planning & Design, 2012

Existing bicycle facilities, together with shared use of minor streets provide adequate access for bicyclists within the vicinity of the project site. Planned bicycle facilities, as documented in the *Bicycle & Pedestrian Transportation Plan*, would further improve access for bicyclists.

**Finding** – Bicycle facilities serving the project site would be adequate, and the project would not conflict with any policies for bicycle access.

#### **Transit Facilities**

Development sites which are located within a one-half mile walk of a transit stop are generally considered to be adequately served by transit.

#### Santa Clara Valley Transportation Authority (VTA)

VTA provides fixed-route bus service and light-rail train service in Santa Clara County. Two to three bicycles can be carried on most VTA buses. Bike rack space is on a first come, first served basis. Additional bicycles are allowed on VTA buses at the discretion of the driver.

Within one-half mile of the project site are bus stops for Routes 22, 21, 40, and Rapid 522. The combined service areas of these routes provide access between the project site and a variety of destinations in Santa Clara County. Bus service for these routes is generally available daily during typical travel times, with some available 24 hours, at 15- to 30-minute headways.

#### Mr. Abe Leider

Dial-a-ride, also known as paratransit, or door-to-door service, is available for those who are unable to independently use the transit system due to a physical or mental disability. VTA ACCESS Paratransit is designed to serve the needs of individuals with disabilities within the City of Palo Alto and greater Santa Clara County.

#### Stanford Transportation Shuttles

Stanford Transportation provides Shopping Express shuttle service that runs between the Palo Alto Transit Center, Stanford campus, and the San Antonio Shopping Center. This route runs Friday to Sunday with one-hour headways between 3:00 p.m. and 10:00 p.m. The nearest shuttle stops for these services are located approximately 0.35 miles away from the proposed project site at the intersection of El Camino Real/San Antonio Road. Although initially intended to transport students and staff, these free shuttles are available for use by the public.

#### Caltrain

Operated by the Peninsula Corridor Joint Powers Board, Caltrain provides commuter rail service along the San Francisco Peninsula and the Santa Clara Valley. It connects Palo Alto with San Francisco to the north and San Jose and Gilroy to the south. The San Antonio Caltrain Station is located at 190 Showers Drive in Mountain View which is approximately 0.9 miles from the project site. Daily train service is provided at this station for northbound and southbound trains at approximately 15- to 30-minute headways from roughly 5:00 a.m. to 1:30 a.m. Both bicycle racks and lockers are provided at the train station. Bicycle racks are available on a first-come, first-served basis, while lockers must be reserved.

#### **On-Demand Transportation Services**

On-demand private vehicle services (e.g., taxi, Uber, Lyft, etc.) are available in Palo Alto 24 hours a day. These vehicles can be used for trips both locally and regionally.

**Project Summary** – If (as a conservative example) 20 percent of peak hour trips were made by transit, there would be approximately three additional transit riders during each peak hour, spread out over multiple buses and times. The volume of riders expected to be generated by the project would therefore be unlikely to exceed the carrying capacity of the existing transit services near the project site, especially when spread over multiple buses and service times.

**Finding** – Transit facilities serving the project site would be adequate, and the project would not conflict with any policies related to transit service.

#### **Site Circulation and Access**

#### Vehicular Site Access

Vehicle access to the site is currently provided by three driveways (two on Cesano Court and one on El Camino Real). The proposed project would result in the elimination of these three existing driveways and construction of two new driveways on either side of Cesano Court approximately 90 feet west of El Camino Real. Both driveways would provide full access, as shown in the enclosed site plan. The removal of the driveway on El Camino Real would also create the opportunity for one or two additional on-street parking spaces.

#### Sight Distance

At unsignalized intersections and driveways, a substantially clear line of sight should be maintained between the driver of a vehicle waiting at the crossroad and the driver of an approaching vehicle. Adequate time should be provided for the waiting vehicle to either cross, turn left, or turn right, without requiring through traffic to radically alter their speed.

#### Mr. Abe Leider

#### Page 4

Sight distances along Cesano Court at the proposed project driveway locations were evaluated based on sight distance criteria contained in the *Highway Design Manual* published by Caltrans. Although sight distance requirements are not applicable to urban driveways, the stopping sight distance criterion was applied for evaluation purposes and as a safety matter where feasible. The posted speed limits on the street approaches were used as the basis for determining the recommended sight distance. Additionally, the stopping sight distance needed for a following driver to stop if there is a vehicle waiting to turn into a side street or driveway was evaluated.

Cesano Court has a *prima facie* speed limit of 25 miles per hour (mph). For speeds of 25 mph, the minimum stopping sight distance needed is 150 feet. A review of aerial photographs determined that sight distances at both proposed project driveways would exceed 150 feet in every direction. Therefore, the sight lines at both driveways are adequate.

To maintain the sight distance at each driveway, it is suggested that in accordance with the Federal Highway Administration's guide on *Vegetation Control for Safety*, 2008, any vegetation planted near the project's driveways and within the driveway's sight distance triangle should be trimmed to an appropriate height of three feet or less and trees should be trimmed so that nothing hangs below a height of seven feet from the surface of the roadway. This provides a gap in vegetation for drivers to observe oncoming traffic and safely maneuver from a driveway. Additionally, it is recommended that on-street parking be restricted for 20 feet on both sides of each project driveway on Cesano Court, which is consistent with guidance from the American Association of State Highway and Transportation Officials' *A Policy on Geometric Design of Highways and Streets (Section 7.3.12.2)* and the National Association of City Transportation Officials' *Urban Street Design*. Doing so provides extra maneuvering space for turning traffic, eliminates the need for parking vehicles to back across the front of the driveway, and increases sight distances at the driveway.

**Finding** – Adequate sight distance is available at the project driveways for all turning movements entering and exiting the site.

**Recommendation** – To achieve a minimum sight distance of 150 feet at the driveway access points it is recommended that on-street parking be restricted for 20 feet on both sides of each project driveway on Cesano Court. Also, it is recommended that existing or planned vegetation along the project frontages on Cesano Court be trimmed and maintained to ensure continued adequate visibility.

#### **Emergency Vehicle Access**

The project's driveways and internal parking lot circulation network would need to be designed to meet current City standards and so can be expected to accommodate the access requirements for passenger vehicles. Vehicle access would be provided within the internal parking lot via a pair of 26-foot-wide drive aisles. These internal aisles would have sufficient width to accommodate two-way traffic operations for circulating vehicles, as well as parking maneuvers to/from various parking spaces.

All buildings are accessible by fire apparatus since each exterior wall is within 150 feet of either Cesano Court or El Camino Real thereby satisfying the conditions specified by the *California Fire Code (CFC), Section 503.1.1* which states that "Approved fire apparatus access roads shall be provided for every facility, building or portion of a building hereafter constructed or moved into or within the jurisdiction. The fire apparatus access road shall comply with the requirements of this section and shall extend to within 150 feet (45,720 mm) of all portions of the facility and all portions of the exterior walls of the first story of the building as measured by an approved route around the exterior of the building or facility."

It is noted that the Santa Clara County Fire Department has sole responsibility for determining the suitability of the project site for adequate fire apparatus vehicle access.

Since all roadway users must yield the right-of-way to emergency vehicles when using their sirens and lights, the added project-generated traffic would not materially impact access or response times for emergency vehicles.

#### **Parking Facilities**

The project was analyzed to determine whether the proposed parking supply would be sufficient to satisfy *City of Palo Alto Municipal Code* requirements. The project site as proposed would contain a total of 60 parking spaces comprised of two garage spaces per dwelling unit plus two guest spaces located at the end of "C Street" on the site plan.

The City of Palo Alto parking supply requirements stipulate that 58 spaces are required for this project. This requirement is based on the *City of Palo Alto Municipal Code, Chapter 18.52.040; Off-Street Parking, Loading and Bicycle Facility,* which states that two spaces are required for each dwelling unit for single-family residential developments and at least one space per unit must be covered. The proposed parking supply of 60 spaces is greater than the number of required spaces by the City Code.

**Finding** – The number of parking spaces provided by the project would exceed the City's parking Code requirement.

#### **Conclusions and Recommendations**

- Pedestrian, bicycle, and transit facilities would be adequate to serve the project as proposed based on the comprehensive network of pedestrian, bicycle and transit facilities that exist within the study area. The project would not conflict with any plans or policies for these modes.
- Adequate sight lines are available at the proposed project driveway locations. To maintain these sight lines, it is recommended that parking be prohibited for at least 20 feet on either side of the proposed project driveways and vegetation, new monuments or signage along the project frontages should be designed and maintained to ensure that all features lie below three feet in height or above seven feet. With a maintenance program implemented the project would not introduce any hazards to the transportation network.
- Emergency access and circulation would function acceptably, and traffic from the proposed development would be expected to have a nominal impact on emergency response times.
- The proposed parking supply of 60 spaces would be greater than the minimum City requirement.

Thank you for giving W-Trans the opportunity to provide these services. Please call if you have any questions.

Sincerely,

Kenneth Jeong, PE (Traffic) Senior Traffic Engineer

Mark Spencer, PE (Traffic) Senior Principal

MES/kbj/PAL031.L1

Enclosure: Site Plan



Cesano Court Townhomes 4335 & 4345 El Camino Real, Palo Alto, CA July 29, 2024



COMMUNITIES OF DISTINCTION 777 California Ave, Palo Aito, Ca 94304



SDG Archilects, Inc. 3361 Walnut Blvd. Suite 120 Brentwood, CA 94513 925.634.7000 | sdgarchitectsinc.com

**CIRCULATION PLAN** 

A07

January 29, 2025



Mr. Abe Leider Rincon Consultants, Inc. 449 15<sup>th</sup> Street, Suite 150 Oakland, California 94612

## Site Access Evaluation for 4335-4345 El Camino Real

Dear Mr. Leider;

As requested, W-Trans has prepared a site access evaluation for the proposed residential development to be located at 4335-4345 El Camino Real in the City of Palo Alto. According to the City of Palo Alto's Local Transportation Analysis policy, a Level of Service operational analysis is not required since this project would generate fewer than 50 net-new a.m. or p.m. peak hour trips. Similarly, a detailed operational analysis is not required per the policies outlined in the Santa Clara Valley Transportation Agency's (VTA's) *Transportation Impact Analysis Guidelines* since fewer than 100 new a.m. or p.m. peak hour trips would be generated by the project.

#### **Project Description**

The project is located at 4335-4345 El Camino Real in the City of Palo Alto and entails the construction of 29 new townhome dwelling units. The site is currently occupied by a 27-room motel and approximately 6,500 square feet of retail use which would be demolished to make way for the proposed project. A total of 60 parking spaces would be provided comprised of two garage spaces for each dwelling unit plus two additional uncovered guest spaces. Storage for bicycles would be provided inside each garage.

#### **Non-Automobile Modes**

#### **Pedestrian Facilities**

Given the proximity of the site to surrounding residential and retail uses as well as the presence of various nearby transit options, it is reasonable to assume that some residents would choose to walk to destinations near the site and use the existing sidewalk network. Sidewalk connectivity is continuous throughout the surrounding neighborhood. The project would result in changes to the existing pedestrian network, including sidewalks that would be constructed along the perimeter of the project site that would connect to the existing pedestrian network as well as to the entrances and exits to each project building. While not indicated on the site plan, ADA-compliant curb ramps should be provided within the project site.

**Project Summary** – Internal pedestrian access within the site would be provided via a network of sidewalks and curb ramps. All pedestrian facilities would need to be built to satisfy the current City of Palo Alto Public Works Department standards.

**Finding** – Existing and proposed pedestrian facilities serving the project site would be adequate, and the project would not conflict with any policies for pedestrian access.

**Recommendation** – As part of the project, ADA-compliant curb ramps should be provided within the project site.

#### **Bicycle Network**

The City of Palo Alto Bicycle & Pedestrian Transportation Plan, 2012, classifies bikeways into four categories.

- **Class I Bikeways/Multi-Use Paths** a completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.
- **Class II Bikeways** a striped and signed lane for one-way bike travel on a street or highway.

#### SANTA ROSA · OAKLAND

- **Class III Bikeways** signing only for shared use with motor vehicles within the same travel lane on a street or highway.
- **Bicycle Boulevards** bicycle boulevards are signed, shared roadways with especially low motor vehicle volumes such that motorists passing bicyclists can use the full width of the roadway. Bicycle boulevards prioritize convenient and safe bicycle travel through traffic calming strategies, wayfinding, and other measures.

In the immediate project area, Class II bikeways exist on both Arastradero Road and Charleston Road. Bicyclists ride in the roadway and/or on sidewalks along all other streets within the project study area. Table 1 summarizes the existing and planned bicycle facilities in the project vicinity, as contained in the *Bicycle & Pedestrian Transportation Plan*.

| Table 1 – Bicycle Facility Summary  |           |                   |                |                |  |
|-------------------------------------|-----------|-------------------|----------------|----------------|--|
| Status<br>Facility                  | Туре      | Length<br>(miles) | Begin Point    | End Point      |  |
| Existing                            |           |                   |                |                |  |
| Arastradero Rd and<br>Charleston Rd | I         | 2.4               | Foothill Expy  | Fabian Wy      |  |
| Maybell Ave                         | Bike Blvd | 0.6               | El Camino Real | Donald Dr      |  |
| Planned                             |           |                   |                |                |  |
| Cesano Ct                           | Bike Blvd | 0.1               | Terminus       | El Camino Real |  |
| Miller Ave                          | Bike Blvd | 0.2               | Del Medio Ave  | Monroe Dr      |  |
| Monroe Dr                           | Bike Blvd | 0.1               | Monroe Dr      | Miller Ave     |  |
| Wilkie Wy                           | Bike Blvd | 0.7               | South Terminus | Maclane St     |  |

Source: City of Palo Alto Bicycle & Pedestrian Transportation Plan, Alta Planning & Design, 2012

Existing bicycle facilities, together with shared use of minor streets provide adequate access for bicyclists within the vicinity of the project site. Planned bicycle facilities, as documented in the *Bicycle & Pedestrian Transportation Plan*, would further improve access for bicyclists.

**Finding** – Bicycle facilities serving the project site would be adequate, and the project would not conflict with any policies for bicycle access.

#### **Transit Facilities**

Development sites which are located within a one-half mile walk of a transit stop are generally considered to be adequately served by transit.

#### Santa Clara Valley Transportation Authority (VTA)

VTA provides fixed-route bus service and light-rail train service in Santa Clara County. Two to three bicycles can be carried on most VTA buses. Bike rack space is on a first come, first served basis. Additional bicycles are allowed on VTA buses at the discretion of the driver.

Within one-half mile of the project site are bus stops for Routes 22, 21, 40, and Rapid 522. The combined service areas of these routes provide access between the project site and a variety of destinations in Santa Clara County. Bus service for these routes is generally available daily during typical travel times, with some available 24 hours, at 15- to 30-minute headways.

#### Mr. Abe Leider

Dial-a-ride, also known as paratransit, or door-to-door service, is available for those who are unable to independently use the transit system due to a physical or mental disability. VTA ACCESS Paratransit is designed to serve the needs of individuals with disabilities within the City of Palo Alto and greater Santa Clara County.

#### Stanford Transportation Shuttles

Stanford Transportation provides Shopping Express shuttle service that runs between the Palo Alto Transit Center, Stanford campus, and the San Antonio Shopping Center. This route runs Friday to Sunday with one-hour headways between 3:00 p.m. and 10:00 p.m. The nearest shuttle stops for these services are located approximately 0.35 miles away from the proposed project site at the intersection of El Camino Real/San Antonio Road. Although initially intended to transport students and staff, these free shuttles are available for use by the public.

#### Caltrain

Operated by the Peninsula Corridor Joint Powers Board, Caltrain provides commuter rail service along the San Francisco Peninsula and the Santa Clara Valley. It connects Palo Alto with San Francisco to the north and San Jose and Gilroy to the south. The San Antonio Caltrain Station is located at 190 Showers Drive in Mountain View which is approximately 0.9 miles from the project site. Daily train service is provided at this station for northbound and southbound trains at approximately 15- to 30-minute headways from roughly 5:00 a.m. to 1:30 a.m. Both bicycle racks and lockers are provided at the train station. Bicycle racks are available on a first-come, first-served basis, while lockers must be reserved.

#### **On-Demand Transportation Services**

On-demand private vehicle services (e.g., taxi, Uber, Lyft, etc.) are available in Palo Alto 24 hours a day. These vehicles can be used for trips both locally and regionally.

**Project Summary** – If (as a conservative example) 20 percent of peak hour trips were made by transit, there would be approximately three additional transit riders during each peak hour, spread out over multiple buses and times. The volume of riders expected to be generated by the project would therefore be unlikely to exceed the carrying capacity of the existing transit services near the project site, especially when spread over multiple buses and service times.

**Finding** – Transit facilities serving the project site would be adequate, and the project would not conflict with any policies related to transit service.

#### **Site Circulation and Access**

#### Vehicular Site Access

Vehicle access to the site is currently provided by three driveways (two on Cesano Court and one on El Camino Real). The proposed project would result in the elimination of these three existing driveways and construction of two new driveways on either side of Cesano Court approximately 90 feet west of El Camino Real. Both driveways would provide full access, as shown in the enclosed site plan. The removal of the driveway on El Camino Real would also create the opportunity for one or two additional on-street parking spaces.

#### Sight Distance

At unsignalized intersections and driveways, a substantially clear line of sight should be maintained between the driver of a vehicle waiting at the crossroad and the driver of an approaching vehicle. Adequate time should be provided for the waiting vehicle to either cross, turn left, or turn right, without requiring through traffic to radically alter their speed.

#### Mr. Abe Leider

#### Page 4

Sight distances along Cesano Court at the proposed project driveway locations were evaluated based on sight distance criteria contained in the *Highway Design Manual* published by Caltrans. Although sight distance requirements are not applicable to urban driveways, the stopping sight distance criterion was applied for evaluation purposes and as a safety matter where feasible. The posted speed limits on the street approaches were used as the basis for determining the recommended sight distance. Additionally, the stopping sight distance needed for a following driver to stop if there is a vehicle waiting to turn into a side street or driveway was evaluated.

Cesano Court has a *prima facie* speed limit of 25 miles per hour (mph). For speeds of 25 mph, the minimum stopping sight distance needed is 150 feet. A review of aerial photographs determined that sight distances at both proposed project driveways would exceed 150 feet in every direction. Therefore, the sight lines at both driveways are adequate.

To maintain the sight distance at each driveway, it is suggested that in accordance with the Federal Highway Administration's guide on *Vegetation Control for Safety*, 2008, any vegetation planted near the project's driveways and within the driveway's sight distance triangle should be trimmed to an appropriate height of three feet or less and trees should be trimmed so that nothing hangs below a height of seven feet from the surface of the roadway. This provides a gap in vegetation for drivers to observe oncoming traffic and safely maneuver from a driveway. Additionally, it is recommended that on-street parking be restricted for 20 feet on both sides of each project driveway on Cesano Court, which is consistent with guidance from the American Association of State Highway and Transportation Officials' *A Policy on Geometric Design of Highways and Streets (Section 7.3.12.2)* and the National Association of City Transportation Officials' *Urban Street Design*. Doing so provides extra maneuvering space for turning traffic, eliminates the need for parking vehicles to back across the front of the driveway, and increases sight distances at the driveway.

**Finding** – Adequate sight distance is available at the project driveways for all turning movements entering and exiting the site.

**Recommendation** – To achieve a minimum sight distance of 150 feet at the driveway access points it is recommended that on-street parking be restricted for 20 feet on both sides of each project driveway on Cesano Court. Also, it is recommended that existing or planned vegetation along the project frontages on Cesano Court be trimmed and maintained to ensure continued adequate visibility.

#### **Emergency Vehicle Access**

The project's driveways and internal parking lot circulation network would need to be designed to meet current City standards and so can be expected to accommodate the access requirements for passenger vehicles. Vehicle access would be provided within the internal parking lot via a pair of 26-foot-wide drive aisles. These internal aisles would have sufficient width to accommodate two-way traffic operations for circulating vehicles, as well as parking maneuvers to/from various parking spaces.

All buildings are accessible by fire apparatus since each exterior wall is within 150 feet of either Cesano Court or El Camino Real thereby satisfying the conditions specified by the *California Fire Code (CFC), Section 503.1.1* which states that "Approved fire apparatus access roads shall be provided for every facility, building or portion of a building hereafter constructed or moved into or within the jurisdiction. The fire apparatus access road shall comply with the requirements of this section and shall extend to within 150 feet (45,720 mm) of all portions of the facility and all portions of the exterior walls of the first story of the building as measured by an approved route around the exterior of the building or facility."

It is noted that the Santa Clara County Fire Department has sole responsibility for determining the suitability of the project site for adequate fire apparatus vehicle access.

Since all roadway users must yield the right-of-way to emergency vehicles when using their sirens and lights, the added project-generated traffic would not materially impact access or response times for emergency vehicles.

#### **Parking Facilities**

The project was analyzed to determine whether the proposed parking supply would be sufficient to satisfy *City of Palo Alto Municipal Code* requirements. The project site as proposed would contain a total of 60 parking spaces comprised of two garage spaces per dwelling unit plus two guest spaces located at the end of "C Street" on the site plan.

The City of Palo Alto parking supply requirements stipulate that 58 spaces are required for this project. This requirement is based on the *City of Palo Alto Municipal Code, Chapter 18.52.040; Off-Street Parking, Loading and Bicycle Facility,* which states that two spaces are required for each dwelling unit for single-family residential developments and at least one space per unit must be covered. The proposed parking supply of 60 spaces is greater than the number of required spaces by the City Code.

**Finding** – The number of parking spaces provided by the project would exceed the City's parking Code requirement.

#### **Conclusions and Recommendations**

- Pedestrian, bicycle, and transit facilities would be adequate to serve the project as proposed based on the comprehensive network of pedestrian, bicycle and transit facilities that exist within the study area. The project would not conflict with any plans or policies for these modes.
- Adequate sight lines are available at the proposed project driveway locations. To maintain these sight lines, it is recommended that parking be prohibited for at least 20 feet on either side of the proposed project driveways and vegetation, new monuments or signage along the project frontages should be designed and maintained to ensure that all features lie below three feet in height or above seven feet. With a maintenance program implemented the project would not introduce any hazards to the transportation network.
- Emergency access and circulation would function acceptably, and traffic from the proposed development would be expected to have a nominal impact on emergency response times.
- The proposed parking supply of 60 spaces would be greater than the minimum City requirement.

Thank you for giving W-Trans the opportunity to provide these services. Please call if you have any questions.

Sincerely,

Kenneth Jeong, PE (Traffic) Senior Traffic Engineer

Mark Spencer, PE (Traffic)

Senior Principal

MES/kbj/PAL031.L1

Enclosure: Site Plan





Cesano Court Townhomes 4335 & 4345 El Camino Real, Palo Alto, CA July 29, 2024



COMMUNITIES OF DISTINCTION 777 California Ave, Palo Aito, Ca 94304



SDG Archilects, Inc. 3361 Walnut Blvd. Suite 120 Brentwood, CA 94513 925.634.7000 | sdgarchitectsinc.com

**CIRCULATION PLAN** 

A07

# Appendix B

**Environmental Noise Assessment** 

## Cesano Court Townhomes

Palo Alto, California

## **ENVIRONMENTAL NOISE ASSESSMENT**

9 December 2024

Prepared for: Austin Lin SummerHill Homes 777 S. California Avenue Palo Alto, CA 94304 alin@shhomes.com

Prepared by: Salter Skyler Carrico – Consultant Eric Mori, PE – Executive Vice President

scarrico@salter-inc.com emori@salter-inc.com

Salter Project: 24-0357



Acoustics Audiovisual Telecommunications Security

#### 1.0 INTRODUCTION

This report summarizes our analysis for the environmental noise assessment for the Cesano Court Townhomes project in Palo Alto, California. The project consists of approximately 29 townhome-style condominiums in five townhome buildings on a site at the intersection of El Camino Real and Cesano Court. There are apartment buildings and hotels surrounding the project site.

The purpose of this noise study is to address CEQA (California Environmental Quality Act) compliance and potential impact of the project and its operation on property-line noise levels.

The report is organized into the following sections:

- Section 1.0 Introduction
- Section 2.0 Summary
- Section 2.0 Acoustical Criteria
- Section 3.0 Existing Noise Environment
- Section 4.0 Impact Assessment
- Appendix A AC Unit Manufacturer Noise Data and Unit Locations
- Appendix B Hexagon Transportation Consultants Reference Traffic Study
- Appendix C Project Construction Equipment List

#### 2.0 SUMMARY

- Project traffic is not expected to significantly increase environmental noise to the surrounding properties. The resulting noise impact will be less-than-significant.
- Noise impacts from mechanical equipment (e.g., condenser units) will be reduced to a less-thansignificant impact.
- Noise and vibration impact from construction equipment will be reduced to a less-than-significant impact using the strategies outlined in this report.
- The project site is located more than two miles away from an airport. Therefore, the project does not require an Airport Land Use Compatibility (ALUC) study.



#### 2.0 ACOUSTICAL CRITERIA

The City of Palo Alto has guidelines and policies designed to limit noise exposure at noise-sensitive land uses. In addition, CEQA provides guidelines used to determine whether a project will have a significant impact on the environment.

#### 2.1 Palo Alto Municipal Code

We understand that the projects' current property zoning is "CS" (commercial). However, since the subject property zoning might eventually change to residential, we have conservatively accounted for residential zoning Code restrictions in our analysis. Chapter 9.10 (Noise) of the Palo Alto Municipal Code states the following (non-relevant passages omitted for brevity):

- Sec. 9.10.030 (Residential property noise limits):
  - a) No person shall produce, suffer, or allow to be produced by any machine, animal or device, or any combination of same, on residential property, a noise level more than six dB above the local ambient<sup>1</sup> at any point outside of the property plane, except as modified in (c) below.
  - b) No person shall produce, suffer, or allow to be produced by any machine, animal or device, or any combination of same, on multi-family residential property, a noise level more than six dB above the local ambient three feet from any wall, floor, or ceiling inside any dwelling unit on the same property, when the windows and doors of the dwelling unit are closed, except within the dwelling unit in which the noise source or sources may be located.
  - c) Electrification equipment<sup>2</sup> shall be deemed to comply with Section 9.10.030 if the equipment complies with the maximum equipment sound level ratings with respect to the setbacks established in **Table 1** (Setback Requirements)<sup>3</sup>. As an alternative to compliance with **Table 1**, a property owner may utilize the limits set forth in subsections (a) and (b) of this Section 9.10.030 if those provisions would be more permissive [note that the data in Table 1 that are outlined in red are the ones that would be applicable to this project].

Per the HVAC equipment site plan markup included in **Appendix A**, project HVAC equipment will be located as close as approximately 13-feet to the southeastern property line, resulting in an overall sound level rating limit of 65 dBA for equipment belonging to projects east of Foothill Expressway.



Section 9.10.020 (Definitions) of the Palo Alto Municipal Code defines "local ambient" as the lowest sound level repeating itself during a six-minute period as measured with a precision sound level meter, using slow response and "A" weighting. The definition also states that the local ambient cannot be determined to be less than 40 dBA in all areas outdoors.

<sup>2</sup> Electrification equipment is defined in Section 18.04.030 (Definitions) as one or more devices that use electric energy to serve a dwelling unit's needs for heating and cooling, water heating, cooking, and electric vehicle charging.

| Table 1 - Setback Requirements                                      |                                                                     |                                                                                           |                                                                                           |                                                                |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| Equipment<br>Sound Level<br>(dBA) West of<br>Foothill<br>Expressway | Equipment<br>Sound Level<br>(dBA) East of<br>Foothill<br>Expressway | Equipment<br>Sound Level<br>(dBA) West of<br>Foothill<br>Expressway for<br>Inverter Pumps | Equipment<br>Sound Level<br>(dBA) East of<br>Foothill<br>Expressway for<br>Inverter Pumps | Minimum<br>Setback from<br>Receiving<br>Property Line<br>(ft.) |  |
| 43                                                                  | 53                                                                  | 45                                                                                        | 55                                                                                        | 3                                                              |  |
| 44                                                                  | 54                                                                  | 46                                                                                        | 56                                                                                        | 4                                                              |  |
| 45                                                                  | 55                                                                  | 47                                                                                        | 57                                                                                        | 4                                                              |  |
| 46                                                                  | 56                                                                  | 48                                                                                        | 58                                                                                        | 5                                                              |  |
| 47                                                                  | 57                                                                  | 49                                                                                        | 59                                                                                        | 5                                                              |  |
| 48                                                                  | 58                                                                  | 50                                                                                        | 60                                                                                        | 6                                                              |  |
| 49                                                                  | 59                                                                  | 51                                                                                        | 61                                                                                        | 7                                                              |  |
| 50                                                                  | 60                                                                  | 52                                                                                        | 62                                                                                        | 7                                                              |  |
| 51                                                                  | 61                                                                  | 53                                                                                        | 63                                                                                        | 8                                                              |  |
| 52                                                                  | 62                                                                  | 54                                                                                        | 64                                                                                        | 9                                                              |  |
| 53                                                                  | 63                                                                  | 55                                                                                        | 65                                                                                        | 10                                                             |  |
| 54                                                                  | 64                                                                  | 56                                                                                        | 66                                                                                        | 12                                                             |  |
| 55                                                                  | 65                                                                  | 57                                                                                        | 67                                                                                        | 13                                                             |  |
| 56                                                                  | 66                                                                  | 58                                                                                        | 68                                                                                        | 15                                                             |  |
| 57                                                                  | 67                                                                  | 59                                                                                        | 69                                                                                        | 17                                                             |  |
| 58                                                                  | 68                                                                  | 60                                                                                        | 70                                                                                        | 19                                                             |  |
| 59                                                                  | 69                                                                  | 61                                                                                        | 71                                                                                        | 21                                                             |  |
| 60                                                                  | 70                                                                  | 62                                                                                        | 72                                                                                        | 24                                                             |  |
| 61                                                                  | 71                                                                  | 63                                                                                        | 73                                                                                        | 27                                                             |  |
| 62                                                                  | 72                                                                  | 64                                                                                        | 74                                                                                        | 30                                                             |  |
| 63                                                                  | 73                                                                  | 65                                                                                        | 75                                                                                        | 34                                                             |  |

- Sec. 9.10.040 (Commercial and industrial property noise limits):
  - a) No person shall produce, suffer, or allow to be produced by any machine, animal or device, or any combination of same, on residential property, a noise level more than eight dB above the local ambient at any point outside of the property plane.
- Sec. 9.10.060 (Special provisions):
  - a) General Daytime Exception. Any noise source which does not produce a noise level exceeding 70 dBA at a distance of 25-feet under its most noisy condition of use shall be exempt from the provisions of Sections 9.10.030(a) between the hours of 8 AM and 8 PM Monday through Friday, 9 AM and 8 PM on Saturday, except Sundays and holidays, when the exemption herein shall apply between 10 AM and 6 PM.
  - b) **Construction**. Except for construction on residential property as described in subsection (c) of this section, construction, alteration, and repair activities which are authorized by valid city building permit shall be prohibited on Sundays and holidays and shall be prohibited except between the



hours of 8 AM and 6 PM Monday through Friday, 9 AM and 6 PM on Saturday provided that the construction, demolition, or repair activities during those hours meet the following standards:

- No individual piece of equipment shall produce a noise level exceeding 110 dBA at a distance of 25-feet. If the device is housed within a structure on the property, the measurement shall be made outside the structure at a distance as close to 25-feet from the equipment as possible.
- 2) The noise level at any point outside of the property plane of the project shall not exceed 110 dBA.
- c) **Construction on Residential Property**. Construction, alteration, demolition, or repair activities conducted in a residential zone, authorized by valid city building permit, shall be prohibited on Sundays and holidays and is prohibited on all other days except during the hours of 8 AM and 6 PM Monday through Friday, 9 AM and 6 PM on Saturday, provided that the construction, demolition or repair activities during those hours meet the following standards:
  - 1) No individual piece of equipment shall produce a noise level exceeding 110 dBA at a distance of 25-feet. If the device is housed within a structure on the property, the measurement shall be made outside the structure at a distance as close to 25-feet from the equipment as possible.
  - 2) The noise level at any point outside of the property plane of the project shall not exceed 110 dBA.
  - 3) The holder of a valid building permit for a construction project located within any residential zone shall post a sign at all entrances to the construction site upon commencement of construction, for the purpose of informing all contractors and subcontractors, their employees, agents, materialmen, and all other persons at the construction site, of the basic requirements of this chapter.<sup>4</sup>

#### 2.2 California Department of Transportation Construction Vibration Criteria

The California Department of Transportation<sup>5</sup> (Caltrans) provides vibration design criteria for construction damage. Transient vibrations are classified as impulsive events that are short in duration (e.g., debris falling, blasting). Continuous vibrations are more sustained vibration events over longer periods of time (e.g., jackhammering, drilling).

<sup>5</sup> Transportation and Construction Vibration Guidance Manual September 2013 (Caltrans Document)



<sup>4</sup> Refer to the Code document for more information regarding what specifically is to be written on these signs.

**Table 2** summarizes the Caltrans criteria related to the potential for building damage from ground vibration induced by construction equipment. Thresholds for continuous vibrations are lower (i.e., stricter) than those for transient vibrations. We understand that most-to-all construction will be "continuous" and have used that criterion.

We understand that while most nearby structures were built between 2014 and 2021, there are two adjacent properties with structures that were built in 1958 and 1981<sup>6</sup>. Therefore, we have applied the "older residential structures" criteria to those structures, while applying the "new residential structures" criteria to the relevant criteria in **Table 2**.

|                                                                | Maxi                 | mum PPV (in/sec)                            |  |
|----------------------------------------------------------------|----------------------|---------------------------------------------|--|
| Structure and Condition                                        | Transient<br>Sources | Continuous/Frequent<br>Intermittent Sources |  |
| Extremely fragile historic buildings, ruins, ancient monuments | 0.12                 | 0.08                                        |  |
| Fragile buildings                                              | 0.20                 | 0.10                                        |  |
| Historic and some old buildings                                | 0.50                 | 0.25                                        |  |
| Older residential structures                                   | 0.50                 | 0.30                                        |  |
| New residential structures                                     | 1.00                 | 0.50                                        |  |
| Modern industrial/commercial buildings                         | 2.00                 | 0.50                                        |  |

#### Table 2: Guideline Vibration Damage Potential Threshold Criteria<sup>7</sup>

#### 2.3 State CEQA Guidelines and Impact Criteria

CEQA contains guidelines to evaluate the significance of noise attributable to a proposed project. This would include (but is not limited to) added traffic noise, mechanical equipment noise, and construction noise. CEQA asks the following applicable questions. Would the project result in:

- Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
- Generation of excessive groundborne vibration or groundborne noise levels?
- For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public-use airport, would the project expose people residing or working in the project area to excessive noise levels?

7 Table 19 of the Caltrans document



<sup>6</sup> The Caltrans document does not define "older" vs. new residential structures. We have assumed 1958 and 1981 would be classified as older.

CEQA does not define the noise level increase that is considered substantial. Typically, the local general plan would establish limits with respect to allowable noise and vibration increases. However, the Palo Alto General Plan does not contain numerical standards of significance for noise increases. For the CEQA thresholds above, noise level increases of less than 3 dB are generally considered less-than-significant. Substantial adverse community response would be expected for increases of 5 dB or more.

#### 3.0 EXISTING NOISE ENVIRONMENT

#### 3.1 Project Site Description

Environmental noise at the project site is primarily due to traffic on El Camino Real. To quantify the existing noise environment, we conducted two long-term noise measurements around the site, between 23 and 27 August 2024. **Table 3** summarizes measured "ambient" noise levels, as defined in the Ordinance (Section 9.10.020 – Definitions) outlined in Section 2.1 above. **Figure 1** shows the approximate measurement locations.

| Table 3: Lowest Measured 6-Minut | e Average Noise | Levels [L <sub>eq</sub> (6 min)] <sup>8</sup> |
|----------------------------------|-----------------|-----------------------------------------------|
|----------------------------------|-----------------|-----------------------------------------------|

| Measurement Location | Ambient Noise Level |
|----------------------|---------------------|
| LT-1                 | 42 dBA              |
| LT-2                 | 39 dBA              |

#### 4.0 IMPACT ASSESSMENT

Overall changes to the noise environment, attributable to the project, include the following:

- Potential mechanical equipment noise
- Project-related traffic increases
- Short-term construction noise and vibration

The following summarizes the portion of the CEQA checklist pertaining to noise.

<sup>8</sup> Measured noise levels expressed in terms of L<sub>eq</sub>(6 min), per Palo Alto Municipal Code Section 9.10.020.d.



# 4.1: Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

#### 4.1.A: Permanent Increase in Noise Levels due to Outdoor HVAC Equipment

It is understood that the proposed project residences will have air-conditioning (AC) units located at-grade, adjacent to the residences. Utilizing the annotated building site plan provided 21 August 2024, we based our analysis on the worst-case cluster of three AC units operating simultaneously in closest proximity to the southeastern property line (at Building 4), where the drawings indicate a minimum distance of approximately 11-feet.

Per **Table 3**, measured ambient noise levels were determined to be  $L_{eq}(6 \text{ min})$  42 dBA and 39 dBA at LT-1 and LT-2, respectively. Section 9.10.020 (Definitions) states that the local ambient cannot be determined to be less than 40 dBA in all areas outdoors. Therefore, the lowest measured ambient noise level applicable at neighboring property lines can conservatively be surmised to be 40 dBA. Assuming residential zoning and applying the +6 dBA indicated in Section 9.10.030.a from the Palo Alto Municipal Code, the AC units are to be limited to 46 dBA at adjacent property planes.

There is a six-foot tall wooden fence along the southeastern property line. We understand that the entire fence will be upgraded to act as a sound fence, and similar fences will be constructed along the northeastern and northwestern property lines. As such, the surface density will be at least 3 psf, which will include adding wood planks on the project side of the fence (with staggered joints to cover the open slats between the planks).

With the upgraded fences, our calculations indicate that the proposed AC units will generate noise levels up to 45 dBA at worst-case receiver locations on the adjacent property (i.e., 2700 W El Camino Real), with lower levels at other property lines, thereby achieving the City's noise goal.

#### 4.1.B: Permanent Increase in Noise Levels due to Project Traffic Volumes

The traffic consultant for the project provided a trip-generation study for a similar nearby project at 2700 El Camino Real<sup>9</sup> (relevant excerpts included in **Appendix B**). This study concluded that a net increase of as much as 30 trips in AM hours and 72 trips in PM hours would result from the project at some intersections. Based on the existing peak-hour traffic volume along El Camino Real of 1,362 vehicles, the project would result in a net increase in overall traffic noise of less than DNL<sup>10</sup> 1 dB, which is generally not

<sup>10</sup> DNL (Day-Night Average Sound Level) – A descriptor for a 24-hour A-weighted average noise level. DNL accounts for the increased acoustical sensitivity of people to noise during the nighttime hours. DNL penalizes sound levels by 10 dB during the hours from 10 PM to 7 AM. For practical purposes, the DNL and CNEL are usually interchangeable. DNL is sometimes written as L<sub>dn</sub>.



<sup>9</sup> Dated 15 March 2017, by Hexagon Transportation Consultants

noticeable. Therefore, this would not result in a significant increase in noise levels at existing adjacent properties.

#### 4.1.C: Temporary Increase in Noise Levels due to Construction

The nearest and most sensitive adjacent receivers include multi-family residential buildings to the northeast and southeast, and a hotel to the northwest.

Construction activities will include the use of heavy equipment for grading and other activities, through completion of buildings and landscaping. Heavy trucks would travel to, from, and within the site hauling soil, equipment, and building materials. Smaller equipment, such as jackhammers, pneumatic tools, and saws could also be used throughout the demolition and construction phases in various areas. The noise and vibration associated with these activities could be generated over the entire project site.

Per the construction phasing and equipment lists provided 27 August 2024 (included in **Appendix C**), our understanding of expected equipment is shown in **Table 4**.

| Phase                                       | Equipment                                                                            |
|---------------------------------------------|--------------------------------------------------------------------------------------|
| Site Preparation                            | Concrete/Industrial Saws, Graders,<br>Rubber-Tired Dozers, Tractors/Loaders/Backhoes |
| Grading/Excavation                          | Excavators, Rubber-Tired Dozers,<br>Tractors/Loaders/Backhoes                        |
| Building Exterior                           | Forklifts, Generator Sets, Tractors/Loaders/Backhoes                                 |
| Building Interior/<br>Architectural Coating | Air Compressors                                                                      |
| Paving/Landscaping/<br>Site Concrete        | Cement and Mortar Mixers, Paving Equipment, Rollers,<br>Tractors/Loaders/Backhoes    |

#### Table 4: List of Scheduled Construction Equipment

Per the project site plan, the perimeter of Building 4 is situated as close as 12-feet to the nearest property line (toward the southeast). Therefore, reference levels for the scheduled construction equipment are listed in **Table 5** along with the calculated noise levels at 12-feet.



| Equipment                 | Estimated Maximum Instantaneous L <sub>max</sub> (in dBA) |            |            |
|---------------------------|-----------------------------------------------------------|------------|------------|
| Equipment                 | At 50 Feet                                                | At 25 Feet | At 12 Feet |
| Aerial Lift               | 83                                                        | 89         | 95         |
| Air Compressors           | 81                                                        | 87         | 93         |
| Cement and Mortar Mixers  | 85                                                        | 91         | 97         |
| Concrete/Industrial Saws  | 76                                                        | 82         | 88         |
| Excavators                | 73                                                        | 79         | 85         |
| Forklifts                 | 83                                                        | 89         | 95         |
| Generator Sets            | 81                                                        | 87         | 93         |
| Graders                   | 76                                                        | 82         | 88         |
| Paving Equipment          | 75                                                        | 81         | 87         |
| Rollers                   | 74                                                        | 80         | 86         |
| Tractors/Loaders/Backhoes | 84                                                        | 90         | 96         |
| Welders                   | 73                                                        | 79         | 85         |

#### Table 5: Construction Equipment Reference Noise Levels<sup>11</sup>

Within the permitted hours of construction<sup>12</sup>, Section 9.10.060.c of the Palo Alto Municipal Code limits instantaneous construction equipment noise by requiring that the following parameters be met:

- No louder than 110 dBA at 25-feet from any single piece of equipment
- No louder than 110 dBA at any point outside the property plane

Per **Table 5**, no equipment planned for construction on this project is louder than 110 dBA at 25-feet. Therefore, all construction equipment is expected to meet the applicable City Code requirements.

To further reduce noise impact at neighboring properties, the contractor should comply with the following measures:

1. Consistent with the Palo Alto Municipal Code, construction will be limited to the hours of 8:00 a.m. to 6:00 p.m. on weekdays and 9:00 a.m. to 6:00 p.m. on Saturdays, or at such other hours as may be authorized by the permit.

<sup>12</sup> Per the Noise Ordinance, between the hours of 8 AM and 6 PM Monday through Friday and 9 AM and 6 PM on Saturday.



<sup>11</sup> Equipment noise levels for paving equipment, excavators, and graders were provided by the construction contractors on 4 November 2024. All other equipment noise levels are derived from Section 9, Federal Highway Administration Highway Traffic Noise Construction Noise Handbook (August 2006) and Table 12-2, Transit Noise and Vibration Impact Assessment, United States Department of Transportation, Office of Planning and Environment, Federal Transit Administration, May 2006.

- 2. Contractors shall utilize "quiet" models of air compressors and other stationary noise sources where technology exists.
- 3. Internal combustion engine-driven equipment shall be equipped with mufflers which are in good condition and appropriate for the equipment.
- 4. Stationary noise-generating equipment, such as air compressors and portable power generators, shall be located as far away as possible from adjacent property lines.
- 5. Staging areas and construction material areas shall be located as far away as feasible from adjacent residences.
- 6. All unnecessary idling of internal combustion engines shall be prohibited.

In addition, the contractor will designate a "noise disturbance coordinator/superintendent" who will be responsible for tracking and responding to any complaints about construction noise. The noise disturbance coordinator/superintendent will determine the cause of the noise complaint (e.g. starting too early, bad muffler, etc.) and will require that reasonable measures are implemented to correct the problem. The telephone number for the noise disturbance coordinator/superintendent will be posted at the construction site and included in any construction notices sent to neighbors.

# 4.2: Would the project result in generation of excessive ground-borne vibration or ground-borne noise levels?

#### 4.2.A: Permanent Increase in Vibration Levels due to Project-Generated Vibration

The planned use for the site, as residences, is not expected to generate significant amounts of ground-borne noise or vibration.

#### 4.2.B: Temporary Increase in Vibration Levels due to Construction

The nearest and most sensitive adjacent receivers include older residential structures to the northeast at 4315 and 4321 Collins Court (built in 1958 and located approximately 70 and 85 feet away from the project site, respectively) and to the north at 440 Cesano Court (built in 1981 and approximately 60 feet away from the project site). Other structures adjacent to the project site are as close as 12-feet away (i.e., MV Apartments at 2700 W El Camino Real) and can be considered newer since they were built within the last 15 years.

Project construction might include activities such as the use of concrete saws, excavation and grading, and the use of rolling stock equipment (tracked vehicles, compactors, etc.). Typical construction vibration levels at 25-feet are listed in **Table 6**. Estimated levels at the nearest adjacent structures (old and new residential structures approximately 60 and 12-feet from the property line, respectively) are also shown.

As indicated in the Criteria section, the limit related to risk of damage to nearby structures is 0.30 PPV for older structures and 0.50 PPV for newer structures. Exceedances are highlighted in **bold**.



| Equipment               | PPV at 25 feet<br>(in/sec) <sup>14</sup> | PPV at 60 feet (in/sec) | PPV at 12 feet (in/sec) |
|-------------------------|------------------------------------------|-------------------------|-------------------------|
| Vibratory Roller        | 0.21                                     | 0.057                   | 0.632                   |
| Hydraulic Breaker       | 0.089 to 0.24                            | 0.024 to 0.065          | 0.268 to <b>0.722</b>   |
| Large Bulldozer         | 0.089                                    | 0.024                   | 0.268                   |
| Loaded Trucks           | 0.076                                    | 0.021                   | 0.229                   |
| Excavator               | 0.089                                    | 0.024                   | 0.268                   |
| Jackhammer              | 0.035                                    | 0.011                   | 0.105                   |
| Small Bulldozer         | 0.003                                    | 0.0008                  | 0.009                   |
| Crane, Forklift, Bobcat | No significant vibration                 |                         |                         |

#### Table 6: Construction Equipment Reference Vibration Levels<sup>13</sup>

Based on the vibration levels shown in **Table 6**, most construction equipment is expected to meet the structural damage criteria (see **Table 2**). For the two equipment types which might result in vibration level exceedances at close distances to nearby structures (vibratory rollers and hydraulic breakers), we have calculated the minimum distances to be maintained at all times while these equipment types are in use at the project site in **Table 7**.

#### Table 7: Minimum Permitted Distances from Property Line for Higher-Vibration Equipment

| Equipment         | Minimum Permitted<br>Distance |  |
|-------------------|-------------------------------|--|
| Vibratory Roller  | 14 feet                       |  |
| Hydraulic Breaker | 16 feet                       |  |

The construction equipment above should not be permitted to operate closer to the southeastern property line than the distances indicated above. All other equipment types are expected to achieve the applicable vibration criteria at all other property lines without property line proximity limitations.

<sup>14</sup> Using a value of n = 1.5 per FTA recommendation, where n is the attenuation rate through the ground.



<sup>13</sup> Table 12-2, Transit Noise and Vibration Impact Assessment, United States Department of Transportation, Office of Planning and Environment, Federal Transit Administration, May 2006.
# 4.3: For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

The project is not within two miles of any public airport.



San Francisco | San Jose | Los Angeles | Honolulu | Seattle salter-inc.com



SALTER © 2024 FOR ACOUSTICAL DESIGN INFORMATION ONLY

FIGURE 1

Salter # 24-0357 SJV/EBM 08.XX.24

Honolulu

San Francisco

San Jose

Los Angeles

# APPENDIX A: AC UNIT MANUFACTURER NOISE DATA AND UNIT LOCATIONS

38MURA: Product Data

#### Sound Pressure in Octave Bands

|                 | Frequency<br>(Hz) | 63   | 125  | 250  | 500  | 1000 | 2000 | 4000 | 8000 |
|-----------------|-------------------|------|------|------|------|------|------|------|------|
| 4014 (000) ()   | Cooling<br>dB(A)  | 43.1 | 43.5 | 46.2 | 48.6 | 47.0 | 42.8 | 37.8 | 32.9 |
| 18K (208V)      | Heating<br>dB(A)  | 37.8 | 42.8 | 43.7 | 46.9 | 48.3 | 45.5 | 41.4 | 34.6 |
| 18K (208V)      | Cooling<br>dB(A)  | 56.9 | 63.4 | 57.0 | 53.4 | 48.7 | 43.7 | 37.4 | 32.0 |
| High Heat       | Heating<br>dB(A)  | 59.7 | 63.3 | 57.7 | 54.3 | 50.3 | 44.8 | 39.7 | 34.7 |
| 0.414 (0000) () | Cooling<br>dB(A)  | 47.2 | 50.1 | 50.0 | 51.1 | 51.7 | 47.5 | 41.6 | 34.4 |
| 24K (208V)      | Heating<br>dB(A)  | 44.0 | 48.6 | 49.7 | 51.4 | 53.2 | 49.1 | 44.4 | 37.6 |
| 24K (208V)      | Cooling<br>dB(A)  | 63.3 | 62.4 | 59.2 | 53.6 | 51.0 | 46.1 | 42.6 | 36.8 |
| High Heat       | Heating<br>dB(A)  | 65.6 | 66.8 | 62.6 | 55.4 | 53.7 | 49.3 | 45.3 | 40.8 |
| 2017 (200) ()   | Cooling<br>dB(A)  | 42.9 | 47.3 | 54.1 | 54.2 | 56.2 | 54.4 | 49.6 | 41.8 |
| 30K (200V)      | Heating<br>dB(A)  | 44.0 | 50.5 | 51.9 | 52.9 | 53.5 | 50.9 | 47.7 | 40.4 |
| 30K (208V)      | Cooling<br>dB(A)  | 64.0 | 69.4 | 61.6 | 55.7 | 54.5 | 50.4 | 47.1 | 41.3 |
| High Heat       | Heating<br>dB(A)  | 64.2 | 68.2 | 62.7 | 57.1 | 56.5 | 52.6 | 49.1 | 43.5 |
| 26K (2091/)     | Cooling<br>dB(A)  | 45.5 | 56.1 | 55.8 | 56.4 | 56.8 | 53.3 | 50.6 | 42.9 |
| 30K (200V)      | Heating<br>dB(A)  | 43.6 | 51.0 | 52.4 | 52.9 | 55.7 | 52.9 | 49.5 | 41.7 |
| 36K (208V)      | Cooling<br>dB(A)  | 65.9 | 63.3 | 57.4 | 57.6 | 53.2 | 48.4 | 44.1 | 48.0 |
| High Heat       | Heating<br>dB(A)  | 68.5 | 64.8 | 58.9 | 58.0 | 54.6 | 49.0 | 44.2 | 42.5 |
| 4914 (2091/)    | Cooling<br>dB(A)  | 51.6 | 51.6 | 50.4 | 54.8 | 55.9 | 54.6 | 46.8 | 41.0 |
| 401(2000)       | Heating<br>dB(A)  | 48.4 | 50.0 | 49.9 | 55.3 | 56.0 | 52.3 | 47.3 | 43.9 |
| 48K (208V)      | Cooling<br>dB(A)  | 65.4 | 66.5 | 58.7 | 57.7 | 54.6 | 50.1 | 46.5 | 45.6 |
| High Heat       | Heating<br>dB(A)  | 64.0 | 65.5 | 60.9 | 59.7 | 56.1 | 50.6 | 45.6 | 42.7 |
| 60K (209V)      | Cooling<br>dB(A)  | 49.1 | 52.1 | 53.7 | 57.0 | 58.2 | 55.1 | 47.8 | 41.1 |
| 50K (200V)      | Heating<br>dB(A)  | 45.5 | 50.9 | 53.3 | 56.7 | 56.7 | 52.3 | 46.5 | 42.2 |
| 60K (208V)      | Cooling<br>dB(A)  | 49.4 | 52.2 | 52.3 | 56.4 | 56.4 | 50.9 | 48.2 | 51.0 |
| High Heat       | Heating<br>dB(A)  | 49.8 | 51.1 | 51.2 | 54.9 | 56.8 | 51.6 | 46.2 | 43.2 |

A220462

#### **Outdoor Unit Sound Pressure Test Conditions**



Fig. 5 —Outdoor Unit Sound Pressure Test

#### NOTE: H=0.5 x Height of outdoor unit

|         | INDOOR C      | ONDITION      | OUTDOOR CONDITION |               |  |
|---------|---------------|---------------|-------------------|---------------|--|
|         | DB            | WB            | DB                | WB            |  |
| Cooling | 80.6°F (27°C) | 66.2°F (19°C) | 95°F (35°C)       | 75.2°F (24°C) |  |
| Heating | 68°F (20°C)   | 59°F (15°C)   | 44.6°F (7°C)      | 42.8°F (6°C)  |  |







San Francisco | San Jose | Los Angeles | Honolulu | Seattle salter-inc.com

Acoustics Audiovisual Telecommunications Security

# APPENDIX B: REFERENCE TRAFFIC STUDY<sup>15</sup>



<sup>&</sup>quot;2300 West El Camino Real Apartment Project Transportation Analysis"; Hexagon Transportation Consultants, Inc.; 16 March 2017. This traffic study has been used as a reference for the current project, as it is expected to result in a comparable impact on El Camino Real traffic data.



Acoustics Audiovisual Telecommunications Security

# APPENDIX C: PROJECT CONSTRUCTION EQUIPMENT LIST<sup>16</sup>

|                               |                                                                              | A                        | ir Quality/            | Noise Co           | nstruc         | tion Ir          | nform           | ation Data Request                                                               |
|-------------------------------|------------------------------------------------------------------------------|--------------------------|------------------------|--------------------|----------------|------------------|-----------------|----------------------------------------------------------------------------------|
| Project N                     | ame:                                                                         | 4335 & 434               | 45 El Camino Re        | al, Palo Alto D    | EFAULTS        | ;                |                 | Complete ALL Portions in Yellow                                                  |
|                               | See Equipment Type TAB for type                                              | , horsepower an          | d load factor          |                    |                |                  |                 |                                                                                  |
|                               | Project Size                                                                 | 29                       | Dwelling Units         | 1.3                | 5 total projec | t acres distur   | bed             |                                                                                  |
|                               |                                                                              | 64,420                   | s.f. residential       |                    |                |                  |                 | Pile Driving? Y/N? No                                                            |
|                               |                                                                              |                          | s.f. retail            |                    |                |                  |                 |                                                                                  |
|                               |                                                                              |                          |                        |                    |                |                  |                 | Project include on-site GENERATOR OR FIRE PUMP during project OPERATION          |
|                               |                                                                              |                          | s.f. office/commercial |                    |                |                  |                 | (not construction)? Y/N? No                                                      |
|                               |                                                                              |                          | s.f. other, specify:   |                    |                |                  |                 | IF YES (if BOTH separate values)>                                                |
|                               |                                                                              |                          | s.f. parking garage    |                    | spaces         |                  |                 | Kilowatts/Horsepower:                                                            |
|                               |                                                                              |                          | s.f. parking lot       |                    | spaces         |                  |                 | Fuel Type:                                                                       |
|                               | Construction David (in 11 D                                                  |                          |                        |                    | -              |                  |                 | -<br>La continue las constantes (Plance Decelored 16 Accellability)              |
|                               | Construction Days (i.e, m-r)                                                 | M-F (0AM-0FW             |                        | Also Saturdays (94 | (M-OF M)       |                  |                 | Location in project (mans besited in Available).                                 |
|                               | Construction Hours                                                           |                          | am to                  |                    | pm             |                  |                 |                                                                                  |
|                               |                                                                              |                          |                        |                    | lotal          | 0.40             |                 | DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT                 |
| Quantity                      | Description                                                                  | HP                       | Load Factor            | Hours/day          | Work<br>Days   | Hours per<br>day | Annual<br>Hours | Comments                                                                         |
|                               | Demolition                                                                   | Start Date:              | 4/1/2026               | Total phase:       | 20             | )                |                 | Overall Import/Export Volumes                                                    |
| 1                             | Concrete/Inductrial Source                                                   | End Date:                | 4/29/2026              | 5                  | 0 00           |                  | 0.464           | Domolition Volume                                                                |
|                               | Excavators                                                                   | 158                      | 0.38                   |                    | 20             | 0                | 946             | Square footage of buildings to be demolished                                     |
| 1                             | Rubber-Tired Dozers<br>Tractors/Loaders/Backhoes                             | 247                      | 0.4                    |                    | 8 20<br>8 20   | 8                | 15808           | 3 (or total tons to be hauled)<br>24.693 square feet or                          |
|                               | Other Equipment?                                                             |                          |                        |                    |                |                  |                 | Hauling volume (tons)     Any payement demolected and bauled? 2 tons             |
|                               | Site Preparation                                                             | Start Date:              | 6/1/2026               | Total phase:       | 2              | 2                |                 | Ally pavement demonstred and named r                                             |
| 1                             | Graders                                                                      | End Date:<br>187         | 6/3/2026               | 5                  | 8 2            | 8                | 1227            |                                                                                  |
| 1                             | Rubber Tired Dozers                                                          | 247                      | 0.4                    |                    | 7 2            | 7                | 1383            |                                                                                  |
| 1                             | Other Equipment?                                                             | 97                       | 0.37                   |                    | 8 2            | 8                | 5/4             |                                                                                  |
|                               | Grading / Excavation                                                         | Start Date:              | 6/4/2026               | Total phase:       |                |                  |                 |                                                                                  |
|                               | Grading / Excavation                                                         | End Date:                | 6/7/2020               | i otal phase.      |                |                  |                 | Soil Hauling Volume                                                              |
| 1                             | Excavators<br>Graders                                                        | 158                      | 0.38                   |                    | 8 4            | 0                | 2453            | Export volume = <u>2</u> cubic yards?                                            |
| 1                             | Rubber Tired Dozers                                                          | 247                      | 0.4                    |                    | 8 4            | 8                | 3162            |                                                                                  |
| 2                             | Concrete/Industrial Saws<br>Tractors/Loaders/Backhoes                        | 81<br>97                 | 0.73                   |                    | 7 4            | 7                | 2010            |                                                                                  |
|                               | Other Equipment?                                                             |                          |                        |                    |                |                  |                 |                                                                                  |
|                               | Trenching/Foundation                                                         | Start Date:              | 11/1/2026              | õ Total phase:     | 4              |                  |                 |                                                                                  |
| - 1                           | Tractoril oader/Backhoe                                                      | End Date:<br>97          | 0.37                   | 5                  | 8 4            | 8                | 1148            |                                                                                  |
| 1                             | Excavators                                                                   | 158                      | 0.38                   |                    | 8 4            | 8                | 1921            |                                                                                  |
|                               | Other Equipment?                                                             |                          |                        |                    |                |                  |                 |                                                                                  |
|                               | Building - Exterior                                                          | Start Date:<br>End Date: | 1/1/2027               | Total phase:       | 200            |                  |                 | Cement Trucks? <u>7</u> Total Round-Trips                                        |
| 0                             | Cranes                                                                       | 231                      | 0.29                   |                    | 6 200          | 6                | (               | Electric? (Y/N)Otherwise assumed diesel                                          |
| 1                             | Forklifts<br>Generator Sets                                                  | 89<br>84                 | 0.2                    |                    | 8 200          | 8                | 21360           | Ciquid Propane (LPG)? (Y/N) Otherwise Assumed diesel                             |
| 1                             | Tractors/Loaders/Backhoes                                                    | 97<br>48                 | 0.37                   |                    | 6 200<br>8 200 | 6                | 43068           |                                                                                  |
|                               | Stucco Gun                                                                   | 40                       | 0.40                   |                    | 8 15           | 0.6              |                 | 3 days per building. 5 total buildings for a total of 15 days for the stucco gun |
|                               | ouner Equipment?                                                             |                          |                        |                    |                |                  |                 |                                                                                  |
| Building - Int                | erior/Architectural Coating                                                  | Start Date:<br>End Date: | 2/1/2027               | Total phase:       | 10             |                  |                 |                                                                                  |
| 1                             | Air Compressors                                                              | 78                       | 0.48                   |                    | 6 10           | 6                | 2246            |                                                                                  |
|                               | Other Equipment?                                                             | 62                       | 0.31                   |                    |                | 0                |                 | A                                                                                |
|                               | Paving                                                                       | Start Date:              | 2/1/2027               | Total phase:       | 10             |                  |                 |                                                                                  |
|                               |                                                                              | Start Date:              | 2/11/2027              | 1                  |                |                  |                 |                                                                                  |
| 1                             | Cement and Mortar Mixers<br>Pavers                                           | 9                        | 0.56                   |                    | 6 10           | 6                | 302<br>3276     | Analaska anala an anala kina a                                                   |
| 1                             | Paving Equipment                                                             | 132                      | 0.36                   |                    | 8 10           | 8                | 3802            | Asphait / cubic yards or round trips /                                           |
| 1                             | Tractors/Loaders/Backhoes                                                    | 97                       | 0.38                   |                    | 8 10           | 8                | 2128            |                                                                                  |
|                               | Other Equipment?                                                             |                          |                        |                    |                |                  |                 |                                                                                  |
|                               | Additional Phases                                                            | Start Date:              |                        | Total phase:       |                |                  |                 |                                                                                  |
|                               |                                                                              | Start Date:              |                        |                    |                | #DIV/0!          |                 |                                                                                  |
|                               |                                                                              |                          |                        |                    |                | #DIV/0!          | 0               |                                                                                  |
|                               |                                                                              |                          |                        |                    |                | #DIV/01          | 0               |                                                                                  |
|                               |                                                                              |                          |                        |                    |                | #DIV/0!          | 0               |                                                                                  |
| Equipment ty                  | vpes listed in "Equipment Types" w                                           | orksheet tab.            |                        |                    |                |                  |                 |                                                                                  |
| Equipment lis                 | ted in this sheet is to provide an exam                                      | ple of inputs            |                        | Complet            | e one          | sheet            | for e           | ach project component                                                            |
| It is assumed<br>Add or subtr | that water trucks would be used durin<br>act phases and equipment, as appro- | g grading<br>opriate     |                        |                    |                |                  |                 |                                                                                  |
| Modify horse                  | power or load factor, as appropriat                                          | e                        |                        |                    |                |                  |                 |                                                                                  |

16 Provided via email on 27 August 2024.



# Appendix C

Air Quality Assessment

# 4335 & 4345 EL CAMINO REAL AIR QUALITY ASSESSMENT

Palo Alto, California

September 13, 2024 Revised December 6, 2024

**Prepared for:** 

Austin Lin, PE Associate Development Manager SummerHill Homes 777 S. California Avenue Palo Alto, CA 94304

**Prepared by:** 

Casey Divine Jordyn Bauer

# ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality 429 East Cotati Avenue Cotati, CA 94931 (707) 794-0400

I&R Project#: 24-124

#### Introduction

The purpose of this report is to address the potential air quality and health risk impacts associated with the proposed residential development project located at 4335 & 4345 El Camino Real in Palo Alto, California. Air quality impacts would be associated with the demolition of the existing land uses, construction of the new buildings and infrastructure, and operation of the project. Air pollutant emissions associated with construction and operation of the project were estimated using appropriate computer models. In addition, the potential project health risks and the impact of existing toxic air contaminant (TAC) sources affecting the nearby and proposed sensitive receptors were evaluated. The analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).<sup>1</sup>

# **Project Description**

The 1.35-acre project site is currently developed with a commercial building, a motel, and an associated parking lot. The proposed project would demolish the existing uses and construct 29 three-story townhome-style condominiums in five buildings totaling 64,420 square feet (sf). Construction is expected to begin in April 2026 and be completed by approximately July 2027. The project has committed to using construction equipment with U.S. EPA Tier 4 emission standards for particulate matter.

#### Setting

The project is located in Santa Clara County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards except for ground-level ozone, respirable particulate matter (PM<sub>10</sub>), and fine particulate matter (PM<sub>2.5</sub>).

#### Air Pollutants of Concern

High ozone concentrations in the air basin are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NO<sub>X</sub>). These precursor pollutants react under certain meteorological conditions to form ozone concentrations. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ambient ozone concentrations. The highest ozone concentrations in the Bay Area occur in the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone concentrations aggravate respiratory and cardiovascular diseases, reduce lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant in the air basin. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less ( $PM_{10}$ ) and fine particulate matter where particles have a diameter of 2.5 micrometers or less ( $PM_{2.5}$ ). Elevated concentrations of  $PM_{10}$  and  $PM_{2.5}$  are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter

<sup>&</sup>lt;sup>1</sup> Bay Area Air Quality Management District, 2022 CEQA Guidelines, April 2023.

concentrations aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

#### Toxic Air Contaminants

TACs are a broad class of compounds known to cause morbidity or mortality, often because they cause cancer. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure of TACs can result in adverse health effects, they are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about seventy percent of the cancer risk from TACs (based on the Bay Area average).<sup>2</sup> According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects from diesel exhaust exposure a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs. Health risks from TACs are estimated using the Office of Environmental Health Hazard Assessment (OEHHA) risk assessment guidelines, which were published in February of 2015 and incorporated in BAAQMD's current CEQA guidance.<sup>3</sup>

 $PM_{2.5}$  emissions can include TACs. Due to the adverse health effects caused by  $PM_{2.5}$  exposure even at low concentrations, BAAQMD developed assessing methods and health risk thresholds to address exposure to increased concentrations caused by project  $PM_{2.5}$  emissions.<sup>4</sup>

#### Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, the elderly over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, infants and small children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest existing sensitive receptors to the project site are located in the adjacent multi-family residences to the southeast. There are additional sensitive receptors located at further distances to the north and south of the site. This project would introduce new sensitive receptors (i.e., residents) to the area.

<sup>&</sup>lt;sup>2</sup> CARB, *Summary: Diesel Particulate Matter Health Impacts*, Web: <u>https://ww2.arb.ca.gov/resources/summary-diesel-particulate-matter-health-impacts#footnote1\_7yob8j5</u>.

<sup>&</sup>lt;sup>3</sup> OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

<sup>&</sup>lt;sup>4</sup> BAAQMD, 2022 CEQA Air Quality Guidelines, Appendix A, p40.

#### **Regulatory Setting**

The Federal and California Clean Air Acts have established ambient air quality standards for different pollutants. National ambient air quality standards (NAAQS) were established by the Federal Clean Air Act of 1970 (amended in 1977 and 1990) for six "criteria" pollutants. These criteria pollutants now include carbon monoxide (CO), ozone (O<sub>3</sub>), nitrogen dioxide (NO<sub>2</sub>), respirable particulate matter with a diameter less than 10 microns (PM<sub>10</sub>), sulfur dioxide (SO<sub>2</sub>), and lead (Pb). In 1997, The Environmental Protection Agency (EPA) added fine particulate matter (PM<sub>2.5</sub>) as a criteria pollutant. The air pollutants for which standards have been established are considered the most prevalent air pollutants known to be hazardous to human health. California ambient air quality standards (CAAQS) include the NAAQS pollutants and also hydrogen sulfide, sulfates, vinyl chloride, and visibility reducing particles. These additional CAAQS pollutants tend to have unique sources and are not typically included in environmental air quality assessments. In addition, lead concentrations have decreased dramatically since it was removed from motor vehicle fuels.

#### Federal Regulations

The United States Environmental Protection Agency (EPA) sets nationwide emission standards for mobile sources, which include on-road (highway) motor vehicles such trucks, buses, and automobiles, and non-road (off-road) vehicles and equipment used in construction, agricultural, industrial, and mining activities (such as bulldozers and loaders). The EPA also sets nationwide fuel standards. California also has the ability to set motor vehicle emission standards and standards for fuel used in California, as long as they are the same or more stringent than the federal standards.

In the past decade the EPA has established a number of emission standards for on- and non-road heavy-duty diesel engines used in trucks and other equipment. This was done in part because diesel engines are a significant source of NO<sub>X</sub> and particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) and because the EPA has identified DPM as a probable carcinogen. Implementation of the heavy-duty diesel on-road vehicle standards and the non-road diesel engine standards are estimated to reduce particulate matter and NO<sub>X</sub> emissions from diesel engines up to 95 percent in 2030 when the heavy-duty vehicle fleet is completely replaced with newer heavy-duty vehicles that comply with these emission standards.<sup>5</sup>

In concert with the diesel engine emission standards, the EPA has also substantially reduced the amount of sulfur allowed in diesel fuels. The sulfur contained in diesel fuel is a significant contributor to the formation of particulate matter in diesel-fueled engine exhaust. The new standards reduced the amount of sulfur allowed by 97 percent for highway diesel fuel (from 500 parts per million by weight [ppmw] to 15 ppmw), and by 99 percent for off-highway diesel fuel (from about 3,000 ppmw to 15 ppmw). The low sulfur highway fuel (15 ppmw sulfur), also called ultra-low sulfur diesel (ULSD), is currently required for use by all vehicles in the U.S.

<sup>&</sup>lt;sup>5</sup> USEPA, 2000. *Regulatory Announcement, Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements*. EPA420-F-00-057. December.

All of the above federal diesel engine and diesel fuel requirements have been adopted by California, in some cases with modifications making the requirements more stringent or the implementation dates sooner.

#### State Regulations

To address the issue of diesel emissions in the state, CARB developed the Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles.<sup>6</sup> In addition to requiring more stringent emission standards for new on-road and off-road mobile sources and stationary diesel-fueled engines to reduce particulate matter emissions by 90 percent, a significant component of the plan involves application of emission control strategies to existing diesel vehicles and equipment. Many of the measures of the Diesel Risk Reduction Plan have been approved and adopted, including the federal on-road and non-road diesel engine emission standards for new engines, as well as adoption of regulations for low sulfur fuel in California.

CARB has adopted and implemented a number of regulations for stationary and mobile sources to reduce emissions of DPM. Several of these regulatory programs affect medium and heavy-duty diesel trucks that represent the bulk of DPM emissions from California highways. CARB regulations require on-road diesel trucks to be retrofitted with particulate matter controls or replaced to meet 2010 or later engine standards that have much lower DPM and PM<sub>2.5</sub> emissions. This regulation will substantially reduce these emissions between 2013 and 2023. While new trucks and buses will meet strict federal standards, this measure is intended to accelerate the rate at which the fleet either turns over so there are more cleaner vehicles on the road or is retrofitted to meet similar standards. With this regulation, older, more polluting trucks would be removed from the roads sooner.

CARB has also adopted and implemented regulations to reduce DPM and NO<sub>X</sub> emissions from inuse (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce particulate matter and NO<sub>X</sub> exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleetaveraged emission rates. Implementation of this regulation, in conjunction with stringent federal off-road equipment engine emission limits for new vehicles, will significantly reduce emissions of DPM and NO<sub>X</sub>.

#### Bay Area Air Quality Management District (BAAQMD)

BAAQMD has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

<sup>&</sup>lt;sup>6</sup> California Air Resources Board, 2000. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. October.

BAAQMD is the lead agency in developing plans to address attainment and maintenance of the National Ambient Air Quality Standards and California Ambient Air Quality Standards. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The BAAQMD is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area.<sup>7</sup> The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program has been implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses has been used to develop emission reduction activities in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. Seven areas have been identified by BAAQMD as impacted communities. They include Eastern San Francisco, Richmond/San Pablo, Western Alameda, San José, Vallejo, Concord, and Pittsburgh/Antioch. The project site is not located within any of the BAAQMD CARE areas.

Overburdened communities are areas located (i) within a census tract identified by the California Communities Environmental Health Screening Tool (CalEnviroScreen), Version 4.0 implemented by OEHHA, as having an overall score at or above the 70th percentile, or (ii) within 1,000 feet of any such census tract.<sup>8</sup> The BAAQMD has identified several overburdened areas within its boundaries. However, the project site is not within an overburdened area as the Project site is scored at the 14<sup>th</sup> percentile on CalEnviroScreen.<sup>9</sup>

# Clean Air Plan

The BAAQMD is responsible for developing a Clean Air Plan which guides the region's air quality planning efforts to attain both the National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS). The BAAQMD's *2017 Clean Air Plan* is the current Clean Air Plan which contains district-wide control measures to reduce ozone precursor emissions (i.e., ROG and NO<sub>X</sub>), particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) and greenhouse gas (GHG) emissions.

<sup>&</sup>lt;sup>7</sup> See BAAQMD: <u>https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program</u>.

<sup>&</sup>lt;sup>8</sup> See BAAQMD: <u>https://www.baaqmd.gov/~/media/dotgov/files/rules/reg-2-permits/2021-</u> amendments/documents/20210722\_01\_appendixd\_mapsofov/files/rules/pdf.pdf?la=en.

<sup>&</sup>lt;sup>9</sup> OEHAA, CalEnviroScreen 4.0 Maps <u>https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40</u>

# BAAQMD CEQA Air Quality Guidelines

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA. In 2023, the BAAQMD revised the *California Environmental Quality Act (CEQA) Air Quality Guidelines* that include significance thresholds to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The current BAAQMD guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They include assessment methodologies for criteria air pollutants, air toxics, odors, and GHG emissions as shown in Table 1.<sup>10</sup> Air quality impacts and health risks are considered potentially significant if they exceed these thresholds.

The BAAQMD recommends all projects include a "basic" set of best management practices (BMPs) to manage fugitive dust and consider impacts from dust (i.e., fugitive PM<sub>10</sub> and PM<sub>2.5</sub>) to be less than significant if BMPs are implemented (listed below). BAAQMD strongly encourages enhanced BMPs for construction sites near schools, residential areas, other sensitive land uses, or if air quality impacts were found to be significant.

|                                      | Constructio                        | on Thresholds                               | Operationa                               | al Thresholds                                |  |
|--------------------------------------|------------------------------------|---------------------------------------------|------------------------------------------|----------------------------------------------|--|
| Criteria Air<br>Pollutant            | Average Da<br>(lbs                 | ily Emissions<br>./day)                     | Average Daily<br>Emissions (lbs./day)    | Annual Average<br>Emissions (tons/year)      |  |
| ROG                                  |                                    | 54                                          | 54                                       | 10                                           |  |
| NO <sub>X</sub>                      |                                    | 54                                          | 54                                       | 10                                           |  |
| $PM_{10}$                            | 82 (E                              | xhaust)                                     | 82                                       | 15                                           |  |
| PM <sub>2.5</sub>                    | 54 (E                              | xhaust)                                     | 54                                       | 10                                           |  |
| СО                                   | Not Aj                             | pplicable                                   | 9.0 ppm (8-hour avera ave                | uge) or 20.0 ppm (1-hour prage)              |  |
| Fugitive Dust                        | Construction Dus<br>Best Managemen | t Ordinance or other<br>t Practices (BMPs)* | Not Applicable                           |                                              |  |
| Health Risks<br>and Hazards          | Single<br>Individu                 | Sources/<br>al Project                      | Combined Sources<br>sources within 1000- | (Cumulative from all foot zone of influence) |  |
| Excess Cancer<br>Risk                | >10 in a million                   | OR<br>Compliance with                       | >100 in a million                        | OR                                           |  |
| Hazard Index                         | >1.0                               | Community                                   | >10.0                                    | Qualified Community                          |  |
| Incremental annual PM <sub>2.5</sub> | $>0.3 \ \mu g/m^3$                 | Risk Reduction<br>Plan                      | >0.8 µg/m <sup>3</sup>                   | Risk Reduction Plan                          |  |

| Table 1. | BAAQMD | CEQA | Significance | Thresholds |
|----------|--------|------|--------------|------------|
|          |        | -    |              |            |

Note: ROG = reactive organic gases, NO<sub>X</sub> = nitrogen oxides,  $PM_{10}$  = course particulate matter or particulates with an aerodynamic diameter of 10 micrometers (µm) or less,  $PM_{2.5}$  = fine particulate matter or particulates with an aerodynamic diameter of 2.5µm or less.

\* BAAQMD strongly recommends implementing all feasible fugitive dust management practices especially when construction projects are located near sensitive communities, including schools, residential areas, or other sensitive land uses.

Source: Bay Area Air Quality Management District, 2022

<sup>&</sup>lt;sup>10</sup> Bay Area Air Quality Management District, 2022 CEQA Guidelines. April2023.

#### City of Palo Alto Comprehensive Plan 2030

Adopted in November 2017, the Comprehensive Plan 2030 for the City of Palo Alto is the primary tool for guiding preservation and development in Palo Alto.<sup>11</sup> Air quality policies are identified in the Natural Environmental Element and address environmental risks such as air pollution and climate change. The following goals and policies are applicable to this project:

- GOAL N-5 Clean, healthful air for Palo Alto and the San Francisco Bay Area.
- Policy N-5.1 Support regional, State, and federal programs that improve air quality in the Bay Area because of its critical importance to a healthy Palo Alto.
  - Program N5.1.2 Implement BAAQMD recommended standards for the design of buildings near heavily traveled roads, in order to minimize exposure to auto-related emissions.
  - Program N5.1.3 Explore adopting new standards that target the reduction of very fine particulate matter (PM<sub>2.5</sub>), which is associated with increased impacts on health.
- Policy N-5.2 Support behavior changes to reduce emissions of particulates from automobiles.

| Program N5.2.1 | Promote ur   | nderstanding  | of the  | impacts   | of   | extended    | idling | on | air |
|----------------|--------------|---------------|---------|-----------|------|-------------|--------|----|-----|
|                | quality, for | residents, au | to depe | ndent bus | sine | esses and s | chools | •  |     |

- Program N5.2.2 Consider adopting and enforcing penalties for drivers that idle for longer than 3-5 minutes.
- Policy N-5.3 Reduce emissions of particulates from, manufacturing, dry cleaning, construction activity, grading, wood burning, landscape maintenance, including leaf blowers and other sources.
- Policy N-5.4 All potential sources of odor and/or toxic air contaminants shall be adequately buffered, or mechanically or otherwise mitigated to avoid odor and toxic impacts that violate relevant human health standards.
- Policy N-5.5 Support the BAAQMD in its efforts to achieve compliance with existing air quality regulations by continuing to require development applicants to comply with BAAQMD construction emissions control measures and health risk assessment requirements.
- Policy N-5.6 Mitigate potential sources of toxic air contaminants through siting or other means to reduce human health risks and meet the BAAQMD's applicable threshold of

<sup>&</sup>lt;sup>11</sup> City of Palo Alto, 2017. *City of Palo Alto Comprehensive Plan 2030*. November. Web: <u>https://www.cityofpaloalto.org/Departments/Planning-Development-Services/Housing-Policies-Projects/2030-Comprehensive-Plan</u>

significance. When siting new sensitive receptors such as schools, day care facilities, parks or playgrounds, medical facilities and residences within 1,000 feet of stationary sources of toxic air contaminants or roadways used by more than 10,000 vehicles per day, require projects to consider potential health risks and incorporate adequate precautions such as high-efficiency air filtration into project design.

#### City of Palo Alto Comprehensive Plan Update Environmental Impact Report (EIR)

Published February 2016, the Comprehensive Plan Update EIR for the City of Palo Alto evaluated potential impacts of future development under the plan. This EIR identified mitigation measures that would reduce impacts to less than significant. Chapter 4.2 in the document evaluated air quality impacts.<sup>12</sup> The following mitigation measures are applicable to this project:

# Air Quality

<u>Mitigation Measure AIR-2a</u>: As part of the City's development approval process, the City shall require applicants for future development projects to comply with the current BAAQMD basic control measures for reducing construction emissions of PM<sub>10</sub> (Table 8-2, Basic Construction Mitigation Measures Recommended for All Proposed Projects, of the BAAQMD CEQA Guidelines).

Mitigation Measure AIR-2b: Prior to issuance of construction permits, development project applicants that are subject to CEQA and have the potential to exceed the BAAQMD screening-criteria listed in the BAAQMD CEQA Guidelines shall prepare and submit to the City of Palo Alto a technical assessment evaluating potential project constructionrelated air quality impacts. The evaluation shall be prepared in conformance with BAAQMD methodology in assessing air quality impacts. If construction-related criteria air pollutants are determined to have the potential to exceed the BAAQMD thresholds of significance, as identified in the BAAOMD CEOA Guidelines, the City of Palo Alto shall require that applicants for new development projects incorporate mitigation measures (Table 8-3, Additional Construction Mitigation Measures Recommended for Projects with Construction Emissions Above the Threshold, of the BAAQMD CEQA Guidelines or applicable construction mitigation measures subsequently approved by BAAQMD) to reduce air pollutant emissions during construction activities to below these thresholds. These identified measures shall be incorporated into all appropriate construction documents (e.g., construction management plans) submitted to the City and shall be verified by the City's Planning and Community Environment Department.

<u>Mitigation Measure AIR-2c:</u> Prior to issuance of construction permits, development project applicants that are subject to CEQA and have the potential to exceed the BAAQMD screening-criteria listed in the BAAQMD CEQA Guidelines shall prepare and submit to the City of Palo Alto a technical assessment evaluating potential project operation phase-related air quality impacts. The evaluation shall be prepared in conformance with

<sup>&</sup>lt;sup>12</sup> Placeworks, 2016. *Comprehensive Plan Update Environmental Impact Report*. February. Web: <u>https://www.cityofpaloalto.org/civicax/filebank/documents/63453</u>

BAAQMD methodology in assessing air quality impacts. If operational-related criteria air pollutants are determined to have the potential to exceed the BAAQMD thresholds of significance, as identified in BAAQMD's CEQA Guidelines, the City of Palo Alto Planning and Community Environment Department shall require that applicants for new development projects incorporate mitigation measures to reduce air pollutant emissions during operational activities.

# AIR QUALITY IMPACTS AND CONDITIONS OF APPROVAL

# Impact AIR-1: Conflict with or obstruct implementation of the applicable air quality plan?

BAAQMD, with assistance from the Association of Bay Area Governments (ABAG) and Metropolitan Transportation Commission (MTC), implements specific plans to meet the applicable federal and State laws, regulations, and programs. The most recent and comprehensive plan is the *Bay Area 2017 Clean Air Plan*.<sup>13</sup> The primary goals of the Clean Air Plan are to attain air quality standards, reduce population exposure and protect public health, and reduce GHG emissions and protect the climate. The BAAQMD has also recently updated its CEQA guidelines to assist lead agencies in evaluating the significance of air quality impacts. In formulating compliance strategies, BAAQMD relies on planned land uses established by local general plans. Land use planning affects vehicle travel, which in turn affects region-wide emissions of air pollutants and GHGs.

The Project is a small residential development that would not introduce any substantial sources of air pollutants or sources permitted by BAAMQD. The Project site is identified as a housing inventory site in the City's Housing Element, suitable for residential development at the proposed density. The Project would also comply with Mitigation Measures AIR-2a through AIR-2c of the Comprehensive Plan Update EIR (see analyses below). Therefore, the Project is consistent with the Comprehensive Plan Update EIR and would not conflict with the latest Clean Air planning efforts. Additionally, 1) the Project would have construction and operational emissions below the BAAQMD thresholds (see Impact 2 below), 2) the project would be considered urban infill, and 3) the project would be located near transit with regional connections.

# Impact AIR-2: Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

The Bay Area is considered a non-attainment area for ground-level ozone and PM<sub>2.5</sub> under both the NAAQS and the CAAQS. The area is also considered non-attainment for PM<sub>10</sub> under the CAAQS, but not the NAAQS. The area has attained both State and Federal ambient air quality standards for CO. As part of an effort to attain and maintain ambient air quality standards for ozone, PM<sub>2.5</sub> and PM<sub>10</sub>, the BAAQMD has established thresholds of significance for these air pollutants and their precursors. The ozone precursor pollutant thresholds are for ROG and NOx, while PM<sub>10</sub>, and PM<sub>2.5</sub> have specific thresholds. The thresholds apply to both construction period emissions and operational period emissions.

<sup>&</sup>lt;sup>13</sup> Bay Area Air Quality Management District (BAAQMD), 2017. *Final 2017 Clean Air Plan.* 

This section of the assessment addresses Comprehensive Plan Update EIR Mitigation Measures AIR-2b and AIR-2c, which evaluates the construction- and operational-related criteria air pollutants for the proposed project. The project has committed to using construction equipment with engines meeting U.S. EPA Tier 4 standards; therefore, the unmitigated construction modeling scenarios included Tier 4 engines for construction equipment as well as implementation of the BAAQMD basic BMPs, per the Comprehensive Plan Update EIR Mitigation Measures AIR-2a and Comprehensive Plan Policy N-5.5.

#### **Construction Period Emissions**

The California Emissions Estimator Model (CalEEMod) Version 2022 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size were input to CalEEMod. The CalEEMod model output along with construction inputs are included in *Attachment 1*.

#### CalEEMod Inputs

#### Land Uses

The proposed project land uses were entered into CalEEMod as described in Table 2.

| Project Land Uses | Size | Units         | Square Feet (sf) | Acreage |
|-------------------|------|---------------|------------------|---------|
| Condo/Townhouse   | 29   | Dwelling Unit | 64,420           | 1.35    |

#### Table 2.Summary of Project Land Use Inputs

# Construction Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size, and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario for both phases, including equipment quantities, average hours per day, total number of workdays, and schedule, was based on a blend of information provided by the project applicant and defaults (included in *Attachment 1*). The construction schedule estimates a start date of April 2026, and the project would be built out over a period of approximately 16 months, or 408 construction workdays. The earliest full year of operation was assumed to be 2028.

# Construction Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The traffic-related emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the demolition material to be exported, soil imported and/or exported to the site, and the estimated concrete and asphalt truck trips to and from the site. CalEEMod provides daily estimates of worker and vendor trips for each applicable phase. Daily haul trips for demolition and grading were developed by CalEEMod using the provided demolition and soil import/export volumes. The number of total concrete and asphalt round haul trips were estimated

for the project and converted to daily one-way trips, assuming two trips per delivery. These values are shown in the project construction equipment worksheet included in *Attachment 1*.

#### Summary of Computed Construction Period Emissions

In conformance with Mitigation Measure AIR-2b of the Comprehensive Plan Update EIR, average daily emissions were annualized for each year of construction by dividing the annual construction emissions by the number of active workdays during that year. Table 3 shows the annualized average daily construction emissions of ROG, NO<sub>X</sub>, PM<sub>10</sub> exhaust, and PM<sub>2.5</sub> exhaust during construction of the project. As indicated in Table 3, predicted annualized project construction emissions would not exceed the BAAQMD significance thresholds during any year of construction.

| Year                               | ROG              | ROG NOx          |             | PM <sub>2.5</sub><br>Exhaust |
|------------------------------------|------------------|------------------|-------------|------------------------------|
| Construct                          | ion Emissions To | tal (Tons)       |             |                              |
| 2026                               | 0.01             | 0.17             | 0.002       | 0.002                        |
| 2027                               | 0.46             | 0.18             | 0.001       | 0.001                        |
| Average Daily Co                   | nstruction Emiss | ions (pounds/day |             |                              |
| 2026 (236 construction workdays)   | 0.05             | 1.46             | 0.01        | 0.01                         |
| 2027 (172 construction workdays)   | 5.40             | 2.08             | 0.01        | 0.01                         |
| BAAQMD Thresholds (pounds per day) | 54 lbs./day      | 54 lbs./day      | 82 lbs./day | 54 lbs./day                  |
| Exceed Threshold?                  | No               | No               | No          | No                           |

# Table 3.Construction Period Emissions

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM<sub>10</sub> and PM<sub>2.5</sub>. Sources of fugitive dust include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site deposit mud on local streets, which is an additional source of airborne dust after it dries. The BAAQMD recommends all projects include a "basic" set of BMPs to manage fugitive dust and considers impacts from dust (i.e., fugitive PM<sub>10</sub> and PM<sub>2.5</sub>) to be less-than-significant if BMPs are implemented to reduce these emissions. Mitigation Measure AIR-2a of the Comprehensive Plan Update EIR would implement the BAAQMD basic BMPs to control dust during construction.

# *Palo Alto Comprehensive Plan Update EIR Mitigation Measure AIR-2a:* BMPs for Construction Dust Suppression.

During any construction period ground disturbance, the applicant shall ensure that the project contractor implement measures to control dust. Implementation of the measures recommended by BAAQMD and listed below would reduce the air quality impacts associated with grading and new construction to a less-than-significant level. The contractor shall implement the following BMPs required of all projects:

- 1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- 2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.

- 3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- 4. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).
- 5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- 6. All excavation, grading, and/or demolition activities shall be suspended when average wind speeds exceed 20 mph.
- 7. All trucks and equipment, including their tires, shall be washed off prior to leaving the site.
- 8. Unpaved roads providing access to sites located 100 feet or further from a paved road shall be treated with a 6- to 12-inch layer of compacted layer of wood chips, mulch, or gravel.
- 9. Publicly visible signs shall be posted with the telephone number and name of the person to contact at the lead agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's General Air Pollution Complaints number shall also be visible to ensure compliance with applicable regulations.

# Effectiveness of Palo Alto Comprehensive Plan Update EIR Mitigation Measure AIR-2a

The measures above are consistent with BAAQMD-recommended basic BMPs for reducing fugitive dust contained in the BAAQMD CEQA Air Quality Guidelines. For this analysis, only the basic set of BMPs are required as the uncontrolled fugitive dust emissions from construction are below the BAAQMD single-source threshold. In compliance with the Comprehensive Plan Policy N-5.5, the City requires these basic best management practices to be implemented for all development projects.

# **Operational Period Emissions**

ROG, NO<sub>x</sub>, and Particulate Matter (PM) air pollutant emissions from the project would be generated primarily from autos driven by future residents. Evaporative emissions from architectural coatings and maintenance products (classified as consumer products) are also typical ROG emission sources from these types of uses. The CalEEMod model was used to estimate emissions from operation of the proposed project assuming full build-out.

# CalEEMod Inputs

# Land Uses

The project land uses were input to CalEEMod as described above for the construction period

# modeling.

# Model Year

Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CalEEMod. The earliest year of full operation would be 2028 if construction begins in 2026. Emissions associated with build-out later than 2028 would be lower.

# Traffic Information

CalEEMod allows the user to enter specific vehicle trip generation rates. Therefore, the projectspecific daily trip generation rate provided by the traffic consultant was entered into the model.<sup>14</sup> The project would produce approximately 264 daily trips. The daily trip generation was calculated by the Traffic Consultant using ITE trip generation rates and the size of the project land uses. The Saturday and Sunday trip rates were derived by multiplying the ratio of the CalEEMod default rates for Saturday and Sunday trips to the default weekday rate with the project-specific daily weekday trip rate. The default trip lengths and trip types specified by CalEEMod were used.

# Energy

CalEEMod defaults for energy use were used, which include the 2019<sup>15</sup> Title 24 Building Standards. GHG emissions modeling includes those indirect emissions from electricity consumption. The model has a default rate of 0 pounds of CO<sub>2</sub> per megawatt of electricity produced, which is based on City of Palo Alto Utilities Department 2021 emissions rate.

The Project plans do not show any natural gas infrastructure, and the applicant has confirmed the building will be all electric. Therefore, natural gas use for the project land uses was set to zero and reassigned to electricity use in CalEEMod.

# Wood-Burning Devices

CalEEMod default inputs assume new residential construction would include wood-burning fireplaces and stoves. The project would not include wood-burning devices, as these devices are prohibited by BAAQMD Regulation 6, Rule 3.<sup>16</sup> As discussed above, natural gas infrastructure is prohibited in new residential buildings. Therefore, the number of woodstoves and fireplaces in CalEEMod were set to zero.

<sup>&</sup>lt;sup>14</sup> Hexagon Transportation Consultants, Inc., *Trip Generation Study and VMT Analysis for a Proposed Residential Development at 4335 & 4345 El Camino Real in Palo Alto, California Memorandum*, January 19, 2024.

<sup>&</sup>lt;sup>15</sup> The 2022 Title 2024 standards have not been incorporated into the current CalEEMod model, which uses Title 24 standards from 2019 (CalEEMod User Guide). The 2019 standards, and therefore the energy analysis, are more conservative.

<sup>&</sup>lt;sup>16</sup> Bay Area Air Quality Management District, <u>https://www.baaqmd.gov/~/media/dotgov/files/rules/regulation-6-rule-3/documents/20191120\_r0603\_final-pdf?pdf?la=en</u>

# Other Inputs

Default model assumptions for emissions associated with solid waste generation were used. Wastewater treatment was changed to 100-percent aerobic conditions to represent the use of city services (i.e., the project would not send wastewater to septic tanks or facultative lagoons).

# Summary of Computed Operational Period Emissions

In conformance with Mitigation Measure AIR-2c of the Comprehensive Plan Update EIR, annual operational emissions were predicted using CalEEMod. The daily emissions were calculated assuming 365 days of operation. Table 4 shows average daily emissions of ROG, NO<sub>X</sub>, total PM<sub>10</sub>, and total PM<sub>2.5</sub> during operation of the project. The operational period emissions would not exceed the BAAQMD significance thresholds.

| Scenario                                       | ROG     | NOx     | PM <sub>10</sub> | PM <sub>2.5</sub> |
|------------------------------------------------|---------|---------|------------------|-------------------|
| 2028 Project Operational Emissions (tons/year) | 0.44    | 0.10    | 0.26             | 0.07              |
| BAAQMD Thresholds (tons /year)                 | 10 tons | 10 tons | 15 tons          | 10 tons           |
| Exceed Thresholds?                             | No      | No      | No               | No                |
| BAAQMD Thresholds (lbs./day)                   | 54 lbs. | 54 lbs. | 82 lbs.          | 54 lbs.           |
| Exceed Threshold?                              | No      | No      | No               | No                |

# Table 4.Operational Period Emissions

Notes: <sup>1</sup> Assumes 365-day operation.

# Impact AIR-3: Expose sensitive receptors to substantial pollutant concentrations?

Project impacts related to increased health risk can occur by generating emissions of TACs and air pollutants. This project would introduce new sources of TACs during construction (i.e., on-site construction and truck hauling emissions) and operation (i.e., mobile sources). Project construction activity would generate dust and equipment exhaust that would affect nearby sensitive receptors. The project would not include stationary sources of air pollutants or TACs. The project would generate some traffic consisting of mostly light-duty gasoline-powered vehicles, which would produce TAC and air pollutant emissions.

Project impacts to existing sensitive receptors were addressed for temporary construction activities and long-term operational conditions. There are also several sources of existing TACs and localized air pollutants in the vicinity of the project. The impact of existing sources of TACs was assessed in terms of the cumulative risk which includes the project contribution, as well as the risk on the new sensitive receptors introduced by the project.

# Health Risks from Project Construction

The primary health risk impact issues associated with construction projects are cancer risks associated with diesel exhaust (i.e., DPM), which is a known TAC, and exposure to high concentrations of dust (i.e., PM<sub>2.5</sub>). Both pose a potential health and nuisance impact to nearby sensitive receptors. Receptors include locations where sensitive populations would be present for extended periods of time (i.e., chronic exposures). This includes the existing residences adjacent

to and surrounding the site as shown in Figure 1. The sensitive receptors that would experience the greatest risks and elevated  $PM_{2.5}$  concentrations would be those closest and downwind of the project site. Weather conditions have been measured at Moffett Federal Airfield, which show winds flow primarily from the northwest. The project's temporary construction health risk impacts would likely be greatest at the adjacent multi-family residences that are southeast of the construction site.

The CalEEMod model provided total uncontrolled annual PM<sub>10</sub> exhaust emissions (assumed to be DPM) for the off-road construction equipment and for exhaust emissions from on-road vehicles. Total uncontrolled DPM emissions were estimated to be 0.02 tons (31 pounds) and fugitive dust emissions (PM<sub>2.5</sub>) were estimated to be 0.01 tons (12 pounds). The project has committed to using construction equipment meeting U.S. EPA Tier 4 emission standards for particulate matter. CalEEMod modeling calculated that the inclusion of Tier 4 equipment would reduce the DPM emissions from temporary construction activities by approximately 67-percent or more, which would in turn greatly decrease the health risk impacts from the project's temporary construction activities on the nearby estimated MEI and sensitive receptors. Tier 4 engine requirements for all diesel-powered construction equipment were required since 2012,<sup>17</sup> so having a construction fleet meet this Tier 4 commitment would be manageable for the project. Therefore, considering the use of modern construction equipment that meets Tier 4 standards, the location of nearby sensitive receptors with respect to local meteorological data, and the temporary nature of these construction emissions, the project's temporary construction health risk impact would be below BAAQMD's single-source thresholds identified in Table 1.

# Health Risks from Project Operation

The Project would not include stationary sources of TACs (i.e., diesel-powered emergency generators). Diesel powered vehicles are the primary concern with local traffic-generated TAC impacts. This project would generate approximately 264 daily trips. The project traffic would be dispersed on the roadway system with a majority of the trips being from light-duty vehicles (i.e., passenger automobiles). In addition, projects with the potential to cause or contribute to increased cancer risk from traffic include those that have high numbers of diesel-powered on road trucks or use off-road diesel equipment on site, such as a warehouse distribution center, a quarry, or a manufacturing facility, may potentially expose existing or future planned receptors to substantial cancer risk levels and/or health hazards. This is not a project of concern for mobile sources given the low trip quantity and type of trips generated by the project. Therefore, emissions from project traffic are considered negligible.

<sup>&</sup>lt;sup>17</sup> CARB, <u>https://ww2.arb.ca.gov/resources/documents/non-road-diesel-engine-certification-tier-chart</u>

Figure 1. Location of Project Construction Sites, Off-Site Sensitive Receptors, Win, and Estimated Maximum TAC Impacts (MEI) – Moffett Airfield Wind Rose Included



Cumulative Health Risks of all TAC Sources at the Off-Site Project MEI

Cumulative health risk assessments look at all substantial sources of TACs located within 1,000 feet of a project site (i.e., influence area) that can affect sensitive receptors. These sources include rail lines, highways, busy surface streets, and stationary sources identified by BAAQMD.

A review of the project area using BAAQMD's geographic information systems (GIS) screening tools indicated that one roadway (El Camino Real) and two stationary sources within the 1,000-foot influence area could have cumulative health risk impacts at the MEI and project site. Figure 2 shows the locations of the sources affecting the MEI within the influence area. Health risk impacts from these sources upon the MEI are reported in Table 5. Details of the cumulative screening and health risk calculations are included in *Attachment 2*.



#### Figure 2. Project Site and Nearby TAC and PM<sub>2.5</sub> Sources

# Local Roadways - El Camino Real

A refined analysis of potential health impacts from vehicle traffic on El Camino Real was conducted since this roadway was identified by the screening tools to have potentially high TAC impact levels. The refined analysis involved prediction of emissions for the traffic volume and mix of vehicle types on the roadway near the project site and using an atmospheric dispersion model to predict exposure to TACs. The associated cancer risks are then computed based on the modeled exposures. The increased lifetime cancer risk for a pollutant is estimated as the product of a lifetime dose and the cancer potency factor derived by the OEHHA. Health risk impacts were also addressed by predicting the increase in annual PM<sub>2.5</sub> concentrations and computing the Hazard Index (HI) for non-cancer health risks.

#### **Emissions Modeling**

This analysis involved the development of DPM, organic TACs, and  $PM_{2.5}$  emissions for traffic on El Camino Real using the Caltrans version of the CARB EMFAC2021 emissions model, known as CT-EMFAC2021. CT-EMFAC2021 provides emission factors for mobile source criteria pollutants and TACs, including DPM. Emission processes modeled include running exhaust for DPM, PM<sub>2.5</sub> and total organic compounds (TOG), running evaporative losses for TOG, and tire and brake wear and fugitive road dust for PM<sub>2.5</sub>. All PM<sub>2.5</sub> emissions from all vehicles were used, rather than just the PM<sub>2.5</sub> fraction from diesel powered vehicles, because all vehicle types (i.e., gasoline and diesel powered) produce PM<sub>2.5</sub>. Additionally, PM<sub>2.5</sub> emissions from vehicle tire and brake wear from re-entrained roadway dust were included in these emissions. DPM emissions are projected to decrease in the future and are reflected in the CT-EMFAC2021 emissions data. Inputs to the model include region (Santa Clara County), type of road (major/collector), traffic mix assigned by CT-EMFAC2021 for the county, truck percentages from Caltrans for El Camino Real (3.2 percent),<sup>18</sup> year of analysis (2026 construction start year), and season (annual).

To estimate TAC and PM<sub>2.5</sub> emissions over the 30-year exposure period used for calculating the increased cancer risks for sensitive receptors at the MEI, the CT-EMFAC2021 model was used to develop vehicle emission factors for the year 2026 (construction start year). Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CT-EMFAC2021. Year 2026 emissions were conservatively assumed as being representative of future conditions over the time period that cancer risks are evaluated since, as discussed above, overall vehicle emissions, and in particular diesel truck emissions, will decrease in the future.

The average daily traffic (ADT) of 41,600 vehicles per day for El Camino Real was calculated based on Caltrans data and includes about 3.2 percent trucks, of which 0.6 percent are considered diesel heavy duty trucks and 2.6 percent are medium duty trucks.<sup>19</sup> Average hourly traffic distributions for Santa Clara County roadways were developed using the EMFAC model,<sup>20</sup> which were then applied to the ADT volumes to obtain estimated hourly traffic volumes and emissions for the roadway. For all hours of the day an average speed of 30 mph on the roadway was assumed for all vehicles based on 5 mph below the posted speed limit signs.

Hourly emissions rates were developed for DPM, organic TACs, and PM<sub>2.5</sub> along the applicable segments of the roadway within 1,000 feet of the project site. AERMOD was used to estimate the TAC and PM<sub>2.5</sub> concentrations at the MEI location. Maximum increased lifetime cancer risks and maximum annual PM<sub>2.5</sub> concentrations for the MEI receptor was then computed using modeled TAC and PM<sub>2.5</sub> concentrations and BAAQMD methods and exposure parameters contained in Appendix E of the BAAQMD CEQA Guidelines.

# Dispersion Modeling

Dispersion modeling of TAC and PM<sub>2.5</sub> emissions was conducted using the AERMOD dispersion model, which is recommended by the BAAQMD for this type of analysis.<sup>21</sup> TAC and PM<sub>2.5</sub>

<sup>&</sup>lt;sup>18</sup> Caltrans. 2022. 2022 Annual Average Daily Truck Traffic on the California State Highway System. Web: https://dot.ca.gov/programs/traffic-operations/census.

<sup>&</sup>lt;sup>19</sup> Caltrans. 2022. 2022 Traffic Volumes on California State Highways. Web: <u>https://dot.ca.gov/programs/traffic-operations/census</u>.

<sup>&</sup>lt;sup>20</sup> The Burden output from EMFAC2007, a previous version of CARB's EMFAC model, was used for this since the current web-based version of EMFAC2021 does not include Burden type output with hour-by-hour traffic volume information.

<sup>&</sup>lt;sup>21</sup> BAAQMD, 2022 CEQA Air Quality Guidelines, Appendix E.

emissions from traffic on El Camino Real within about 1,000 feet of the project site were evaluated. Emissions from vehicle traffic travel on the roadways were modeled in AERMOD using a series of area sources along a line (line area sources), with line segments used for travel on the roadways in both opposing directions. The modeling used a five-year data set (2013 - 2017) of hourly meteorological data from the Moffett Federal Airfield was used with the AERMOD model. Other inputs to the model included road geometry, hourly traffic emissions, and receptor locations and heights. Annual TAC and PM<sub>2.5</sub> concentrations using 2026 emissions from traffic on the roadway were calculated using the model. Roadway concentrations were calculated at the nearby existing sensitive receptors. Receptor heights of 5 feet (1.5 meters) and 15 feet (4.5 meters) were used to represent the breathing heights on the first and second floors of the nearby single- and multi-family residences.<sup>22</sup>

# Computed Cancer and Non-Cancer Health Impacts

The maximum increased cancer risks were calculated using the modeled TAC concentrations combined with BAAQMD CEQA guidance for age sensitivity factors and exposure parameters. Consistent with BAAQMD guidance, inhalation cancer risk potency factors identified in BAAQMD Rule 2, Regulation 5 were used to compute cancer risk. Age-sensitivity factors reflect the greater sensitivity of infants and small children to cancer causing TACs. Third trimester, infant, child, and adult exposures were assumed to occur at all residences during the entire construction period, while infant and child exposures were assumed at the daycare and preschool.

Non-cancer health hazards and maximum  $PM_{2.5}$  concentrations were also calculated. The maximum modeled annual  $PM_{2.5}$  concentration was calculated based on combined exhaust and fugitive concentrations. The maximum computed HI value was based on the ratio of the maximum DPM concentration modeled and the chronic inhalation DPM reference exposure level of 5  $\mu$ g/m<sup>3</sup>.

The cancer risk, PM<sub>2.5</sub> concentration, and HI impacts from El Camino Real at the off-site MEI are shown in Table 5. Figure 2 shows the roadway links modeled and receptor locations where concentrations were calculated. Details of the emission calculations, dispersion modeling, and cancer risk calculations for the receptors with the maximum cancer risk from traffic on the roadway are provided in *Attachment 2*.

#### BAAQMD Permitted Stationary Sources

Permitted stationary sources of air pollution near the project site were identified using BAAQMD's *Permitted Stationary Sources 2022* GIS website,<sup>23</sup> which identifies the location of nearby stationary sources and their estimated risk and hazard impacts, including emissions and adjustments to account for OEHHA guidance. Two sources were identified using this tool, one generator and one gasoline dispensing facility (GDF). The BAAQMD GIS website provided screening risk and hazards for the diesel generator. A stationary source information request was submitted to BAAQMD in order to estimate health risk impacts from the GDF.<sup>24</sup>

<sup>&</sup>lt;sup>22</sup> BAAQMD, 2022 CEQA Air Quality Guidelines, Appendix E.

<sup>&</sup>lt;sup>23</sup> BAAQMD,

https://baaqmd.maps.arcgis.com/apps/webappviewer/index.html?id=845658c19eae4594b9f4b805fb9d89a3

<sup>&</sup>lt;sup>24</sup> Email correspondence with BAAQMD CEQA, August 15, 2024.

The screening risk and hazard levels provided by BAAQMD for the stationary sources were adjusted for distance using BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion Engines* and *Gasoline Dispensing Facilities*. Health risk impacts from the stationary sources upon the MEI are reported in Table 5.

#### Summary of Cumulative Health Risk Impact at Project MEI

Table 5 reports both the project and cumulative health risk impacts at the sensitive receptors most affected by construction (i.e., the MEI). The applicant proposes to utilize construction equipment, where all diesel equipment meets U.S. EPA Tier 4 standards. With the implementation of this applicant proposed condition and *EIR Mitigation Measure Air 2a*, the construction risk and hazard levels would not exceed its respective BAAQMD single-source significance thresholds. The project also does not exceed any BAAQMD cumulative-source thresholds.

| Source                                                                               | Cancer Risk<br>(per million) | Annual PM <sub>2.5</sub><br>(µg/m <sup>3</sup> ) | Hazard<br>Index |
|--------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|-----------------|
| Project Impacts                                                                      |                              |                                                  |                 |
| Project Construction                                                                 | <10.0                        | < 0.3                                            | <1.0            |
| BAAQMD Single-Source Threshold                                                       | >10.0                        | >0.3                                             | >1.0            |
| Exceed Threshold?                                                                    | No                           | No                                               | No              |
| Cumulative Impa                                                                      | cts                          |                                                  |                 |
| El Camino Real, ADT 41,600                                                           | 6.23                         | 0.43                                             | < 0.01          |
| Toyota Research Institute (Facility ID #200563, Generator),<br>MEI at 480 feet.      | 4.03                         | 0.01                                             | < 0.01          |
| El Camino 76 Inc. (Facility ID #109042-1, Gas Dispensing Facility), MEI at 150 feet. | 2.17                         | -                                                | 0.01            |
| Cumulative Total                                                                     | <22.43                       | < 0.74                                           | <1.03           |
| BAAQMD Cumulative Source Threshold                                                   | 100                          | 0.8                                              | 10.0            |
| Exceed Threshold?                                                                    | No                           | No                                               | No              |

#### Table 5. Impacts from Combined Sources at Project MEI

#### **On-Site Health Risk Assessment for TAC Sources - New Project Residences**

The City's Comprehensive Plan Policy N-5.6 requires new residential development projects and projects categorized as sensitive receptors to incorporate effective mitigation into project designs to avoid significant risks to health and safety. Therefore, a health risk assessment was completed to assess the impact that nearby existing TAC sources would have on the new proposed sensitive receptors (residents) that the project would introduce. The same TAC sources identified above were used in this assessment.<sup>25</sup> BAAQMD's recommended thresholds for health risks and hazards, shown in Table 1, are used to evaluate on-site exposure. Figure 3 shows the on-site sensitive receptors in relation to the nearby TAC sources. Health risk results are listed in Table 6. *Attachment* 

<sup>&</sup>lt;sup>25</sup> We note that to the extent this analysis considers *existing* air quality issues in relation to the impact on *future residents* of the Project, it does so for informational purposes only pursuant to the judicial decisions in *CBIA v. BAAQMD* (2015) 62 Cal.4th 369, 386 and *Ballona Wetlands Land Trust v. City of Los Angeles* (2011) 201 Cal.App.4th 455, 473, which confirm that the impacts of the environment on a project are excluded from CEQA unless the project itself "exacerbates" such impacts.

2 includes the dispersion modeling and risk calculations for TAC source impacts upon the proposed on-site sensitive receptors.

#### Local Roadways – El Camino Real

The evaluation of roadway impacts on new project residents was conducted in the same manner as described above for Project impacts. However, the year 2028 (operational year) emission factors were conservatively assumed as being representative of future conditions, instead of 2026 (construction year). An analysis based on 2028 resulted in an increased ADT on El Camino Real of 42,400 vehicles.

Modeling receptors were placed in the center of each proposed dwelling unit. Roadway impacts were modeled at receptor heights of 5 feet (1.5 meters) and 15 feet (4.5 meters) representing sensitive receptors on the first and second floors of the proposed units. The portions of El Camino Real included in the modeling are shown in Figure 3 along with the project site and receptor locations where impacts were modeled.

Maximum increased cancer risks were calculated for the residents at the project site using the maximum modeled TAC concentrations. A 30-year exposure period was used in calculating cancer risks assuming the residents would include infants and adults were assumed to be in the new apartments for 24 hours per day for 350 days per year. The maximum impacts from El Camino Real occurred on the first floor (5 feet above the ground) in the units fronting and closest to El Camino Real. Cancer risks associated with the roadways are greatest closest to the roadway and decrease with distance from the road. The roadway impacts at the project site are shown in Table 6. Details of the emission calculations, dispersion modeling, and cancer risk calculations are contained in *Attachment 2*.

#### Stationary Sources

The stationary source screening analysis for the new project sensitive receptors was conducted in the same manner as described above for evaluating the off-site MEI. Table 6 shows the health risk screening assessment results from the stationary sources at the project site.

#### Summary of Cumulative Health Risks at the Project Site

Health risk impacts from the existing TAC sources upon the project site are reported in Table 6. The risks from the singular TAC sources are compared against the BAAQMD single-source threshold. The risks from all the sources are then combined and compared against the BAAQMD cumulative-source threshold. As shown, all of the sources are below the single-source and cumulative-source thresholds expect for traffic on El Camino Real, which only exceeds the annual PM<sub>2.5</sub> concentration single-source threshold.

| Source                                                                                        | Cancer Risk<br>(per million) | Annual PM <sub>2.5</sub><br>(µg/m <sup>3</sup> ) | Hazard<br>Index |
|-----------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|-----------------|
| El Camino Real, ADT 42,400                                                                    | 4.23                         | 0.31                                             | < 0.01          |
| Toyota Research Institute (Facility ID #200563, Generator),<br>Project Site at 540 feet.      | 2.88                         | <0.01                                            | < 0.01          |
| El Camino 76 Inc. (Facility ID #109042-1, Gas Dispensing Facility), Project Site at 140 feet. | 2.59                         | -                                                | 0.01            |
| BAAQMD Single-Source Threshold                                                                | 10.0                         | 0.3                                              | 1.0             |
| Exceed Threshold?                                                                             | No                           | Yes                                              | No              |
| Cumulative Total                                                                              | 9.70                         | < 0.32                                           | < 0.03          |
| BAAQMD Cumulative Source Threshold                                                            | 100                          | 0.8                                              | 10.0            |
| Exceed Threshold?                                                                             | No                           | No                                               | No              |

 Table 6.
 Impacts from Nearby Sources to Project Site Receptors

Figure 3. Locations of Project Site, Nearby Cumulative Sources, and On-Site Receptors



#### **Recommended Design Features to Reduce Project Receptor Exposure**

Filtration in ventilation systems at the project site would be recommended to reduce the level of harmful pollutants to acceptable levels. The significant exposure for new project receptors is judged by two effects: (1) increased cancer risk, and (2) annual PM<sub>2.5</sub> concentration. Project exposure to annual PM<sub>2.5</sub> concentrations from traffic is above the BAAQMD single-source significance thresholds at the units that front El Camino Real. The annual PM<sub>2.5</sub> concentration from El Camino Real is based on exposure to PM<sub>2.5</sub> resulting from emissions attributable to truck and auto exhaust, the wearing of brakes and tires and re-entrainment of roadway dust from vehicles traveling over pavement. Reducing particulate matter exposure would reduce both annual PM<sub>2.5</sub> exposures and cancer risk.

To minimize long-term increased annual PM<sub>2.5</sub> exposure for new project occupants, the Project should install air filtration for the units fronting and closest to El Camino Real. Air filtration devices shall be rated MERV13 or higher. To ensure adequate health protection to sensitive receptors (i.e., residents), this ventilation system, whether mechanical or passive, shall filter the fresh air that would be circulated into the dwelling units. As part of implementing this measure, an ongoing maintenance plan for the buildings' heating, ventilation, and air conditioning (HVAC) air filtration system should be required that includes regular filter replacement.

A properly installed and operated ventilation system with MERV13 would achieve an 80-percent reduction for small particulates.<sup>26</sup> The overall effectiveness calculations take into account the amount of time spent outdoors and away from home. Assuming that the filtration system is 80-percent effective and the individual is being exposed to 21 hours of indoor filtered air and three hours of outdoor unfiltered air, then the overall effectiveness of a MERV13 filtration system would be about 70-percent for PM<sub>2.5</sub> exposure. For El Camino Real, this would reduce annual PM<sub>2.5</sub> concentration to 0.09  $\mu$ g/m<sup>3</sup>. With this recommended design feature, impacts from El Camino Real would be below the BAAQMD single-source thresholds.

# **Supporting Documentation**

*Attachment 1* includes the CalEEMod outputs for project construction and operational criteria air pollutants. Also included are any modeling assumptions.

*Attachment 2* includes the cumulative health risk screening, modeling results, and health risk calculations from sources affecting the project MEI and new project sensitive receptors. The AERMOD dispersion modeling files for this assessment, which are quite voluminous, are available upon request and would be provided in digital format.

<sup>&</sup>lt;sup>26</sup> Bay Area Air Quality Management District (2016). Appendix B: Best Practices to Reduce Exposure to Local Air Pollution, *Planning Healthy Places A Guidebook for Addressing Local Sources of Air Pollutants in Community Planning* (p. 38). <u>http://www.baaqmd.gov/~/media/files/planning-and-research/planning-healthy-places/php\_may20\_2016-pdf.pdf?la=en</u>

# Attachment 1: CalEEMod Input Assumptions and Outputs

|                     |        | Cons        | truction Criteria | Air Pollutants |                |        |        |
|---------------------|--------|-------------|-------------------|----------------|----------------|--------|--------|
| Unmitigated         | ROG    | NOX         | PM10 Exhaust      | PM2.5 Exhaust  | PM2.5 Fugitive | CO2e   |        |
| Year                |        |             | Tons              |                |                | MT     |        |
|                     |        |             | Construction Equ  | ipment         |                |        |        |
| 2026                | 0.01   | 0.17        | 0.002             | 0.002          | 0.01           | 64.27  |        |
| 2027                | 0.46   | 0.18        | 0.001             | 0.001          | 0.005          | 69.08  |        |
|                     |        | Total Const | ruction Emissions |                |                |        |        |
| Tons                | 0.47   | 0.35        | 0.00              | 0.00           |                | 133.36 |        |
| Pounds/Workdays     |        | Average     | Daily Emissions   | ł              |                | Wor    | kdays  |
| 2026                | 0.05   | 1.46        | 0.01              | 0.01           |                |        | 236    |
| 2027                | 5.40   | 2.08        | 0.01              | 0.01           |                |        | 172    |
| Threshold - Ibs/day | 54.0   | 54.0        | 82.0              | 54.0           |                |        |        |
|                     |        | Total Const | ruction Emissions |                |                |        |        |
| Pounds              | 941.48 | 702.74      | 6.07              | 5.90           |                | 0.00   |        |
| Average             | 2.31   | 1.72        | 0.01              | 0.01           |                | 0.00   | 408.00 |
| Threshold - Ibs/day | 54.0   | 54.0        | 82.0              | 54.0           |                |        |        |

|                       | Operational Criteria Air Pollutants |                                  |            |             |  |  |  |  |  |  |  |  |
|-----------------------|-------------------------------------|----------------------------------|------------|-------------|--|--|--|--|--|--|--|--|
| Unmitigated           | ROG                                 | NOX                              | Total PM10 | Total PM2.5 |  |  |  |  |  |  |  |  |
| Year                  |                                     | Tons                             |            |             |  |  |  |  |  |  |  |  |
| Total                 | 0.44                                | 0.10                             | 0.26       | 0.07        |  |  |  |  |  |  |  |  |
|                       |                                     | Net Annual Operational Emissions |            |             |  |  |  |  |  |  |  |  |
| Tons/year             | 0.44                                | 0.10                             | 0.26       | 0.07        |  |  |  |  |  |  |  |  |
| Threshold - Tons/year | 10.0                                | 10.0                             | 15.0       | 10.0        |  |  |  |  |  |  |  |  |
|                       |                                     |                                  |            |             |  |  |  |  |  |  |  |  |
|                       |                                     | Average Daily Emissions          |            |             |  |  |  |  |  |  |  |  |
| Pounds Per Day        | 2.42                                | 0.56                             | 1.41       | 0.36        |  |  |  |  |  |  |  |  |
| Threshold - Ibs/day   | 54.0                                | 54.0                             | 82.0       | 54.0        |  |  |  |  |  |  |  |  |
|                       |                                     |                                  |            |             |  |  |  |  |  |  |  |  |
| Category              | CO2e                                |                                  |            |             |  |  |  |  |  |  |  |  |
|                       | Project                             | Existing                         |            |             |  |  |  |  |  |  |  |  |
|                       |                                     |                                  |            |             |  |  |  |  |  |  |  |  |

| Mobile            | 238.73 |        |      |      |
|-------------------|--------|--------|------|------|
| Area              | 0.36   |        |      |      |
| Energy            | 0.00   |        |      |      |
| Water             | 0.65   |        |      |      |
| Waste             | 6.72   |        |      |      |
| Refrig.           | 0.08   |        |      |      |
| TOTAL             | 246.53 | 0.00   | 0.00 | 0.00 |
| Net GHG Emissions |        | 246.53 |      | 0.00 |

| Number of Days Per Yea |          |           |     |         |             |
|------------------------|----------|-----------|-----|---------|-------------|
| 2026                   | 4/1/2026 | 12/31/26  | 275 | 236     |             |
| 2027                   | 1/1/27   | 7/20/2027 | 201 | 172     |             |
|                        |          |           | 476 | 408 Tot | al Workdays |

| Phase                        | Start Date | End Date  | Days/Week | Workdays |
|------------------------------|------------|-----------|-----------|----------|
| Demolition                   | 4/1/2026   | 4/29/2026 | 6         | 25       |
| Site Preparation             | 6/1/2026   | 6/3/2026  | 6         | 3        |
| Grading                      | 6/4/2026   | 6/7/2026  | 6         | 3        |
| <b>Building Construction</b> | 1/1/2027   | 7/20/2027 | 6         | 172      |
| Paving                       | 2/1/2027   | 2/11/2027 | 6         | 10       |
| Architectural Coating        | 2/1/2027   | 2/21/2027 | 6         | 18       |
| Trenching                    | 11/1/2026  | 11/4/2026 | 6         | 3        |

|                |                                         | Α                                     | ir Quality/l                     | Noise Coi          | nstruc          | tion Ir            | nform | ation Data Request                                                                                |
|----------------|-----------------------------------------|---------------------------------------|----------------------------------|--------------------|-----------------|--------------------|-------|---------------------------------------------------------------------------------------------------|
| Project N      | lame:<br>See Equipment Type TAB for typ | 4335 & 434<br>e, horsepower an        | 15 El Camino Re<br>d load factor | al, Palo Alto D    | EFAULTS         |                    |       | Complete ALL Portions in Yellow                                                                   |
|                | Project Size                            | 29                                    | Dwelling Units                   | 13                 | 5 total project | acres disturbed    |       |                                                                                                   |
|                |                                         | <u></u>                               |                                  |                    |                 | acres disturbed    |       | Pilo Driving2 V/N2 No                                                                             |
|                |                                         | 64,420                                | s.i. residentia                  |                    |                 |                    |       |                                                                                                   |
|                | -                                       |                                       | s.f. retail                      |                    |                 |                    |       | Project include on site CENERATOR OR EIRE DUMP during project                                     |
|                |                                         |                                       | s f. office/commercial           |                    |                 |                    |       | (not construction)? Y/N2 No                                                                       |
|                |                                         | · · · · · · · · · · · · · · · · · · · | s.i. office/commercial           |                    |                 |                    |       |                                                                                                   |
|                | -                                       |                                       | s.f. other, specify:             |                    |                 |                    |       |                                                                                                   |
|                | -                                       |                                       | s.f. parking garage              |                    | spaces          |                    |       | Kilowatts/Horsepower:                                                                             |
|                |                                         |                                       | s.f. parking lot                 |                    | spaces          |                    |       | Fuel Type:                                                                                        |
|                |                                         |                                       |                                  |                    | _               |                    |       |                                                                                                   |
|                | Construction Days (i.e, M-F)            | M-F (8AM-6PM                          | to                               | Also Saturdays (9A | <u>-6PWI)</u>   |                    |       | Location in project (Plans Desired if Available):                                                 |
|                | Construction Hours                      |                                       | am to                            |                    | pm              |                    |       |                                                                                                   |
|                |                                         |                                       |                                  |                    |                 |                    |       | DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT                                  |
|                |                                         |                                       |                                  |                    | Total           | Avg.               | HP    |                                                                                                   |
| Quantity       | Description                             | HP                                    | Load Factor                      | Hours/day          | Days            | day                | Hours | Comments                                                                                          |
| -              | Demellilen                              | Otrat Datas                           | 414 10000                        | Total above        | -               |                    |       | Accessible and a set Volume a                                                                     |
|                | Demolition                              | Start Date:                           | 4/1/2026                         | i otal phase:      | 20              |                    |       | Overall import/Export volumes                                                                     |
| 1              | Concrete/Industrial Saws                | 81                                    | 0.73                             |                    | 3 20            | 8                  | 9461  | I Demolition Volume                                                                               |
| 4              | Excavators<br>Rubber-Tired Dozoro       | 158                                   | 0.38                             |                    | 8 00            | 0                  | 15900 | Square footage of buildings to be demolished                                                      |
| 3              | Tractors/Loaders/Backhoes               | 97                                    | 0.37                             |                    | 3 20<br>3 20    | 8                  | 17227 | 724,693_ square feet or                                                                           |
|                | Other Equipment?                        |                                       |                                  |                    |                 |                    |       | 2 Hauling volume (tons)<br>Any pavement demolished and hauled? 23 000 SE                          |
|                | Site Preparation                        | Start Date:                           | 6/1/2026                         | Total phase:       | 2               |                    |       |                                                                                                   |
| 1              | Gradara                                 | End Date:                             | 6/3/2026                         |                    | 2 2             | 0                  | 1007  | 7                                                                                                 |
| 1              | Rubber Tired Dozers                     | 247                                   | 0.4                              |                    | 7 2             | 7                  | 1383  | 3                                                                                                 |
| 1              | Tractors/Loaders/Backhoes               | 97                                    | 0.37                             |                    | 3 2             | 8                  | 574   | <u></u>                                                                                           |
|                |                                         |                                       |                                  |                    |                 |                    |       |                                                                                                   |
|                | Grading / Excavation                    | Start Date:                           | 6/4/2026                         | Total phase:       | 4               |                    |       |                                                                                                   |
|                | Executors                               | End Date:                             | 6/7/2026                         |                    |                 | 0                  |       | Soil Hauling Volume                                                                               |
| 1              | Graders                                 | 187                                   | 0.41                             | 4                  | 8 4             | 8                  | 2453  | 3 Import volume = <u>100</u> cubic yards?                                                         |
| 1              | Rubber Tired Dozers                     | 247                                   | 0.4                              |                    | 8 4             | 8                  | 3162  | 2                                                                                                 |
| 2              | Tractors/Loaders/Backhoes               | 97                                    | 0.37                             | 1                  | 7 4             | 7                  | 2010  | )<br>D                                                                                            |
|                | Other Equipment?                        |                                       |                                  |                    |                 |                    |       |                                                                                                   |
|                | Trenching/Foundation                    | Start Date:                           | 11/1/2026                        | Total phase:       | 4               |                    |       |                                                                                                   |
|                |                                         | End Date:                             | 11/4/2026                        |                    |                 |                    |       |                                                                                                   |
| 1              | Tractor/Loader/Backhoe<br>Excavators    | 97<br>158                             | 0.37                             |                    | 8 4<br>8 4      | 8                  | 1148  | 3                                                                                                 |
|                | Other Equipment?                        |                                       |                                  |                    |                 |                    |       |                                                                                                   |
|                | Building - Exterior                     | Start Date:                           | 1/1/2027                         | Total phase:       | 200             |                    |       | Cement Trucks? Est. 101 Total Round-Trips                                                         |
| -              | -                                       | End Date:                             | 7/20/2027                        |                    |                 |                    |       |                                                                                                   |
| 0              | Cranes                                  | 231                                   | 0.29                             |                    | 0<br>6 200      | 0                  | 21360 | Electric? (Y/N) Otherwise assumed diesel     Liguid Propane (LPG)? (Y/N) Otherwise Assumed diesel |
| 1              | Generator Sets                          | 84                                    | 0.74                             |                    | 8 200           | 8                  | 99456 | Or temporary line power? (Y/N)                                                                    |
| 0              | Velders                                 | 97 46                                 | 0.37                             |                    | 5 200<br>0 0    | 6                  | 43068 | 3                                                                                                 |
| 1              | Stucco Gun                              | 168                                   | 0.4                              |                    | 8 15            | 0.6                | 8064  | 4 3 days per building. 5 total buildings for a total of 15 days for the stucco gun                |
|                | outer Equipment?                        |                                       |                                  |                    |                 |                    |       |                                                                                                   |
| Building - Int | terior/Architectural Coating            | Start Date:                           | 2/1/2027                         | Total phase:       | 10              |                    |       |                                                                                                   |
| 1              | Air Compressors                         | 78                                    | 0.48                             |                    | 6 10            | 6                  | 2246  | 3                                                                                                 |
|                | Aerial Lift                             | 62                                    | 0.31                             |                    |                 | 0                  | C     |                                                                                                   |
|                |                                         |                                       |                                  |                    |                 |                    |       |                                                                                                   |
|                | Paving                                  | Start Date:                           | 2/1/2027                         | Total phase:       | 10              |                    |       |                                                                                                   |
| 4              | Compationed Morter Misere               | Start Date:                           | 2/11/2027                        |                    |                 | -                  | 200   |                                                                                                   |
| 1              | Pavers                                  | 130                                   | 0.42                             |                    | 5 10<br>6 10    | 6                  | 3276  | Asphalt? cubic vards or Est. 12 round trips?                                                      |
| 1              | Paving Equipment                        | 132                                   | 0.36                             |                    | 8 10<br>7 10    | 8                  | 3802  |                                                                                                   |
| 1              | Tractors/Loaders/Backhoes               | 97                                    | 0.37                             |                    | B 10            | 8                  | 2120  |                                                                                                   |
|                | Other Equipment?                        |                                       |                                  |                    |                 |                    |       |                                                                                                   |
|                | Additional Phases                       | Start Date:                           |                                  | Total phase:       |                 |                    |       |                                                                                                   |
|                |                                         | Start Date:                           |                                  |                    |                 | #DD //01           |       |                                                                                                   |
|                |                                         |                                       |                                  |                    |                 | #DIV/0!<br>#DIV/0! | 0     |                                                                                                   |
|                |                                         |                                       |                                  |                    |                 | #DIV/0!            | C     |                                                                                                   |
|                |                                         |                                       |                                  |                    |                 | #DIV/0!<br>#DIV/0! | 0     |                                                                                                   |
| Equipment      | mos listed in "Equipment Turne"         | workshoet tob                         |                                  |                    |                 |                    |       |                                                                                                   |
| Equipment t    | ypes listed in Equipment Types" (       | NOTKSHEET TAD.                        |                                  | Complet            | 0.070           | oheet              | fore  | ach project component                                                                             |
| Equipment lis  | ted in this sheet is to provide an exar | nple of inputs                        |                                  | Complet            | e one           | Sneet              | IOF e | ach project component                                                                             |
| Add or subtr   | act phases and equipment, as app        | ropriate                              |                                  |                    |                 |                    |       |                                                                                                   |
| Modify horse   | epower or load factor, as appropria     | ite                                   |                                  | -                  |                 |                    |       |                                                                                                   |

| Traffic Consultant Trip Gen |    |      |             |           |                  | CalEEMod Default |       |      |  |
|-----------------------------|----|------|-------------|-----------|------------------|------------------|-------|------|--|
| Land Use                    |    | Size | Daily Trips | New Trips | Weekday Trip Gen | Weekday          | Sat   | Sun  |  |
| Condo/Townhouse             | DU | 29   | 264         | 264       | 9.10             | 7.32             | 8.14  | 6.28 |  |
|                             |    |      |             |           |                  | Rev              | 10.12 | 7.81 |  |

#### Table 1 Trip Generation Summary

|                                             |        |       | Daily | AM Peak-Hour Trips |     | PM Peak-Hour Trips |    |     |       |
|---------------------------------------------|--------|-------|-------|--------------------|-----|--------------------|----|-----|-------|
| Land Use                                    | Size   | Units | Trips | In                 | Out | Total              | In | Out | Total |
| Proposed                                    |        |       |       |                    |     |                    |    |     |       |
| Single-Family Attached Housing <sup>1</sup> | 28     | du    | 264   | 5                  | 15  | 20                 | 9  | 7   | 16    |
| Existing                                    |        |       |       |                    |     |                    |    |     |       |
| Retail and Inn <sup>2</sup>                 | 24,626 | s.f.  | 133   | 9                  | 6   | 15                 | 8  | 8   | 16    |
| Net New Vehicle Trips                       |        |       | 131   | -4                 | 9   | 5                  | 1  | -1  | 0     |

Notes:

du = dwelling unit

s.f. = square feet

<sup>1</sup> Single-family housing trip generation is based on the fitted curve equation for the AM peak-hour trips and rates for the PM peak-hour trips published in the ITE Trip Generation online database for Single-Family Attached Housing (Land Use Code 215).
<sup>2</sup> Existing retail and inn trip generation is based on driveway counts collected January 16, 2024.

# 24-124 4335 & 4345 El Camino Real, Palo Alto BMPs Unmit T4i 2028 Detailed Report

Table of Contents

- 1. Basic Project Information
  - 1.1. Basic Project Information
  - 1.2. Land Use Types
  - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
  - 2.1. Construction Emissions Compared Against Thresholds
  - 2.2. Construction Emissions by Year, Unmitigated
  - 2.4. Operations Emissions Compared Against Thresholds
  - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
  - 3.1. Demolition (2026) Unmitigated
  - 3.3. Site Preparation (2026) Unmitigated
  - 3.5. Grading (2026) Unmitigated
  - 3.7. Building Construction (2027) Unmitigated
- 3.9. Paving (2027) Unmitigated
- 3.11. Architectural Coating (2027) Unmitigated
- 3.13. Trenching (2026) Unmitigated
- 4. Operations Emissions Details
  - 4.1. Mobile Emissions by Land Use
    - 4.1.1. Unmitigated
  - 4.2. Energy
    - 4.2.1. Electricity Emissions By Land Use Unmitigated
    - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
  - 4.3. Area Emissions by Source
    - 4.3.1. Unmitigated
  - 4.4. Water Emissions by Land Use
    - 4.4.1. Unmitigated
  - 4.5. Waste Emissions by Land Use
    - 4.5.1. Unmitigated
  - 4.6. Refrigerant Emissions by Land Use
    - 4.6.1. Unmitigated
  - 4.7. Offroad Emissions By Equipment Type

#### 4.7.1. Unmitigated

- 4.8. Stationary Emissions By Equipment Type
  - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
  - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
  - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
  - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
  - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
  - 5.1. Construction Schedule
  - 5.2. Off-Road Equipment
    - 5.2.1. Unmitigated
  - 5.3. Construction Vehicles
    - 5.3.1. Unmitigated
  - 5.4. Vehicles
    - 5.4.1. Construction Vehicle Control Strategies
  - 5.5. Architectural Coatings

#### 5.6. Dust Mitigation

- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
  - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
  - 5.10.1. Hearths
    - 5.10.1.1. Unmitigated
  - 5.10.2. Architectural Coatings
  - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
  - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
  - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
  - 5.13.1. Unmitigated

- 5.14. Operational Refrigeration and Air Conditioning Equipment
  - 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment
  - 5.15.1. Unmitigated
- 5.16. Stationary Sources
  - 5.16.1. Emergency Generators and Fire Pumps
  - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
  - 5.18.1. Land Use Change
    - 5.18.1.1. Unmitigated
  - 5.18.1. Biomass Cover Type
    - 5.18.1.1. Unmitigated
  - 5.18.2. Sequestration
    - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
  - 6.1. Climate Risk Summary
  - 6.2. Initial Climate Risk Scores

- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
  - 7.1. CalEnviroScreen 4.0 Scores
  - 7.2. Healthy Places Index Scores
  - 7.3. Overall Health & Equity Scores
  - 7.4. Health & Equity Measures
  - 7.5. Evaluation Scorecard
  - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

# 1. Basic Project Information

# 1.1. Basic Project Information

| Data Field                  | Value                                                            |
|-----------------------------|------------------------------------------------------------------|
| Project Name                | 24-124 4335 & 4345 El Camino Real, Palo Alto BMPs Unmit T4i 2028 |
| Construction Start Date     | 4/1/2026                                                         |
| Operational Year            | 2028                                                             |
| Lead Agency                 |                                                                  |
| Land Use Scale              | Project/site                                                     |
| Analysis Level for Defaults | County                                                           |
| Windspeed (m/s)             | 2.70                                                             |
| Precipitation (days)        | 32.8                                                             |
| Location                    | 4335 El Camino Real, Palo Alto, CA 94306, USA                    |
| County                      | Santa Clara                                                      |
| City                        | Palo Alto                                                        |
| Air District                | Bay Area AQMD                                                    |
| Air Basin                   | San Francisco Bay Area                                           |
| TAZ                         | 1719                                                             |
| EDFZ                        | 1                                                                |
| Electric Utility            | City of Palo Alto                                                |
| Gas Utility                 | City of Palo Alto Ultilities                                     |
| App Version                 | 2022.1.1.26                                                      |

# 1.2. Land Use Types

| Land Use Subtype | Size | Unit          | Lot Acreage | Building Area (sq ft) | Landscape Area (sq<br>ft) | Special Landscape<br>Area (sq ft) | Population | Description |
|------------------|------|---------------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------|
| Condo/Townhouse  | 29.0 | Dwelling Unit | 1.35        | 64,420                | 0.00                      | —                                 | 87.0       | —           |

### 1.3. User-Selected Emission Reduction Measures by Emissions Sector

#### No measures selected

# 2. Emissions Summary

### 2.1. Construction Emissions Compared Against Thresholds

| Criteria Pollutants | s (lb/day for | daily, ton/yr fo | r annual) and | GHGs (lb/day fo | r daily, MT/yr for annual) |
|---------------------|---------------|------------------|---------------|-----------------|----------------------------|
|---------------------|---------------|------------------|---------------|-----------------|----------------------------|

| Un/Mit.                | ROG  | NOx  | PM10E   | PM10D | PM10T | PM2.5E  | PM2.5D | PM2.5T | CO2e  |
|------------------------|------|------|---------|-------|-------|---------|--------|--------|-------|
| Daily, Summer<br>(Max) | —    |      | —       |       | _     | —       |        | —      | —     |
| Unmit.                 | 0.41 | 11.7 | 0.13    | 2.93  | 2.98  | 0.12    | 1.38   | 1.43   | 5,021 |
| Daily, Winter<br>(Max) |      |      |         |       | _     | —       | _      |        | —     |
| Unmit.                 | 50.7 | 7.55 | 0.09    | 0.44  | 0.53  | 0.08    | 0.11   | 0.19   | 2,386 |
| Average Daily<br>(Max) | —    |      |         |       | _     | —       | _      |        | —     |
| Unmit.                 | 2.55 | 0.98 | 0.01    | 0.16  | 0.17  | 0.01    | 0.04   | 0.05   | 417   |
| Annual (Max)           | _    |      |         |       |       |         |        |        | —     |
| Unmit.                 | 0.46 | 0.18 | < 0.005 | 0.03  | 0.03  | < 0.005 | 0.01   | 0.01   | 69.1  |

### 2.2. Construction Emissions by Year, Unmitigated

| Year                    | ROG  | NOx  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e  |
|-------------------------|------|------|-------|-------|-------|--------|--------|--------|-------|
| Daily - Summer<br>(Max) | —    |      | —     | —     | —     |        | —      | —      |       |
| 2026                    | 0.41 | 11.7 | 0.13  | 2.93  | 2.98  | 0.12   | 1.38   | 1.43   | 5,021 |
| 2027                    | 0.12 | 1.68 | 0.01  | 0.21  | 0.22  | 0.01   | 0.05   | 0.06   | 796   |
| Daily - Winter<br>(Max) | —    | _    | —     | —     | —     | —      | —      | _      | —     |
| 2026                    | 0.08 | 2.29 | 0.04  | 0.04  | 0.08  | 0.03   | 0.01   | 0.04   | 473   |

| 2027          | 50.7     | 7.55 | 0.09    | 0.44 | 0.53 | 0.08    | 0.11    | 0.19 | 2,386 |
|---------------|----------|------|---------|------|------|---------|---------|------|-------|
| Average Daily | —        |      | —       | —    | —    | —       | _       |      | —     |
| 2026          | 0.03     | 0.94 | 0.01    | 0.16 | 0.17 | 0.01    | 0.04    | 0.05 | 388   |
| 2027          | 2.55     | 0.98 | 0.01    | 0.11 | 0.11 | 0.01    | 0.03    | 0.03 | 417   |
| Annual        | <u> </u> | _    | _       | —    |      |         | _       | —    | _     |
| 2026          | 0.01     | 0.17 | < 0.005 | 0.03 | 0.03 | < 0.005 | 0.01    | 0.01 | 64.3  |
| 2027          | 0.46     | 0.18 | < 0.005 | 0.02 | 0.02 | < 0.005 | < 0.005 | 0.01 | 69.1  |

### 2.4. Operations Emissions Compared Against Thresholds

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Un/Mit.                | ROG  | NOx  | PM10E   | PM10D    | PM10T | PM2.5E  | PM2.5D | PM2.5T | CO2e  |
|------------------------|------|------|---------|----------|-------|---------|--------|--------|-------|
| Daily, Summer<br>(Max) | —    | —    | —       | —        | —     | —       | —      | —      | _     |
| Unmit.                 | 2.62 | 0.58 | 0.01    | 1.60     | 1.61  | 0.01    | 0.41   | 0.41   | 1,747 |
| Daily, Winter<br>(Max) | —    |      | —       | —        | —     | —       |        | —      | _     |
| Unmit.                 | 2.44 | 0.66 | 0.01    | 1.60     | 1.61  | 0.01    | 0.41   | 0.41   | 1,641 |
| Average Daily<br>(Max) | —    |      | —       | —        | —     | —       |        | —      | _     |
| Unmit.                 | 2.42 | 0.56 | 0.01    | 1.40     | 1.41  | 0.01    | 0.36   | 0.36   | 1,489 |
| Annual (Max)           | —    |      | —       | <u> </u> |       | —       |        | —      |       |
| Unmit.                 | 0.44 | 0.10 | < 0.005 | 0.26     | 0.26  | < 0.005 | 0.06   | 0.07   | 247   |

# 2.5. Operations Emissions by Sector, Unmitigated

| Sector                 | ROG  | NOx  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e  |
|------------------------|------|------|-------|-------|-------|--------|--------|--------|-------|
| Daily, Summer<br>(Max) | —    | —    | —     | _     | _     | —      | _      | _      | _     |
| Mobile                 | 0.85 | 0.56 | 0.01  | 1.60  | 1.61  | 0.01   | 0.41   | 0.41   | 1,698 |

| Area                   | 1.77 | 0.02    | < 0.005 | _    | < 0.005 | < 0.005 | _    | < 0.005  | 4.41  |
|------------------------|------|---------|---------|------|---------|---------|------|----------|-------|
| Energy                 | 0.00 | 0.00    | 0.00    | _    | 0.00    | 0.00    | _    | 0.00     | 0.00  |
| Water                  | _    | _       | —       | _    | _       | —       | _    | —        | 3.90  |
| Waste                  | _    | _       | —       | _    | _       | —       | _    |          | 40.6  |
| Refrig.                | _    | —       | _       | _    | _       | _       | —    |          | 0.46  |
| Total                  | 2.62 | 0.58    | 0.01    | 1.60 | 1.61    | 0.01    | 0.41 | 0.41     | 1,747 |
| Daily, Winter<br>(Max) | —    | _       | —       | _    | _       | —       | _    | _        | _     |
| Mobile                 | 0.81 | 0.66    | 0.01    | 1.60 | 1.61    | 0.01    | 0.41 | 0.41     | 1,596 |
| Area                   | 1.63 | 0.00    | 0.00    | _    | 0.00    | 0.00    | —    | 0.00     | 0.00  |
| Energy                 | 0.00 | 0.00    | 0.00    | _    | 0.00    | 0.00    | —    | 0.00     | 0.00  |
| Water                  | _    | —       | _       | _    | —       | _       | —    |          | 3.90  |
| Waste                  | _    | —       | —       | _    | _       | _       | —    |          | 40.6  |
| Refrig.                | _    | —       | —       | _    | _       | _       | —    | <u> </u> | 0.46  |
| Total                  | 2.44 | 0.66    | 0.01    | 1.60 | 1.61    | 0.01    | 0.41 | 0.41     | 1,641 |
| Average Daily          | —    | —       | —       | _    | —       | —       | —    | —        | _     |
| Mobile                 | 0.72 | 0.56    | 0.01    | 1.40 | 1.41    | 0.01    | 0.36 | 0.36     | 1,442 |
| Area                   | 1.70 | 0.01    | < 0.005 | _    | < 0.005 | < 0.005 | _    | < 0.005  | 2.18  |
| Energy                 | 0.00 | 0.00    | 0.00    | _    | 0.00    | 0.00    | —    | 0.00     | 0.00  |
| Water                  | —    | —       | —       | _    | —       | —       | —    | —        | 3.90  |
| Waste                  | —    | —       | —       | _    | —       | —       | —    | —        | 40.6  |
| Refrig.                | —    | —       | _       | _    | _       | _       | —    | —        | 0.46  |
| Total                  | 2.42 | 0.56    | 0.01    | 1.40 | 1.41    | 0.01    | 0.36 | 0.36     | 1,489 |
| Annual                 | —    | —       | —       | _    | —       | _       | —    |          | _     |
| Mobile                 | 0.13 | 0.10    | < 0.005 | 0.26 | 0.26    | < 0.005 | 0.06 | 0.07     | 239   |
| Area                   | 0.31 | < 0.005 | < 0.005 | _    | < 0.005 | < 0.005 | _    | < 0.005  | 0.36  |
| Energy                 | 0.00 | 0.00    | 0.00    | _    | 0.00    | 0.00    | _    | 0.00     | 0.00  |
| Water                  | _    | _       | _       | _    | _       | _       | _    | _        | 0.65  |
| Waste                  | _    | _       | _       | _    | _       | _       | _    | _        | 6.72  |

| Refrig. | _    |      |         |      |      |         |      |      | 0.08 |
|---------|------|------|---------|------|------|---------|------|------|------|
| Total   | 0.44 | 0.10 | < 0.005 | 0.26 | 0.26 | < 0.005 | 0.06 | 0.07 | 247  |

# 3. Construction Emissions Details

### 3.1. Demolition (2026) - Unmitigated

| Location               | ROG      | NOx  | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D  | PM2.5T  | CO2e  |
|------------------------|----------|------|---------|-------|---------|---------|---------|---------|-------|
| Onsite                 | —        | —    | —       | —     | —       | —       | —       | —       | —     |
| Daily, Summer<br>(Max) | —        |      |         |       | —       |         |         |         | —     |
| Off-Road<br>Equipment  | 0.33     | 8.81 | 0.10    |       | 0.10    | 0.09    |         | 0.09    | 2,503 |
| Demolition             | <u> </u> | —    | —       | 0.99  | 0.99    | —       | 0.15    | 0.15    | —     |
| Onsite truck           | 0.00     | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Daily, Winter<br>(Max) |          |      |         |       | —       |         |         |         | —     |
| Average Daily          | <u> </u> | —    | —       | —     | —       | —       | —       | —       | —     |
| Off-Road<br>Equipment  | 0.02     | 0.60 | 0.01    |       | 0.01    | 0.01    |         | 0.01    | 171   |
| Demolition             | —        | —    | —       | 0.07  | 0.07    | —       | 0.01    | 0.01    | —     |
| Onsite truck           | 0.00     | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Annual                 | _        |      | —       |       |         | —       |         | —       | —     |
| Off-Road<br>Equipment  | < 0.005  | 0.11 | < 0.005 |       | < 0.005 | < 0.005 |         | < 0.005 | 28.4  |
| Demolition             |          |      | _       | 0.01  | 0.01    |         | < 0.005 | < 0.005 | —     |
| Onsite truck           | 0.00     | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Offsite                | _        |      | —       | —     | _       | —       |         | —       | —     |
| Daily, Summer<br>(Max) |          |      |         |       |         |         |         |         |       |

| Worker                 | 0.04    | 0.03    | 0.00    | 0.10    | 0.10    | 0.00    | 0.02    | 0.02    | 107   |
|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|-------|
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling                | 0.05    | 2.82    | 0.03    | 0.61    | 0.63    | 0.03    | 0.17    | 0.19    | 2,412 |
| Daily, Winter<br>(Max) | —       | _       | _       |         |         | —       | _       |         | _     |
| Average Daily          | —       | —       | —       | _       | _       | _       | _       |         | _     |
| Worker                 | < 0.005 | < 0.005 | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | 6.84  |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling                | < 0.005 | 0.20    | < 0.005 | 0.04    | 0.04    | < 0.005 | 0.01    | 0.01    | 165   |
| Annual                 |         |         | —       | _       | _       | —       | _       |         | _     |
| Worker                 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 1.13  |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling                | < 0.005 | 0.04    | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | 27.3  |

# 3.3. Site Preparation (2026) - Unmitigated

| Location                          | ROG     | NOx      | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D   | PM2.5T  | CO2e  |
|-----------------------------------|---------|----------|---------|-------|---------|---------|----------|---------|-------|
| Onsite                            | —       | —        | —       | —     | —       | —       | —        | —       | —     |
| Daily, Summer<br>(Max)            |         | _        |         | —     |         | —       | _        |         | —     |
| Off-Road<br>Equipment             | 0.27    | 6.40     | 0.04    | —     | 0.04    | 0.04    | _        | 0.04    | 2,072 |
| Dust From<br>Material<br>Movement |         | —        |         | 2.44  | 2.44    | _       | 1.17     | 1.17    | —     |
| Onsite truck                      | 0.00    | 0.00     | 0.00    | 0.00  | 0.00    | 0.00    | 0.00     | 0.00    | 0.00  |
| Daily, Winter<br>(Max)            |         | —        | —       | —     | —       | —       | —        | —       | —     |
| Average Daily                     | —       | <u> </u> |         | —     |         |         | <u> </u> | —       | _     |
| Off-Road<br>Equipment             | < 0.005 | 0.05     | < 0.005 |       | < 0.005 | < 0.005 |          | < 0.005 | 17.0  |

| Dust From<br>Material<br>Movement | —        | —        | _       | 0.02    | 0.02    | —        | 0.01    | 0.01     | —    |
|-----------------------------------|----------|----------|---------|---------|---------|----------|---------|----------|------|
| Onsite truck                      | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00 |
| Annual                            | <u> </u> | <u> </u> | —       | —       |         | <u> </u> | _       | <u> </u> |      |
| Off-Road<br>Equipment             | < 0.005  | 0.01     | < 0.005 | _       | < 0.005 | < 0.005  | _       | < 0.005  | 2.82 |
| Dust From<br>Material<br>Movement | —        | —        | _       | < 0.005 | < 0.005 | —        | < 0.005 | < 0.005  | _    |
| Onsite truck                      | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00 |
| Offsite                           | —        |          | —       | —       | _       | —        | —       | —        | _    |
| Daily, Summer<br>(Max)            | —        | _        | —       | _       | _       | _        | _       | —        | _    |
| Worker                            | 0.02     | 0.02     | 0.00    | 0.06    | 0.06    | 0.00     | 0.01    | 0.01     | 64.0 |
| Vendor                            | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00 |
| Hauling                           | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00 |
| Daily, Winter<br>(Max)            | —        | _        | _       | _       | _       | —        | _       | —        | _    |
| Average Daily                     | —        | —        | —       | —       | —       | —        |         | —        |      |
| Worker                            | < 0.005  | < 0.005  | 0.00    | < 0.005 | < 0.005 | 0.00     | < 0.005 | < 0.005  | 0.49 |
| Vendor                            | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00 |
| Hauling                           | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00 |
| Annual                            |          |          | —       | _       |         | _        |         |          | _    |
| Worker                            | < 0.005  | < 0.005  | 0.00    | < 0.005 | < 0.005 | 0.00     | < 0.005 | < 0.005  | 0.08 |
| Vendor                            | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00 |
| Hauling                           | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00 |

# 3.5. Grading (2026) - Unmitigated

| Location | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|----------|-----|-----|-------|-------|-------|--------|--------|--------|------|
|          |     |     |       | 13    | / 42  |        |        |        |      |

| Onsite                            | _       | —    | —       |         |         | _       |         | _       | —     |
|-----------------------------------|---------|------|---------|---------|---------|---------|---------|---------|-------|
| Daily, Summer<br>(Max)            | —       | —    | —       |         |         |         | —       | —       | —     |
| Off-Road<br>Equipment             | 0.32    | 7.70 | 0.05    |         | 0.05    | 0.05    | —       | 0.05    | 2,463 |
| Dust From<br>Material<br>Movement | _       |      | —       | 2.76    | 2.76    |         | 1.34    | 1.34    | _     |
| Onsite truck                      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Daily, Winter<br>(Max)            | -       |      | -       |         |         |         |         |         |       |
| Average Daily                     | —       | —    | —       |         | —       | —       | —       | —       | —     |
| Off-Road<br>Equipment             | < 0.005 | 0.06 | < 0.005 | _       | < 0.005 | < 0.005 | _       | < 0.005 | 20.2  |
| Dust From<br>Material<br>Movement | _       |      | —       | 0.02    | 0.02    | —       | 0.01    | 0.01    | _     |
| Onsite truck                      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Annual                            | _       | —    | —       | —       | —       | —       |         | —       | —     |
| Off-Road<br>Equipment             | < 0.005 | 0.01 | < 0.005 |         | < 0.005 | < 0.005 | _       | < 0.005 | 3.35  |
| Dust From<br>Material<br>Movement | _       |      | —       | < 0.005 | < 0.005 | —       | < 0.005 | < 0.005 | _     |
| Onsite truck                      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Offsite                           | _       | _    | -       | _       |         | _       | _       | _       | _     |
| Daily, Summer<br>(Max)            | -       |      | -       |         |         |         | _       |         |       |
| Worker                            | 0.03    | 0.02 | 0.00    | 0.08    | 0.08    | 0.00    | 0.02    | 0.02    | 85.4  |
| Vendor                            | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling                           | 0.01    | 0.37 | < 0.005 | 0.08    | 0.08    | < 0.005 | 0.02    | 0.03    | 320   |
| Daily, Winter<br>(Max)            | _       | —    | —       |         |         |         | —       | _       | _     |
|                                   |         |      |         |         |         |         |         |         |       |

| Average Daily |         |         |         |         |         | —       |         |         | _    |
|---------------|---------|---------|---------|---------|---------|---------|---------|---------|------|
| Worker        | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.66 |
| Vendor        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling       | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 2.63 |
| Annual        |         | _       | —       | _       | —       | —       | _       | —       | _    |
| Worker        | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.11 |
| Vendor        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling       | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.44 |

# 3.7. Building Construction (2027) - Unmitigated

| Location               | ROG     | NOx  | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | CO2e |
|------------------------|---------|------|---------|-------|---------|---------|--------|---------|------|
| Onsite                 | —       | —    | —       | —     | —       | —       | _      | —       | _    |
| Daily, Summer<br>(Max) |         |      |         | _     | _       |         | _      |         | _    |
| Off-Road<br>Equipment  | 0.05    | 1.46 | 0.01    | _     | 0.01    | 0.01    | _      | 0.01    | 464  |
| Onsite truck           | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Daily, Winter<br>(Max) |         |      |         | _     | _       |         | _      |         | —    |
| Off-Road<br>Equipment  | 0.05    | 1.46 | 0.01    | —     | 0.01    | 0.01    | _      | 0.01    | 464  |
| Onsite truck           | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Average Daily          | _       | _    | _       | —     |         | _       |        | _       | _    |
| Off-Road<br>Equipment  | 0.03    | 0.69 | < 0.005 | _     | < 0.005 | < 0.005 | _      | < 0.005 | 218  |
| Onsite truck           | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Annual                 |         | —    | _       | —     | _       | —       |        | _       | _    |
| Off-Road<br>Equipment  | < 0.005 | 0.13 | < 0.005 |       | < 0.005 | < 0.005 |        | < 0.005 | 36.2 |

| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|------|
| Offsite                | —       | —       | —       | —       | —       | —       | —       | —       | —    |
| Daily, Summer<br>(Max) | —       | _       | —       | _       | —       | —       | —       | —       | —    |
| Worker                 | 0.06    | 0.04    | 0.00    | 0.17    | 0.17    | 0.00    | 0.04    | 0.04    | 175  |
| Vendor                 | < 0.005 | 0.10    | < 0.005 | 0.02    | 0.02    | < 0.005 | 0.01    | 0.01    | 84.4 |
| Hauling                | < 0.005 | 0.08    | < 0.005 | 0.02    | 0.02    | < 0.005 | 0.01    | 0.01    | 72.8 |
| Daily, Winter<br>(Max) | —       | _       | —       | _       | —       | —       | —       | —       | —    |
| Worker                 | 0.06    | 0.05    | 0.00    | 0.17    | 0.17    | 0.00    | 0.04    | 0.04    | 162  |
| Vendor                 | < 0.005 | 0.10    | < 0.005 | 0.02    | 0.02    | < 0.005 | 0.01    | 0.01    | 84.3 |
| Hauling                | < 0.005 | 0.09    | < 0.005 | 0.02    | 0.02    | < 0.005 | 0.01    | 0.01    | 72.7 |
| Average Daily          | —       |         | —       |         | —       | —       |         | —       | —    |
| Worker                 | 0.03    | 0.02    | 0.00    | 0.08    | 0.08    | 0.00    | 0.02    | 0.02    | 77.2 |
| Vendor                 | < 0.005 | 0.05    | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | 39.7 |
| Hauling                | < 0.005 | 0.04    | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | 34.3 |
| Annual                 | —       | —       | —       |         | —       | —       | —       | —       | —    |
| Worker                 | < 0.005 | < 0.005 | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | 12.8 |
| Vendor                 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 6.58 |
| Hauling                | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 5.68 |

# 3.9. Paving (2027) - Unmitigated

| Location               | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Onsite                 |     |     | —     |       | —     | —      |        |        | —    |
| Daily, Summer<br>(Max) | —   |     | _     |       | _     | —      | _      | _      | —    |
| Daily, Winter<br>(Max) | _   |     | _     |       | —     | —      | _      | _      | —    |

| Off-Road<br>Equipment  | 0.14    | 4.32    | 0.04    | _       | 0.04    | 0.04    | _       | 0.04     | 995  |
|------------------------|---------|---------|---------|---------|---------|---------|---------|----------|------|
| Paving                 | 0.00    | —       | —       | —       | —       | —       | _       | <u> </u> | _    |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00 |
| Average Daily          | —       | —       | —       | —       | —       | —       | _       | —        | —    |
| Off-Road<br>Equipment  | < 0.005 | 0.12    | < 0.005 | _       | < 0.005 | < 0.005 | _       | < 0.005  | 27.3 |
| Paving                 | 0.00    | —       | —       | —       | _       | —       | _       |          | _    |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00 |
| Annual                 | _       |         | —       | —       | _       | —       | _       | —        | _    |
| Off-Road<br>Equipment  | < 0.005 | 0.02    | < 0.005 | _       | < 0.005 | < 0.005 | _       | < 0.005  | 4.51 |
| Paving                 | 0.00    | —       | —       | —       | _       | —       | _       |          | —    |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00 |
| Offsite                | _       | —       | —       | —       | _       | —       | —       |          | _    |
| Daily, Summer<br>(Max) | —       | _       | —       | _       | _       | —       | _       | —        | —    |
| Daily, Winter<br>(Max) | —       | _       | —       | _       | —       | —       | _       | _        | —    |
| Worker                 | 0.03    | 0.03    | 0.00    | 0.10    | 0.10    | 0.00    | 0.02    | 0.02     | 96.9 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00 |
| Hauling                | 0.01    | 0.42    | < 0.005 | 0.09    | 0.09    | < 0.005 | 0.02    | 0.03     | 346  |
| Average Daily          | _       |         | —       | —       |         | —       | _       | —        | _    |
| Worker                 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005  | 2.69 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00 |
| Hauling                | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005  | 9.47 |
| Annual                 | —       | —       | —       | _       | _       | —       | _       | —        | _    |
| Worker                 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005  | 0.44 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00 |
| Hauling                | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005  | 1.57 |

# 3.11. Architectural Coating (2027) - Unmitigated

| Location                  | ROG     | NOx  | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | CO2e |
|---------------------------|---------|------|---------|-------|---------|---------|--------|---------|------|
| Onsite                    | _       | —    | —       | —     | _       | —       |        | —       | —    |
| Daily, Summer<br>(Max)    |         |      |         |       |         |         |        | —       | —    |
| Daily, Winter<br>(Max)    |         |      | —       |       |         |         |        | —       | —    |
| Off-Road<br>Equipment     | 0.02    | 1.07 | 0.03    | —     | 0.03    | 0.03    |        | 0.03    | 134  |
| Architectural<br>Coatings | 50.4    |      |         | —     |         | —       |        | —       | —    |
| Onsite truck              | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Average Daily             |         |      | _       | —     |         | —       |        | —       | —    |
| Off-Road<br>Equipment     | < 0.005 | 0.05 | < 0.005 | —     | < 0.005 | < 0.005 |        | < 0.005 | 6.61 |
| Architectural<br>Coatings | 2.49    | —    | —       | —     | —       | —       |        | —       | —    |
| Onsite truck              | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Annual                    | _       | _    | —       | —     | _       | —       | _      | —       | —    |
| Off-Road<br>Equipment     | < 0.005 | 0.01 | < 0.005 | —     | < 0.005 | < 0.005 |        | < 0.005 | 1.09 |
| Architectural<br>Coatings | 0.45    |      | —       | _     |         | _       |        | _       | —    |
| Onsite truck              | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Offsite                   | _       | —    | —       | —     | —       | —       |        | —       | —    |
| Daily, Summer<br>(Max)    | —       | —    | —       | —     | —       | —       |        | —       | —    |
| Daily, Winter<br>(Max)    |         |      |         |       |         | _       |        |         | _    |
| Worker                    | 0.01    | 0.01 | 0.00    | 0.03  | 0.03    | 0.00    | 0.01   | 0.01    | 32.4 |

| Vendor        | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
|---------------|---------|---------|------|---------|---------|------|---------|---------|------|
| Hauling       | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Average Daily | —       | —       | —    | —       | —       | —    | —       | —       | _    |
| Worker        | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 1.62 |
| Vendor        | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling       | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Annual        |         |         |      | —       |         | _    |         | _       | _    |
| Worker        | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.27 |
| Vendor        | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling       | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |

# 3.13. Trenching (2026) - Unmitigated

| Location               | ROG     | NOx     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | CO2e |
|------------------------|---------|---------|---------|-------|---------|---------|--------|---------|------|
| Onsite                 | —       | _       | —       | —     | —       | —       | —      | —       | —    |
| Daily, Summer<br>(Max) | —       | _       | —       | —     |         | —       | _      |         | _    |
| Daily, Winter<br>(Max) | —       | —       | —       | —     | —       | —       | _      | —       | —    |
| Off-Road<br>Equipment  | 0.07    | 2.28    | 0.04    | —     | 0.04    | 0.03    | _      | 0.03    | 433  |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Average Daily          |         | _       |         | —     |         | —       | —      | —       | —    |
| Off-Road<br>Equipment  | < 0.005 | 0.02    | < 0.005 | —     | < 0.005 | < 0.005 | _      | < 0.005 | 3.56 |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Annual                 | —       | —       | —       | —     | —       | —       | —      | —       | —    |
| Off-Road<br>Equipment  | < 0.005 | < 0.005 | < 0.005 | —     | < 0.005 | < 0.005 | _      | < 0.005 | 0.59 |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |

| Offsite                | —       |         |      |         | —       | —    |         | —       | —    |
|------------------------|---------|---------|------|---------|---------|------|---------|---------|------|
| Daily, Summer<br>(Max) | —       | —       | —    | —       | —       | —    | —       | —       | —    |
| Daily, Winter<br>(Max) | —       |         | —    |         | —       | —    | _       | —       | —    |
| Worker                 | 0.01    | 0.01    | 0.00 | 0.04    | 0.04    | 0.00 | 0.01    | 0.01    | 39.5 |
| Vendor                 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Average Daily          |         | —       | —    | —       | —       | —    | —       | —       | —    |
| Worker                 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.33 |
| Vendor                 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Annual                 |         |         |      |         |         | —    |         | —       | —    |
| Worker                 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.05 |
| Vendor                 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |

# 4. Operations Emissions Details

# 4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

| Land Use               | ROG  | NOx  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e  |
|------------------------|------|------|-------|-------|-------|--------|--------|--------|-------|
| Daily, Summer<br>(Max) | —    | —    | —     |       | —     | —      | —      | —      |       |
| Condo/Townhous<br>e    | 0.85 | 0.56 | 0.01  | 1.60  | 1.61  | 0.01   | 0.41   | 0.41   | 1,698 |
| Total                  | 0.85 | 0.56 | 0.01  | 1.60  | 1.61  | 0.01   | 0.41   | 0.41   | 1,698 |

| Daily, Winter<br>(Max) | —    | —    | —       | —    | —    | —       | _    | —    | —     |
|------------------------|------|------|---------|------|------|---------|------|------|-------|
| Condo/Townhous<br>e    | 0.81 | 0.66 | 0.01    | 1.60 | 1.61 | 0.01    | 0.41 | 0.41 | 1,596 |
| Total                  | 0.81 | 0.66 | 0.01    | 1.60 | 1.61 | 0.01    | 0.41 | 0.41 | 1,596 |
| Annual                 | —    | —    | —       | —    | —    | —       | —    | —    | _     |
| Condo/Townhous<br>e    | 0.13 | 0.10 | < 0.005 | 0.26 | 0.26 | < 0.005 | 0.06 | 0.07 | 239   |
| Total                  | 0.13 | 0.10 | < 0.005 | 0.26 | 0.26 | < 0.005 | 0.06 | 0.07 | 239   |

# 4.2. Energy

#### 4.2.1. Electricity Emissions By Land Use - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Land Use               | ROG      | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|----------|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —        | —   | —     | —     | _     | —      | _      | —      | —    |
| Condo/Townhous<br>e    | —        | —   | —     | —     | _     |        | _      | —      | 0.00 |
| Total                  | —        | —   | —     | —     |       | —      | _      |        | 0.00 |
| Daily, Winter<br>(Max) | —        | —   | —     | —     | _     | —      | _      | —      | —    |
| Condo/Townhous<br>e    |          | —   | _     | —     | _     | _      | _      |        | 0.00 |
| Total                  | —        | —   | —     | —     |       | —      | _      |        | 0.00 |
| Annual                 | —        | —   | —     | —     |       | —      | _      |        | —    |
| Condo/Townhous<br>e    | —        | —   | —     | —     | _     |        | _      | —      | 0.00 |
| Total                  | <u> </u> | —   |       | _     | _     | —      | _      |        | 0.00 |

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

| Critaria Dallutanta | (lb/dov f  | or doily | tonly  | r for oppuol |              | (lh/day | for daily | , NATA       | ur for c |        |
|---------------------|------------|----------|--------|--------------|--------------|---------|-----------|--------------|----------|--------|
|                     | (10)/(1av) | or danv. | 1011/V | i ior annuar | i anu unus i | iu/ua   |           | /. IVI I / ' |          | annuan |
|                     | (          | •••••••  |        |              |              |         |           | ,            | ,        |        |

| Land Use               | ROG  | NOx  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|------|------|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —    |      | —     | —     |       | —      | _      | —      | _    |
| Condo/Townhous<br>e    | 0.00 | 0.00 | 0.00  | —     | 0.00  | 0.00   | _      | 0.00   | 0.00 |
| Total                  | 0.00 | 0.00 | 0.00  | —     | 0.00  | 0.00   | _      | 0.00   | 0.00 |
| Daily, Winter<br>(Max) | —    |      | —     | —     | _     | —      | _      | —      | _    |
| Condo/Townhous<br>e    | 0.00 | 0.00 | 0.00  | —     | 0.00  | 0.00   | _      | 0.00   | 0.00 |
| Total                  | 0.00 | 0.00 | 0.00  | —     | 0.00  | 0.00   | _      | 0.00   | 0.00 |
| Annual                 | —    | —    | —     | —     | —     | —      | _      | —      | _    |
| Condo/Townhous<br>e    | 0.00 | 0.00 | 0.00  | —     | 0.00  | 0.00   | _      | 0.00   | 0.00 |
| Total                  | 0.00 | 0.00 | 0.00  |       | 0.00  | 0.00   |        | 0.00   | 0.00 |

# 4.3. Area Emissions by Source

# 4.3.1. Unmitigated

| Source                    | ROG  | NOx  | PM10E   | PM10D    | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | CO2e |
|---------------------------|------|------|---------|----------|---------|---------|--------|---------|------|
| Daily, Summer<br>(Max)    | —    | —    | —       | —        | —       | —       | —      | —       | —    |
| Hearths                   | 0.00 | 0.00 | 0.00    | —        | 0.00    | 0.00    |        | 0.00    | 0.00 |
| Consumer<br>Products      | 1.38 |      |         | —        | —       |         | _      | —       | —    |
| Architectural<br>Coatings | 0.25 |      | —       | —        | —       |         | —      | —       | —    |
| Landscape<br>Equipment    | 0.14 | 0.02 | < 0.005 |          | < 0.005 | < 0.005 |        | < 0.005 | 4.41 |
| Total                     | 1.77 | 0.02 | < 0.005 | <u> </u> | < 0.005 | < 0.005 |        | < 0.005 | 4.41 |

| Daily, Winter<br>(Max)    |      | _        | _        | _ | _       |         | — | _        | —    |
|---------------------------|------|----------|----------|---|---------|---------|---|----------|------|
| Hearths                   | 0.00 | 0.00     | 0.00     | — | 0.00    | 0.00    | _ | 0.00     | 0.00 |
| Consumer<br>Products      | 1.38 | _        | —        | — | _       | _       | _ | —        | _    |
| Architectural<br>Coatings | 0.25 | _        |          | _ | _       |         | _ |          | _    |
| Total                     | 1.63 | 0.00     | 0.00     | — | 0.00    | 0.00    | _ | 0.00     | 0.00 |
| Annual                    | —    | <u> </u> | <u> </u> | — | _       | —       | _ | <u> </u> | _    |
| Hearths                   | 0.00 | 0.00     | 0.00     | — | 0.00    | 0.00    | _ | 0.00     | 0.00 |
| Consumer<br>Products      | 0.25 | _        | —        | — | _       | _       | _ | —        | _    |
| Architectural<br>Coatings | 0.05 | —        | —        | — | _       |         | _ | —        | _    |
| Landscape<br>Equipment    | 0.01 | < 0.005  | < 0.005  |   | < 0.005 | < 0.005 |   | < 0.005  | 0.36 |
| Total                     | 0.31 | < 0.005  | < 0.005  |   | < 0.005 | < 0.005 | _ | < 0.005  | 0.36 |

# 4.4. Water Emissions by Land Use

### 4.4.1. Unmitigated

| Land Use               | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | _   |     |       | —     | —     | _      |        | —      | —    |
| Condo/Townhous<br>e    | —   | —   | —     | —     | —     | —      | —      | —      | 3.90 |
| Total                  | _   | _   |       | —     | —     | _      | _      | —      | 3.90 |
| Daily, Winter<br>(Max) | —   | —   | —     | —     | —     | —      | —      | —      | _    |
| Condo/Townhous<br>e    | _   | _   | _     | —     | —     | _      | _      | —      | 3.90 |

| Total               |   |   | — | — | — | — | — | — | 3.90 |
|---------------------|---|---|---|---|---|---|---|---|------|
| Annual              | — | — | — | — | — | — | — | — | _    |
| Condo/Townhous<br>e |   |   | _ | _ | _ |   | _ | _ | 0.65 |
| Total               | — | — | _ | _ | _ | — | — | _ | 0.65 |

### 4.5. Waste Emissions by Land Use

#### 4.5.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Land Use               | ROG | NOx      | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|----------|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —   | —        | —     | —     | —     | —      | —      | —      | —    |
| Condo/Townhous<br>e    | _   |          | —     | _     | —     | —      | _      | _      | 40.6 |
| Total                  | —   | <u> </u> |       | —     | —     |        | —      | —      | 40.6 |
| Daily, Winter<br>(Max) | —   | —        | —     | —     | —     | —      | —      | —      | —    |
| Condo/Townhous<br>e    |     | —        |       |       | —     | —      |        |        | 40.6 |
| Total                  | —   |          |       | —     | —     |        | —      | —      | 40.6 |
| Annual                 | —   |          |       | —     | —     |        | —      | —      | —    |
| Condo/Townhous<br>e    | —   | —        |       |       | —     |        |        | —      | 6.72 |
| Total                  | —   |          | —     |       | —     |        | —      |        | 6.72 |

### 4.6. Refrigerant Emissions by Land Use

#### 4.6.1. Unmitigated

| ∟and Use | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|----------|-----|-----|-------|-------|-------|--------|--------|--------|------|
|          |     |     |       | 24    | / 42  |        |        |        |      |

| Daily, Summer<br>(Max) |          | _ |   |   | — | — | _ |   | —    |
|------------------------|----------|---|---|---|---|---|---|---|------|
| Condo/Townhous<br>e    | —        | _ |   | — | — | _ | _ |   | 0.46 |
| Total                  |          | — |   | — | — | — | — |   | 0.46 |
| Daily, Winter<br>(Max) | —        | — | — | — | _ | _ | — | — | —    |
| Condo/Townhous<br>e    | —        | — | — | — | _ | _ | — | — | 0.46 |
| Total                  | <u> </u> | _ |   | — | _ | — | _ |   | 0.46 |
| Annual                 | <u> </u> | _ |   | — | _ | _ | _ |   | —    |
| Condo/Townhous<br>e    | —        | — | — | — | _ | _ | — | — | 0.08 |
| Total                  | _        |   | _ | _ | _ | _ |   |   | 0.08 |

# 4.7. Offroad Emissions By Equipment Type

#### 4.7.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type         | ROG      | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e     |
|------------------------|----------|-----|-------|-------|-------|--------|--------|--------|----------|
| Daily, Summer<br>(Max) | —        | —   | —     |       | —     | —      | —      | —      | —        |
| Total                  |          | —   | —     | —     |       | —      | —      | —      | —        |
| Daily, Winter<br>(Max) | —        |     | —     |       |       |        | —      |        | —        |
| Total                  | <u> </u> | —   | —     | —     |       | —      | —      | —      | —        |
| Annual                 | —        | —   | —     | —     | —     | —      | —      | —      | —        |
| Total                  |          |     | _     |       |       |        | _      |        | <u> </u> |

# 4.8. Stationary Emissions By Equipment Type

#### 4.8.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type         | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Total                  | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Daily, Winter<br>(Max) | _   | _   | —     |       | _     | _      | _      | —      | —    |
| Total                  | —   | —   | —     |       | —     | —      | —      | —      | —    |
| Annual                 | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Total                  | _   | _   | —     | _     | _     | _      | _      | —      | —    |

# 4.9. User Defined Emissions By Equipment Type

#### 4.9.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type         | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Total                  | —   | —   | —     | —     |       | —      | —      | —      | —    |
| Daily, Winter<br>(Max) | _   | _   | —     | —     | _     | —      | _      | _      | —    |
| Total                  | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Annual                 | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Total                  | _   | _   | _     | _     | _     | _      | _      | _      | —    |

### 4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Vegetation             | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —   | —   | —     | —     | —     | —      |        | —      | —    |
| Total                  | —   |     |       | —     | —     | —      |        |        | —    |
| Daily, Winter<br>(Max) |     | —   |       | —     | —     |        | _      | _      | —    |
| Total                  | —   | —   | —     | —     | —     | —      |        | —      | —    |
| Annual                 | —   |     | _     | —     | —     | —      |        |        | —    |
| Total                  | —   |     | _     | —     | —     | —      | _      | _      | _    |

#### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Land Use               | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Total                  | _   | —   | _     |       |       |        |        | _      | —    |
| Daily, Winter<br>(Max) | —   | —   | —     |       | —     | —      | —      | —      | —    |
| Total                  | —   | —   | —     | —     | —     |        | —      | —      | —    |
| Annual                 | —   | —   | —     | —     | —     |        | —      | —      | —    |
| Total                  |     |     |       |       |       |        |        |        | —    |

#### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

| Species                | ROG      | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|----------|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —        |     | —     | —     | —     | —      |        | —      | —    |
| Avoided                | <u> </u> |     |       | —     | —     |        | —      |        | —    |
| Subtotal               | —        | —   | —     | —     |       | —      |        | —      | —    |

| Sequestered            | — | — | — | _ | — | — | — | _ | — |
|------------------------|---|---|---|---|---|---|---|---|---|
| Subtotal               | — |   | — | — | — | — | _ | — | — |
| Removed                | — |   | — | — | — | — | _ | — | — |
| Subtotal               | — | — | — | — | — | — | _ | — | — |
|                        | — | — | — | — | — | — | _ | — | — |
| Daily, Winter<br>(Max) | _ | — | — | — | — | — | _ | — | — |
| Avoided                | _ |   | — | — | — | — | _ | — | — |
| Subtotal               | _ |   | — | _ | _ | — | _ | — | — |
| Sequestered            | _ |   | — | _ | _ | — | _ | — | — |
| Subtotal               | _ | — | — | _ | _ | — | — | — | — |
| Removed                | _ | — | — | _ | _ | — | — | _ | — |
| Subtotal               | _ | — | — | _ | _ | — | — | _ | — |
| —                      | _ | — | — | _ | _ | — | _ | _ | — |
| Annual                 | — | — | — | — | _ | — | — | _ | — |
| Avoided                | _ |   | — | _ | _ | — | _ | _ | — |
| Subtotal               | _ |   | _ | _ |   | — | _ | _ | — |
| Sequestered            | _ |   | _ | _ |   | — | _ | _ | — |
| Subtotal               | _ |   | _ |   |   | — | _ | _ | — |
| Removed                | _ | — | — | — | _ | — | _ | — | — |
| Subtotal               |   | — | — | — |   | — | _ | — | — |
| _                      | _ | — | — | — | _ | — | _ | — | — |

# 5. Activity Data

### 5.1. Construction Schedule

| Phase Name | Phase Type | Start Date | End Date  | Days Per Week | Work Days per Phase | Phase Description |
|------------|------------|------------|-----------|---------------|---------------------|-------------------|
| Demolition | Demolition | 4/1/2026   | 4/29/2026 | 6.00          | 25.0                | —                 |

| Site Preparation      | Site Preparation      | 6/1/2026  | 6/3/2026  | 6.00 | 3.00 | _ |
|-----------------------|-----------------------|-----------|-----------|------|------|---|
| Grading               | Grading               | 6/4/2026  | 6/7/2026  | 6.00 | 3.00 | _ |
| Building Construction | Building Construction | 1/1/2027  | 7/20/2027 | 6.00 | 172  |   |
| Paving                | Paving                | 2/1/2027  | 2/11/2027 | 6.00 | 10.0 |   |
| Architectural Coating | Architectural Coating | 2/1/2027  | 2/21/2027 | 6.00 | 18.0 | _ |
| Trenching             | Trenching             | 11/1/2026 | 11/4/2026 | 6.00 | 3.00 |   |

# 5.2. Off-Road Equipment

# 5.2.1. Unmitigated

| Phase Name            | Equipment Type                       | Fuel Type | Engine Tier    | Number per Day | Hours Per Day | Horsepower | Load Factor |
|-----------------------|--------------------------------------|-----------|----------------|----------------|---------------|------------|-------------|
| Demolition            | Concrete/Industrial<br>Saws          | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 33.0       | 0.73        |
| Demolition            | Rubber Tired Dozers                  | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 367        | 0.40        |
| Demolition            | Tractors/Loaders/Back hoes           | Diesel    | Tier 4 Interim | 3.00           | 8.00          | 84.0       | 0.37        |
| Site Preparation      | Graders                              | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 148        | 0.41        |
| Site Preparation      | Rubber Tired Dozers                  | Diesel    | Tier 4 Interim | 1.00           | 7.00          | 367        | 0.40        |
| Site Preparation      | Tractors/Loaders/Back hoes           | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 84.0       | 0.37        |
| Grading               | Graders                              | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 148        | 0.41        |
| Grading               | Rubber Tired Dozers                  | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 367        | 0.40        |
| Grading               | Tractors/Loaders/Back hoes           | Diesel    | Tier 4 Interim | 2.00           | 7.00          | 84.0       | 0.37        |
| Building Construction | Forklifts                            | Diesel    | Tier 4 Interim | 1.00           | 6.00          | 82.0       | 0.20        |
| Building Construction | Generator Sets                       | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 14.0       | 0.74        |
| Building Construction | Tractors/Loaders/Back hoes           | Diesel    | Tier 4 Interim | 1.00           | 6.00          | 84.0       | 0.37        |
| Building Construction | Other Material<br>Handling Equipment | Diesel    | Tier 4 Interim | 1.00           | 0.60          | 93.0       | 0.40        |

| Paving                | Cement and Mortar<br>Mixers | Diesel | Tier 4 Interim | 1.00 | 6.00 | 10.0 | 0.56 |
|-----------------------|-----------------------------|--------|----------------|------|------|------|------|
| Paving                | Pavers                      | Diesel | Tier 4 Interim | 1.00 | 6.00 | 81.0 | 0.42 |
| Paving                | Paving Equipment            | Diesel | Tier 4 Interim | 1.00 | 8.00 | 89.0 | 0.36 |
| Paving                | Rollers                     | Diesel | Tier 4 Interim | 1.00 | 7.00 | 36.0 | 0.38 |
| Paving                | Tractors/Loaders/Back hoes  | Diesel | Tier 4 Interim | 1.00 | 8.00 | 84.0 | 0.37 |
| Architectural Coating | Air Compressors             | Diesel | Tier 4 Interim | 1.00 | 6.00 | 37.0 | 0.48 |
| Trenching             | Tractors/Loaders/Back hoes  | Diesel | Tier 4 Interim | 1.00 | 8.00 | 84.0 | 0.37 |
| Trenching             | Excavators                  | Diesel | Tier 4 Interim | 1.00 | 8.00 | 36.0 | 0.38 |

# 5.3. Construction Vehicles

# 5.3.1. Unmitigated

| Phase Name       | Тгір Туре    | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|------------------|--------------|-----------------------|----------------|---------------|
| Demolition       | —            | —                     | —              | _             |
| Demolition       | Worker       | 12.5                  | 11.7           | LDA,LDT1,LDT2 |
| Demolition       | Vendor       | _                     | 8.40           | HHDT,MHDT     |
| Demolition       | Hauling      | 32.7                  | 20.0           | HHDT          |
| Demolition       | Onsite truck | _                     | —              | HHDT          |
| Site Preparation | _            | _                     | —              | _             |
| Site Preparation | Worker       | 7.50                  | 11.7           | LDA,LDT1,LDT2 |
| Site Preparation | Vendor       | _                     | 8.40           | HHDT,MHDT     |
| Site Preparation | Hauling      | 0.00                  | 20.0           | HHDT          |
| Site Preparation | Onsite truck | _                     | —              | HHDT          |
| Grading          | —            | _                     | —              | —             |
| Grading          | Worker       | 10.0                  | 11.7           | LDA,LDT1,LDT2 |
| Grading          | Vendor       | —                     | 8.40           | HHDT,MHDT     |

| Grading               | Hauling      | 4.33 | 20.0 | HHDT          |
|-----------------------|--------------|------|------|---------------|
| Grading               | Onsite truck | _    | _    | HHDT          |
| Building Construction | _            | _    | _    | —             |
| Building Construction | Worker       | 20.9 | 11.7 | LDA,LDT1,LDT2 |
| Building Construction | Vendor       | 3.10 | 8.40 | HHDT,MHDT     |
| Building Construction | Hauling      | 1.01 | 20.0 | HHDT          |
| Building Construction | Onsite truck |      |      | HHDT          |
| Paving                | _            |      |      | —             |
| Paving                | Worker       | 12.5 | 11.7 | LDA,LDT1,LDT2 |
| Paving                | Vendor       |      | 8.40 | HHDT,MHDT     |
| Paving                | Hauling      | 4.80 | 20.0 | HHDT          |
| Paving                | Onsite truck |      | _    | HHDT          |
| Architectural Coating | _            |      |      | _             |
| Architectural Coating | Worker       | 4.18 | 11.7 | LDA,LDT1,LDT2 |
| Architectural Coating | Vendor       |      | 8.40 | HHDT,MHDT     |
| Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Architectural Coating | Onsite truck |      |      | HHDT          |
| Trenching             | _            |      |      | —             |
| Trenching             | Worker       | 5.00 | 11.7 | LDA,LDT1,LDT2 |
| Trenching             | Vendor       | _    | 8.40 | HHDT,MHDT     |
| Trenching             | Hauling      | 0.00 | 20.0 | HHDT          |
| Trenching             | Onsite truck | _    | _    | HHDT          |

### 5.4. Vehicles

#### 5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user. 5.5. Architectural Coatings

| Phase Name            | Residential Interior Area<br>Coated (sq ft) | Residential Exterior Area<br>Coated (sq ft) | Non-Residential Interior Area<br>Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|-----------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------|
| Architectural Coating | 130,451                                     | 43,484                                      | 0.00                                            | 0.00                                            | —                           |

### 5.6. Dust Mitigation

#### 5.6.1. Construction Earthmoving Activities

| Phase Name       | Material Imported (cy) | Material Exported (cy) | Acres Graded (acres) | Material Demolished (Building<br>Square Footage) | Acres Paved (acres) |
|------------------|------------------------|------------------------|----------------------|--------------------------------------------------|---------------------|
| Demolition       | 0.00                   | 0.00                   | 0.00                 | 24,693                                           | _                   |
| Site Preparation |                        |                        | 2.81                 | 0.00                                             | _                   |
| Grading          | 100                    |                        | 3.00                 | 0.00                                             | —                   |
| Paving           | 0.00                   | 0.00                   | 0.00                 | 0.00                                             | —                   |

#### 5.6.2. Construction Earthmoving Control Strategies

| Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction |
|----------------------------|---------------------|----------------|-----------------|
| Water Exposed Area         | 2                   | 61%            | 61%             |

### 5.7. Construction Paving

| Land Use        | Area Paved (acres) | % Asphalt |
|-----------------|--------------------|-----------|
| Condo/Townhouse | _                  | 0%        |

### 5.8. Construction Electricity Consumption and Emissions Factors

#### kWh per Year and Emission Factor (lb/MWh)

| Year | kWh per Year | CO2  | CH4  | N2O  |
|------|--------------|------|------|------|
| 2026 | 0.00         | 0.00 | 0.00 | 0.00 |
| 2027 | 0.00         | 0.00 | 0.00 | 0.00 |

# 5.9. Operational Mobile Sources

#### 5.9.1. Unmitigated

| Land Use Type   | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year |
|-----------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------|
| Condo/Townhouse | 264           | 293            | 226          | 95,915     | 2,038       | 2,267        | 1,749      | 740,856  |

# 5.10. Operational Area Sources

#### 5.10.1. Hearths

#### 5.10.1.1. Unmitigated

| Hearth Type               | Unmitigated (number) |
|---------------------------|----------------------|
| Condo/Townhouse           | —                    |
| Wood Fireplaces           | 0                    |
| Gas Fireplaces            | 0                    |
| Propane Fireplaces        | 0                    |
| Electric Fireplaces       | 0                    |
| No Fireplaces             | 0                    |
| Conventional Wood Stoves  | 0                    |
| Catalytic Wood Stoves     | 0                    |
| Non-Catalytic Wood Stoves | 0                    |
| Pellet Wood Stoves        | 0                    |

#### 5.10.2. Architectural Coatings

| Residential Interior Area Coated (sq<br>ft) | Residential Exterior Area Coated (sq<br>ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|---------------------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------------|-----------------------------|
| 130450.5                                    | 43,484                                      | 0.00                                         | 0.00                                            | —                           |

#### 5.10.3. Landscape Equipment

| Season      | Unit   | Value |
|-------------|--------|-------|
| Snow Days   | day/yr | 0.00  |
| Summer Days | day/yr | 180   |

### 5.11. Operational Energy Consumption

#### 5.11.1. Unmitigated

#### Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

| Land Use        | Electricity (kWh/yr) | CO2  | CH4    | N2O    | Natural Gas (kBTU/yr) |
|-----------------|----------------------|------|--------|--------|-----------------------|
| Condo/Townhouse | 372,342              | 0.00 | 0.0000 | 0.0000 | 0.00                  |

### 5.12. Operational Water and Wastewater Consumption

#### 5.12.1. Unmitigated

| Land Use        | Indoor Water (gal/year) | Outdoor Water (gal/year) |
|-----------------|-------------------------|--------------------------|
| Condo/Townhouse | 1,051,726               | 0.00                     |

### 5.13. Operational Waste Generation

#### 5.13.1. Unmitigated

| Land Use        | Waste (ton/year) | Cogeneration (kWh/year) |
|-----------------|------------------|-------------------------|
| Condo/Townhouse | 21.5             | _                       |

### 5.14. Operational Refrigeration and Air Conditioning Equipment

#### 5.14.1. Unmitigated

| Land Use Type   | Equipment Type                                                | Refrigerant | GWP   | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced |
|-----------------|---------------------------------------------------------------|-------------|-------|---------------|----------------------|-------------------|----------------|
| Condo/Townhouse | Average room A/C &<br>Other residential A/C<br>and heat pumps | R-410A      | 2,088 | < 0.005       | 2.50                 | 2.50              | 10.0           |
| Condo/Townhouse | Household<br>refrigerators and/or<br>freezers                 | R-134a      | 1,430 | 0.12          | 0.60                 | 0.00              | 1.00           |

# 5.15. Operational Off-Road Equipment

#### 5.15.1. Unmitigated

|  | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|--|----------------|-----------|-------------|----------------|---------------|------------|-------------|
|--|----------------|-----------|-------------|----------------|---------------|------------|-------------|

# 5.16. Stationary Sources

#### 5.16.1. Emergency Generators and Fire Pumps

| Equipment Type Fu | uel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor |
|-------------------|----------|----------------|---------------|----------------|------------|-------------|
|-------------------|----------|----------------|---------------|----------------|------------|-------------|

#### 5.16.2. Process Boilers

| Equipment Type Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) |
|--------------------------|--------|--------------------------|------------------------------|------------------------------|
|--------------------------|--------|--------------------------|------------------------------|------------------------------|

### 5.17. User Defined

| Equipment Type | Fuel Туре |
|----------------|-----------|
|                |           |

### 5.18. Vegetation

#### 5.18.1. Land Use Change

#### 5.18.1.1. Unmitigated

| Vegetation Land Use Type   | Vegetation Soil Type | Initial Acres                | Final Acres                  |
|----------------------------|----------------------|------------------------------|------------------------------|
| 5.18.1. Biomass Cover Type |                      |                              |                              |
| 5.18.1.1. Unmitigated      |                      |                              |                              |
| Biomass Cover Type         | Initial Acres        | Final Acres                  |                              |
| 5.18.2. Sequestration      |                      |                              |                              |
| 5.18.2.1. Unmitigated      |                      |                              |                              |
| Tree Type                  | Number               | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) |

# 6. Climate Risk Detailed Report

### 6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

| Climate Hazard               | Result for Project Location | Unit                                       |
|------------------------------|-----------------------------|--------------------------------------------|
| Temperature and Extreme Heat | 12.7                        | annual days of extreme heat                |
| Extreme Precipitation        | 4.40                        | annual days with precipitation above 20 mm |
| Sea Level Rise               | _                           | meters of inundation depth                 |
| Wildfire                     | 8.55                        | annual hectares burned                     |

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about <sup>3</sup>/<sub>4</sub> an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

### 6.2. Initial Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | N/A            | N/A               | N/A                     | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | N/A            | N/A               | N/A                     | N/A                 |
| Wildfire                     | N/A            | N/A               | N/A                     | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 0              | 0                 | 0                       | N/A                 |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

### 6.3. Adjusted Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | N/A            | N/A               | N/A                     | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | N/A            | N/A               | N/A                     | N/A                 |
| Wildfire                     | N/A            | N/A               | N/A                     | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 1              | 1                 | 1                       | 2                   |
The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

### 6.4. Climate Risk Reduction Measures

# 7. Health and Equity Details

### 7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

| Indicator                       | Result for Project Census Tract |
|---------------------------------|---------------------------------|
| Exposure Indicators             |                                 |
| AQ-Ozone                        | 13.6                            |
| AQ-PM                           | 16.1                            |
| AQ-DPM                          | 87.7                            |
| Drinking Water                  | 61.4                            |
| Lead Risk Housing               | 39.0                            |
| Pesticides                      | 0.00                            |
| Toxic Releases                  | 29.6                            |
| Traffic                         | 72.1                            |
| Effect Indicators               |                                 |
| CleanUp Sites                   | 62.0                            |
| Groundwater                     | 35.0                            |
| Haz Waste Facilities/Generators | 50.1                            |
| Impaired Water Bodies           | 0.00                            |
| Solid Waste                     | 0.00                            |
| Sensitive Population            | _                               |
| Asthma                          | 1.61                            |

| Cardio-vascular                 | 4.44 |
|---------------------------------|------|
| Low Birth Weights               | 22.6 |
| Socioeconomic Factor Indicators |      |
| Education                       | 33.9 |
| Housing                         | 24.9 |
| Linguistic                      | 64.4 |
| Poverty                         | 14.3 |
| Unemployment                    | 41.8 |

### 7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

| Indicator              | Result for Project Census Tract |
|------------------------|---------------------------------|
| Economic               |                                 |
| Above Poverty          | 83.2157064                      |
| Employed               | 93.31451302                     |
| Median HI              | 75.45232901                     |
| Education              |                                 |
| Bachelor's or higher   | 98.10085975                     |
| High school enrollment | 100                             |
| Preschool enrollment   | 63.67252663                     |
| Transportation         | _                               |
| Auto Access            | 26.17733864                     |
| Active commuting       | 85.82060824                     |
| Social                 |                                 |
| 2-parent households    | 59.74592583                     |
| Voting                 | 87.68125241                     |
| Neighborhood           |                                 |
| Alcohol availability   | 11.77980239                     |

| Park access                                  | 10.40677531 |
|----------------------------------------------|-------------|
| Retail density                               | 93.51982548 |
| Supermarket access                           | 94.25125112 |
| Tree canopy                                  | 81.80418324 |
| Housing                                      | _           |
| Homeownership                                | 9.303220839 |
| Housing habitability                         | 42.89747209 |
| Low-inc homeowner severe housing cost burden | 75.68330553 |
| Low-inc renter severe housing cost burden    | 80.52098037 |
| Uncrowded housing                            | 28.82073656 |
| Health Outcomes                              |             |
| Insured adults                               | 98.9734377  |
| Arthritis                                    | 96.4        |
| Asthma ER Admissions                         | 99.2        |
| High Blood Pressure                          | 91.8        |
| Cancer (excluding skin)                      | 71.8        |
| Asthma                                       | 95.7        |
| Coronary Heart Disease                       | 97.4        |
| Chronic Obstructive Pulmonary Disease        | 98.5        |
| Diagnosed Diabetes                           | 96.0        |
| Life Expectancy at Birth                     | 88.2        |
| Cognitively Disabled                         | 66.4        |
| Physically Disabled                          | 93.4        |
| Heart Attack ER Admissions                   | 98.8        |
| Mental Health Not Good                       | 96.5        |
| Chronic Kidney Disease                       | 95.6        |
| Obesity                                      | 93.1        |
| Pedestrian Injuries                          | 64.7        |

| Physical Health Not Good              | 98.5 |
|---------------------------------------|------|
| Stroke                                | 97.8 |
| Health Risk Behaviors                 | _    |
| Binge Drinking                        | 48.9 |
| Current Smoker                        | 96.9 |
| No Leisure Time for Physical Activity | 95.4 |
| Climate Change Exposures              | _    |
| Wildfire Risk                         | 0.0  |
| SLR Inundation Area                   | 0.0  |
| Children                              | 45.9 |
| Elderly                               | 73.9 |
| English Speaking                      | 28.2 |
| Foreign-born                          | 91.6 |
| Outdoor Workers                       | 62.2 |
| Climate Change Adaptive Capacity      |      |
| Impervious Surface Cover              | 20.0 |
| Traffic Density                       | 44.4 |
| Traffic Access                        | 87.4 |
| Other Indices                         | _    |
| Hardship                              | 12.4 |
| Other Decision Support                |      |
| 2016 Voting                           | 89.5 |

# 7.3. Overall Health & Equity Scores

| Metric                                                                    | Result for Project Census Tract |
|---------------------------------------------------------------------------|---------------------------------|
| CalEnviroScreen 4.0 Score for Project Location (a)                        | 14.0                            |
| Healthy Places Index Score for Project Location (b)                       | 89.0                            |
| Project Located in a Designated Disadvantaged Community (Senate Bill 535) | No                              |

#### 24-124 4335 & 4345 El Camino Real, Palo Alto BMPs Unmit T4i 2028 Detailed Report, 8/29/2024

| Project Located in a Low-Income Community (Assembly Bill 1550)                      | No |
|-------------------------------------------------------------------------------------|----|
| Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No |

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

#### 7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed. 7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

# 8. User Changes to Default Data

| Screen                              | Justification                                                                                                                                                                                                    |  |  |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Land Use                            | Number of units, total lot acreage, and square footage from provided project plans/ filled out construction worksheet.                                                                                           |  |  |  |  |
| Construction: Construction Phases   | Construction dates and phases provided by filled out construction worksheet.                                                                                                                                     |  |  |  |  |
| Construction: Off-Road Equipment    | Blend on defaults and information provided from filled out construction worksheet. Tier 4 Interim Engine Tier required by City,                                                                                  |  |  |  |  |
| Construction: Trips and VMT         | Demolition = 23,000-sf of pavement demo'd and hauled (21.3 trips/day), Building Construction = Est. 101 concrete truck round trips (1.01 trips/day), Paving = Est. 12 asphalt truck round trips (4.8 trips/day). |  |  |  |  |
| Construction: On-Road Fugitive Dust | Air District BMPs 15 mph - required by Palo Alto.                                                                                                                                                                |  |  |  |  |
| Operations: Vehicle Data            | Provided trip gen.                                                                                                                                                                                               |  |  |  |  |
| Operations: Hearths                 | No hearths.                                                                                                                                                                                                      |  |  |  |  |
| Operations: Energy Use              | Project design is all-electric. Confirmed no natural gas by applicant. Convert natural gas to electricity.                                                                                                       |  |  |  |  |
| Operations: Water and Waste Water   | Wastewater treatment 100% aerobic - no septic tanks or lagoons.                                                                                                                                                  |  |  |  |  |

Table of Contents

- 1. Basic Project Information
  - 1.1. Basic Project Information
  - 1.2. Land Use Types
  - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
  - 2.1. Construction Emissions Compared Against Thresholds
  - 2.2. Construction Emissions by Year, Unmitigated
  - 2.3. Construction Emissions by Year, Mitigated
- 3. Construction Emissions Details
  - 3.1. Demolition (2026) Unmitigated
  - 3.2. Demolition (2026) Mitigated
  - 3.3. Site Preparation (2026) Unmitigated
  - 3.4. Site Preparation (2026) Mitigated
  - 3.5. Grading (2026) Unmitigated

- 3.6. Grading (2026) Mitigated
- 3.7. Building Construction (2027) Unmitigated
- 3.8. Building Construction (2027) Mitigated
- 3.9. Paving (2027) Unmitigated
- 3.10. Paving (2027) Mitigated
- 3.11. Architectural Coating (2027) Unmitigated
- 3.12. Architectural Coating (2027) Mitigated
- 3.13. Trenching (2026) Unmitigated
- 3.14. Trenching (2026) Mitigated
- 4. Operations Emissions Details
  - 4.10. Soil Carbon Accumulation By Vegetation Type
    - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
    - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
    - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
    - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
    - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
    - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated

#### 5. Activity Data

5.1. Construction Schedule

#### 5.2. Off-Road Equipment

- 5.2.1. Unmitigated
- 5.2.2. Mitigated
- 5.3. Construction Vehicles
  - 5.3.1. Unmitigated
  - 5.3.2. Mitigated
- 5.4. Vehicles
  - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
  - 5.6.1. Construction Earthmoving Activities
  - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
  - 5.18.1. Land Use Change
    - 5.18.1.1. Unmitigated

#### 5.18.1.2. Mitigated

#### 5.18.1. Biomass Cover Type

#### 5.18.1.1. Unmitigated

#### 5.18.1.2. Mitigated

#### 5.18.2. Sequestration

#### 5.18.2.1. Unmitigated

#### 5.18.2.2. Mitigated

#### 6. Climate Risk Detailed Report

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures

#### 7. Health and Equity Details

- 7.1. CalEnviroScreen 4.0 Scores
- 7.2. Healthy Places Index Scores
- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures

8. User Changes to Default Data

# 1. Basic Project Information

# 1.1. Basic Project Information

| Data Field                  | Value                                                          |  |  |  |  |  |
|-----------------------------|----------------------------------------------------------------|--|--|--|--|--|
| Project Name                | 24-124 4335 & 4345 El Camino Real, Palo Alto BMPs HRA Defaults |  |  |  |  |  |
| Construction Start Date     | 4/1/2026                                                       |  |  |  |  |  |
| Lead Agency                 |                                                                |  |  |  |  |  |
| Land Use Scale              | Project/site                                                   |  |  |  |  |  |
| Analysis Level for Defaults | County                                                         |  |  |  |  |  |
| Windspeed (m/s)             | 2.70                                                           |  |  |  |  |  |
| Precipitation (days)        | 32.8                                                           |  |  |  |  |  |
| Location                    | 4335 El Camino Real, Palo Alto, CA 94306, USA                  |  |  |  |  |  |
| County                      | Santa Clara                                                    |  |  |  |  |  |
| City                        | Palo Alto                                                      |  |  |  |  |  |
| Air District                | Bay Area AQMD                                                  |  |  |  |  |  |
| Air Basin                   | San Francisco Bay Area                                         |  |  |  |  |  |
| TAZ                         | 1719                                                           |  |  |  |  |  |
| EDFZ                        | 1                                                              |  |  |  |  |  |
| Electric Utility            | City of Palo Alto                                              |  |  |  |  |  |
| Gas Utility                 | City of Palo Alto Ultilities                                   |  |  |  |  |  |
| App Version                 | 2022.1.1.28                                                    |  |  |  |  |  |

# 1.2. Land Use Types

| Land Use Subtype | Size | Unit          | Lot Acreage | Building Area (sq ft) | Landscape Area (sq<br>ft) | Special Landscape<br>Area (sq ft) | Population | Description |
|------------------|------|---------------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------|
| Condo/Townhouse  | 29.0 | Dwelling Unit | 1.35        | 64,420                | 0.00                      | —                                 | 87.0       | _           |

# 1.3. User-Selected Emission Reduction Measures by Emissions Sector

| Sector       | #   | Measure Title             |
|--------------|-----|---------------------------|
| Construction | C-5 | Use Advanced Engine Tiers |

# 2. Emissions Summary

### 2.1. Construction Emissions Compared Against Thresholds

| Un/Mit.                | ROG  | NOx  | PM10E   | PM10D | PM10T | PM2.5E  | PM2.5D   | PM2.5T | CO2e  |
|------------------------|------|------|---------|-------|-------|---------|----------|--------|-------|
| Daily, Summer<br>(Max) | —    | —    | —       | —     | —     | —       | —        | —      | _     |
| Unmit.                 | 1.45 | 13.5 | 0.58    | 2.77  | 3.35  | 0.53    | 1.34     | 1.87   | 2,625 |
| Mit.                   | 0.38 | 9.33 | 0.10    | 2.77  | 2.81  | 0.09    | 1.34     | 1.38   | 2,625 |
| % Reduced              | 74%  | 31%  | 83%     | —     | 16%   | 82%     | —        | 26%    | —     |
| Daily, Winter<br>(Max) | —    | —    | —       | —     | —     |         | —        |        | _     |
| Unmit.                 | 51.3 | 7.38 | 0.26    | 0.02  | 0.28  | 0.24    | < 0.005  | 0.25   | 1,640 |
| Mit.                   | 50.9 | 8.10 | 0.12    | 0.02  | 0.14  | 0.12    | < 0.005  | 0.12   | 1,640 |
| % Reduced              | 1%   | -10% | 53%     | —     | 50%   | 52%     | —        | 51%    | —     |
| Average Daily<br>(Max) | —    | _    | —       | —     | —     |         | _        |        | _     |
| Unmit.                 | 2.64 | 1.18 | 0.04    | 0.11  | 0.16  | 0.04    | 0.03     | 0.07   | 264   |
| Mit.                   | 2.59 | 1.27 | 0.02    | 0.11  | 0.12  | 0.02    | 0.03     | 0.04   | 264   |
| % Reduced              | 2%   | -8%  | 52%     | —     | 23%   | 52%     | <u> </u> | 46%    | —     |
| Annual (Max)           | —    | —    | —       | —     | —     | —       | —        | —      | —     |
| Unmit.                 | 0.48 | 0.21 | 0.01    | 0.02  | 0.03  | 0.01    | 0.01     | 0.01   | 43.6  |
| Mit.                   | 0.47 | 0.23 | < 0.005 | 0.02  | 0.02  | < 0.005 | 0.01     | 0.01   | 43.6  |
| % Reduced              | 2%   | -8%  | 52%     | _     | 23%   | 52%     | _        | 46%    | _     |

### 2.2. Construction Emissions by Year, Unmitigated

| Year                    | ROG  | NOx  | PM10E | PM10D   | PM10T | PM2.5E | PM2.5D  | PM2.5T | CO2e  |
|-------------------------|------|------|-------|---------|-------|--------|---------|--------|-------|
| Daily - Summer<br>(Max) | —    | —    | —     | —       | —     | —      | —       | —      | —     |
| 2026                    | 1.45 | 13.5 | 0.58  | 2.77    | 3.35  | 0.53   | 1.34    | 1.87   | 2,625 |
| 2027                    | 0.28 | 2.15 | 0.08  | 0.01    | 0.09  | 0.07   | < 0.005 | 0.07   | 486   |
| Daily - Winter<br>(Max) | —    | —    | —     | —       | —     | —      | _       | —      | —     |
| 2026                    | 0.21 | 1.86 | 0.06  | < 0.005 | 0.06  | 0.05   | < 0.005 | 0.05   | 436   |
| 2027                    | 51.3 | 7.38 | 0.26  | 0.02    | 0.28  | 0.24   | < 0.005 | 0.25   | 1,640 |
| Average Daily           | —    | —    | —     | —       |       | —      | _       | —      | —     |
| 2026                    | 0.12 | 1.14 | 0.04  | 0.11    | 0.16  | 0.04   | 0.03    | 0.07   | 221   |
| 2027                    | 2.64 | 1.18 | 0.04  | < 0.005 | 0.05  | 0.04   | < 0.005 | 0.04   | 264   |
| Annual                  | —    |      | —     | —       | _     | —      | _       | —      | —     |
| 2026                    | 0.02 | 0.21 | 0.01  | 0.02    | 0.03  | 0.01   | 0.01    | 0.01   | 36.6  |
| 2027                    | 0.48 | 0.21 | 0.01  | < 0.005 | 0.01  | 0.01   | < 0.005 | 0.01   | 43.6  |

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

### 2.3. Construction Emissions by Year, Mitigated

| Year                    | ROG  | NOx  | PM10E | PM10D   | PM10T | PM2.5E | PM2.5D  | PM2.5T | CO2e  |
|-------------------------|------|------|-------|---------|-------|--------|---------|--------|-------|
| Daily - Summer<br>(Max) | —    | —    | —     | —       | —     | —      | —       | —      | —     |
| 2026                    | 0.38 | 9.33 | 0.10  | 2.77    | 2.81  | 0.09   | 1.34    | 1.38   | 2,625 |
| 2027                    | 0.21 | 2.31 | 0.04  | 0.01    | 0.05  | 0.04   | < 0.005 | 0.04   | 486   |
| Daily - Winter<br>(Max) | —    |      | —     | —       |       | —      | _       | —      | —     |
| 2026                    | 0.08 | 2.28 | 0.04  | < 0.005 | 0.04  | 0.03   | < 0.005 | 0.03   | 436   |
| 2027                    | 50.9 | 8.10 | 0.12  | 0.02    | 0.14  | 0.12   | < 0.005 | 0.12   | 1,640 |

| Average Daily | —    |      |         | —       |         |         | <u> </u> |         | _    |
|---------------|------|------|---------|---------|---------|---------|----------|---------|------|
| 2026          | 0.03 | 0.78 | 0.01    | 0.11    | 0.12    | 0.01    | 0.03     | 0.04    | 221  |
| 2027          | 2.59 | 1.27 | 0.02    | < 0.005 | 0.03    | 0.02    | < 0.005  | 0.02    | 264  |
| Annual        | —    | —    | —       | —       | —       |         | _        | —       | —    |
| 2026          | 0.01 | 0.14 | < 0.005 | 0.02    | 0.02    | < 0.005 | 0.01     | 0.01    | 36.6 |
| 2027          | 0.47 | 0.23 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005  | < 0.005 | 43.6 |

# 3. Construction Emissions Details

### 3.1. Demolition (2026) - Unmitigated

| Location               | ROG  | NOx  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D  | PM2.5T   | CO2e  |
|------------------------|------|------|-------|-------|-------|--------|---------|----------|-------|
| Onsite                 | —    | —    | —     | —     | _     |        |         | <u> </u> | —     |
| Daily, Summer<br>(Max) |      |      | _     | —     | _     |        | _       | —        | —     |
| Off-Road<br>Equipment  | 1.39 | 12.9 | 0.51  |       | 0.51  | 0.47   |         | 0.47     | 2,503 |
| Demolition             | —    |      | _     | 0.99  | 0.99  | _      | 0.15    | 0.15     | —     |
| Onsite truck           | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00    | 0.00     | 0.00  |
| Daily, Winter<br>(Max) |      |      |       | _     | _     |        | _       |          | _     |
| Average Daily          |      |      | _     | —     | _     | _      | —       |          | —     |
| Off-Road<br>Equipment  | 0.10 | 0.89 | 0.03  | _     | 0.03  | 0.03   | _       | 0.03     | 171   |
| Demolition             |      |      | _     | 0.07  | 0.07  | _      | 0.01    | 0.01     | —     |
| Onsite truck           | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00    | 0.00     | 0.00  |
| Annual                 | —    |      | —     | —     | —     | —      |         |          | —     |
| Off-Road<br>Equipment  | 0.02 | 0.16 | 0.01  | —     | 0.01  | 0.01   | —       | 0.01     | 28.4  |
| Demolition             |      |      |       | 0.01  | 0.01  |        | < 0.005 | < 0.005  | _     |

| Onsite truck           | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
|------------------------|---------|----------|---------|---------|---------|---------|---------|---------|------|
| Offsite                | —       | _        | —       | —       | _       | —       | —       | —       | _    |
| Daily, Summer<br>(Max) | —       | _        | —       | _       | _       | —       | _       | _       | _    |
| Worker                 | 0.03    | 0.01     | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 6.85 |
| Vendor                 | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.02    | 0.52     | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | < 0.005 | 115  |
| Daily, Winter<br>(Max) | _       | _        | _       | _       | _       | _       | _       | —       | _    |
| Average Daily          | —       | <u> </u> | —       | —       | —       | —       | —       | —       | —    |
| Worker                 | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.45 |
| Vendor                 | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | < 0.005 | 0.04     | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 7.92 |
| Annual                 | _       | —        | _       | —       | —       | —       | —       |         | _    |
| Worker                 | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.07 |
| Vendor                 | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | < 0.005 | 0.01     | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 1.31 |

### 3.2. Demolition (2026) - Mitigated

| Location               | ROG      | NOx  | PM10E | PM10D | PM10T | PM2.5E   | PM2.5D | PM2.5T | CO2e  |
|------------------------|----------|------|-------|-------|-------|----------|--------|--------|-------|
| Onsite                 | —        | —    | —     |       | —     | <u> </u> | _      | —      | —     |
| Daily, Summer<br>(Max) | —        | —    | —     | —     | —     | —        | _      | —      | —     |
| Off-Road<br>Equipment  | 0.33     | 8.81 | 0.10  | —     | 0.10  | 0.09     | _      | 0.09   | 2,503 |
| Demolition             | <u> </u> |      | —     | 0.99  | 0.99  | <u> </u> | 0.15   | 0.15   | —     |
| Onsite truck           | 0.00     | 0.00 | 0.00  | 0.00  | 0.00  | 0.00     | 0.00   | 0.00   | 0.00  |
| Daily, Winter<br>(Max) |          |      |       |       | —     |          |        | —      | —     |

| Average Daily          | —       | —       | —       | —       | —       |          | <u> </u> | —       | —    |
|------------------------|---------|---------|---------|---------|---------|----------|----------|---------|------|
| Off-Road<br>Equipment  | 0.02    | 0.60    | 0.01    | _       | 0.01    | 0.01     | _        | 0.01    | 171  |
| Demolition             | —       | —       | —       | 0.07    | 0.07    | <u> </u> | 0.01     | 0.01    | _    |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00 |
| Annual                 | —       | —       | —       | —       | —       | —        | —        | —       | _    |
| Off-Road<br>Equipment  | < 0.005 | 0.11    | < 0.005 | —       | < 0.005 | < 0.005  | —        | < 0.005 | 28.4 |
| Demolition             | —       | —       | —       | 0.01    | 0.01    | —        | < 0.005  | < 0.005 | _    |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00 |
| Offsite                | —       | —       | —       | _       | —       | —        |          | —       | _    |
| Daily, Summer<br>(Max) | —       | _       | —       | _       | _       | —        | _        | —       | _    |
| Worker                 | 0.03    | 0.01    | 0.00    | < 0.005 | < 0.005 | 0.00     | < 0.005  | < 0.005 | 6.85 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00 |
| Hauling                | 0.02    | 0.52    | < 0.005 | 0.02    | 0.02    | < 0.005  | < 0.005  | < 0.005 | 115  |
| Daily, Winter<br>(Max) | —       | _       | —       | _       | —       | —        | _        | —       | _    |
| Average Daily          | —       | —       | —       |         |         |          |          | —       | —    |
| Worker                 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00     | < 0.005  | < 0.005 | 0.45 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00 |
| Hauling                | < 0.005 | 0.04    | < 0.005 | < 0.005 | < 0.005 | < 0.005  | < 0.005  | < 0.005 | 7.92 |
| Annual                 | —       | —       | —       | _       |         |          | _        | —       | —    |
| Worker                 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00     | < 0.005  | < 0.005 | 0.07 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00 |
| Hauling                | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005  | < 0.005  | < 0.005 | 1.31 |

### 3.3. Site Preparation (2026) - Unmitigated

| Location                          | ROG     | NOx     | PM10E   | PM10D   | PM10T    | PM2.5E  | PM2.5D   | PM2.5T  | CO2e  |
|-----------------------------------|---------|---------|---------|---------|----------|---------|----------|---------|-------|
| Onsite                            | —       | _       | _       | —       |          | —       |          | —       | _     |
| Daily, Summer<br>(Max)            |         | —       | —       | _       | _        |         | _        |         | —     |
| Off-Road<br>Equipment             | 1.24    | 11.0    | 0.51    | _       | 0.51     | 0.47    | _        | 0.47    | 2,072 |
| Dust From<br>Material<br>Movement |         | _       | _       | 2.44    | 2.44     |         | 1.17     | 1.17    | _     |
| Onsite truck                      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00  |
| Daily, Winter<br>(Max)            |         | —       | —       | _       | _        |         | _        |         | _     |
| Average Daily                     | —       | —       | —       | —       | <u> </u> |         | <u> </u> | —       | —     |
| Off-Road<br>Equipment             | 0.01    | 0.09    | < 0.005 | _       | < 0.005  | < 0.005 |          | < 0.005 | 17.0  |
| Dust From<br>Material<br>Movement |         | _       | —       | 0.02    | 0.02     |         | 0.01     | 0.01    | —     |
| Onsite truck                      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00  |
| Annual                            |         | _       | —       | —       | _        | _       |          | —       | _     |
| Off-Road<br>Equipment             | < 0.005 | 0.02    | < 0.005 | _       | < 0.005  | < 0.005 | _        | < 0.005 | 2.82  |
| Dust From<br>Material<br>Movement |         |         | _       | < 0.005 | < 0.005  |         | < 0.005  | < 0.005 | _     |
| Onsite truck                      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00  |
| Offsite                           | —       | _       | _       | _       | _        | —       |          | —       | _     |
| Daily, Summer<br>(Max)            | —       | _       | _       | _       |          | —       |          |         | _     |
| Worker                            | 0.02    | < 0.005 | 0.00    | < 0.005 | < 0.005  | 0.00    | < 0.005  | < 0.005 | 4.11  |
| Vendor                            | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00  |
| Hauling                           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00  |

| Daily, Winter<br>(Max) | —       | —       | —    | —       | —       | —    | —       | —       | —    |
|------------------------|---------|---------|------|---------|---------|------|---------|---------|------|
| Average Daily          | _       | —       | _    | _       | —       | _    | _       | _       | _    |
| Worker                 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.03 |
| Vendor                 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Annual                 | —       | —       | _    | _       | —       | —    | —       | —       | _    |
| Worker                 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.01 |
| Vendor                 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |

# 3.4. Site Preparation (2026) - Mitigated

| Location                          | ROG     | NOx      | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | CO2e  |
|-----------------------------------|---------|----------|---------|-------|---------|---------|--------|---------|-------|
| Onsite                            | —       | <u> </u> |         | —     |         | —       | —      | —       | —     |
| Daily, Summer<br>(Max)            | —       | —        | —       |       | —       | —       | _      | —       | —     |
| Off-Road<br>Equipment             | 0.27    | 6.40     | 0.04    |       | 0.04    | 0.04    | _      | 0.04    | 2,072 |
| Dust From<br>Material<br>Movement |         | _        | _       | 2.44  | 2.44    | _       | 1.17   | 1.17    | _     |
| Onsite truck                      | 0.00    | 0.00     | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00  |
| Daily, Winter<br>(Max)            |         | —        | —       |       | —       | —       | _      |         | —     |
| Average Daily                     |         |          |         |       |         | —       | _      |         | —     |
| Off-Road<br>Equipment             | < 0.005 | 0.05     | < 0.005 |       | < 0.005 | < 0.005 | _      | < 0.005 | 17.0  |
| Dust From<br>Material<br>Movement |         |          |         | 0.02  | 0.02    |         | 0.01   | 0.01    |       |

| Onsite truck                      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|------|
| Annual                            | —       | —       | —       | —       | —       | —       | —       | —       | —    |
| Off-Road<br>Equipment             | < 0.005 | 0.01    | < 0.005 | —       | < 0.005 | < 0.005 | _       | < 0.005 | 2.82 |
| Dust From<br>Material<br>Movement | _       |         |         | < 0.005 | < 0.005 |         | < 0.005 | < 0.005 |      |
| Onsite truck                      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                           | —       | —       | —       | _       | —       | —       |         | —       | —    |
| Daily, Summer<br>(Max)            | —       | —       | —       |         | —       | —       |         | _       | —    |
| Worker                            | 0.02    | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 4.11 |
| Vendor                            | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily, Winter<br>(Max)            | _       | —       | —       | —       | —       | —       | _       | —       | —    |
| Average Daily                     | —       | —       | —       | —       | —       | —       |         | —       | —    |
| Worker                            | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.03 |
| Vendor                            | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                            | —       | —       | —       | _       | —       | —       |         | —       | —    |
| Worker                            | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.01 |
| Vendor                            | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.5. Grading (2026) - Unmitigated

| Location | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|----------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Onsite   | —   | —   | —     | —     | —     | —      | —      |        | _    |

| Daily, Summer<br>(Max)            | _       | _    | _       | —       | _       | —        | —        |         | —     |
|-----------------------------------|---------|------|---------|---------|---------|----------|----------|---------|-------|
| Off-Road<br>Equipment             | 1.42    | 12.9 | 0.58    | _       | 0.58    | 0.53     | _        | 0.53    | 2,463 |
| Dust From<br>Material<br>Movement | —       | _    | —       | 2.76    | 2.76    | —        | 1.34     | 1.34    | —     |
| Onsite truck                      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Daily, Winter<br>(Max)            | —       | _    | —       | —       | _       | —        | —        | —       | —     |
| Average Daily                     | —       | _    | —       | _       | _       |          |          | —       | _     |
| Off-Road<br>Equipment             | 0.01    | 0.11 | < 0.005 | _       | < 0.005 | < 0.005  | —        | < 0.005 | 20.2  |
| Dust From<br>Material<br>Movement | —       | _    | —       | 0.02    | 0.02    | —        | 0.01     | 0.01    | —     |
| Onsite truck                      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Annual                            | —       | _    | —       | _       | _       |          | <u> </u> | —       | _     |
| Off-Road<br>Equipment             | < 0.005 | 0.02 | < 0.005 | _       | < 0.005 | < 0.005  | _        | < 0.005 | 3.35  |
| Dust From<br>Material<br>Movement | —       | _    | —       | < 0.005 | < 0.005 | _        | < 0.005  | < 0.005 | —     |
| Onsite truck                      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Offsite                           | —       | _    | —       | —       | _       | —        | —        | —       | —     |
| Daily, Summer<br>(Max)            | —       | _    | —       | —       | _       | —        | _        | —       | _     |
| Worker                            | 0.03    | 0.01 | 0.00    | < 0.005 | < 0.005 | 0.00     | < 0.005  | < 0.005 | 5.48  |
| Vendor                            | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Hauling                           | < 0.005 | 0.07 | < 0.005 | < 0.005 | < 0.005 | < 0.005  | < 0.005  | < 0.005 | 15.3  |
| Daily, Winter<br>(Max)            | —       | _    | _       | _       | _       |          | _        | —       | _     |
| Average Daily                     | —       |      | —       | _       |         | <u> </u> |          | —       | _     |

| Worker  | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005  | < 0.005 | 0.04 |
|---------|---------|---------|---------|---------|---------|---------|----------|---------|------|
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00 |
| Hauling | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005  | < 0.005 | 0.13 |
| Annual  | —       | —       | —       |         | —       | —       | <u> </u> | —       | —    |
| Worker  | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005  | < 0.005 | 0.01 |
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00 |
| Hauling | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005  | < 0.005 | 0.02 |

### 3.6. Grading (2026) - Mitigated

| Location                          | ROG     | NOx  | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | CO2e  |
|-----------------------------------|---------|------|---------|-------|---------|---------|--------|---------|-------|
| Onsite                            | _       | —    | _       | —     | _       | —       | _      | —       | —     |
| Daily, Summer<br>(Max)            |         |      |         |       | _       | —       |        |         | —     |
| Off-Road<br>Equipment             | 0.32    | 7.70 | 0.05    |       | 0.05    | 0.05    |        | 0.05    | 2,463 |
| Dust From<br>Material<br>Movement |         |      |         | 2.76  | 2.76    |         | 1.34   | 1.34    | _     |
| Onsite truck                      | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00  |
| Daily, Winter<br>(Max)            |         |      |         |       |         | _       | —      |         | —     |
| Average Daily                     |         | —    |         | —     | —       | —       |        | —       | —     |
| Off-Road<br>Equipment             | < 0.005 | 0.06 | < 0.005 |       | < 0.005 | < 0.005 | —      | < 0.005 | 20.2  |
| Dust From<br>Material<br>Movement | _       |      | _       | 0.02  | 0.02    |         | 0.01   | 0.01    | —     |
| Onsite truck                      | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00  |
| Annual                            | _       | _    | _       | _     | _       | _       | _      | _       | _     |

| Off-Road<br>Equipment             | < 0.005 | 0.01    | < 0.005 | _       | < 0.005 | < 0.005 | —       | < 0.005 | 3.35 |
|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|------|
| Dust From<br>Material<br>Movement |         | _       |         | < 0.005 | < 0.005 |         | < 0.005 | < 0.005 | —    |
| Onsite truck                      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                           | _       |         | —       | —       |         | —       |         | —       | —    |
| Daily, Summer<br>(Max)            | —       | _       | —       | —       | —       | —       | _       | —       | —    |
| Worker                            | 0.03    | 0.01    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 5.48 |
| Vendor                            | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                           | < 0.005 | 0.07    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 15.3 |
| Daily, Winter<br>(Max)            | —       | _       | —       | —       | _       | —       | _       | _       | —    |
| Average Daily                     | —       | —       | —       |         | —       | —       | —       | —       | _    |
| Worker                            | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.04 |
| Vendor                            | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.13 |
| Annual                            | —       | —       | —       |         |         | —       | —       | —       | —    |
| Worker                            | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.01 |
| Vendor                            | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.02 |

# 3.7. Building Construction (2027) - Unmitigated

| Location               | ROG  | NOx  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|------|------|-------|-------|-------|--------|--------|--------|------|
| Onsite                 | —    | —    |       | —     |       |        | —      |        | —    |
| Daily, Summer<br>(Max) | —    |      | —     | —     | —     | —      | —      | —      | —    |
| Off-Road<br>Equipment  | 0.23 | 2.09 | 0.08  |       | 0.08  | 0.07   |        | 0.07   | 464  |

| Onsite truck           | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
|------------------------|---------|----------|---------|---------|----------|---------|---------|---------|------|
| Daily, Winter<br>(Max) |         | _        |         | _       | _        |         | _       |         | —    |
| Off-Road<br>Equipment  | 0.23    | 2.09     | 0.08    | —       | 0.08     | 0.07    | _       | 0.07    | 464  |
| Onsite truck           | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily          | —       | —        | —       | _       | _        | —       | _       | —       | —    |
| Off-Road<br>Equipment  | 0.11    | 0.98     | 0.04    | _       | 0.04     | 0.03    |         | 0.03    | 218  |
| Onsite truck           | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                 | —       | <u> </u> | —       | —       | <u> </u> | —       | _       | _       | —    |
| Off-Road<br>Equipment  | 0.02    | 0.18     | 0.01    | _       | 0.01     | 0.01    | _       | 0.01    | 36.2 |
| Onsite truck           | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                | —       | <u> </u> | —       | _       | <u> </u> | —       | _       | —       | —    |
| Daily, Summer<br>(Max) |         | _        |         | _       | _        |         | _       |         | —    |
| Worker                 | 0.05    | 0.01     | 0.00    | 0.01    | 0.01     | 0.00    | < 0.005 | < 0.005 | 11.2 |
| Vendor                 | < 0.005 | 0.03     | < 0.005 | < 0.005 | < 0.005  | < 0.005 | < 0.005 | < 0.005 | 8.16 |
| Hauling                | < 0.005 | 0.02     | < 0.005 | < 0.005 | < 0.005  | < 0.005 | < 0.005 | < 0.005 | 3.50 |
| Daily, Winter<br>(Max) |         | _        |         | _       | _        |         | _       |         | —    |
| Worker                 | 0.05    | 0.02     | 0.00    | 0.01    | 0.01     | 0.00    | < 0.005 | < 0.005 | 10.8 |
| Vendor                 | < 0.005 | 0.04     | < 0.005 | < 0.005 | < 0.005  | < 0.005 | < 0.005 | < 0.005 | 8.22 |
| Hauling                | < 0.005 | 0.02     | < 0.005 | < 0.005 | < 0.005  | < 0.005 | < 0.005 | < 0.005 | 3.52 |
| Average Daily          | —       |          | —       | _       |          | —       |         | _       | _    |
| Worker                 | 0.02    | 0.01     | 0.00    | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005 | 5.09 |
| Vendor                 | < 0.005 | 0.02     | < 0.005 | < 0.005 | < 0.005  | < 0.005 | < 0.005 | < 0.005 | 3.86 |
| Hauling                | < 0.005 | 0.01     | < 0.005 | < 0.005 | < 0.005  | < 0.005 | < 0.005 | < 0.005 | 1.65 |
| Annual                 | —       | _        | —       | _       | _        | —       | _       | —       | —    |
| Worker                 | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005 | 0.84 |

| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.64 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|
| Hauling | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.27 |

### 3.8. Building Construction (2027) - Mitigated

| Location               | ROG     | NOx  | PM10E   | PM10D   | PM10T   | PM2.5E  | PM2.5D   | PM2.5T  | CO2e |
|------------------------|---------|------|---------|---------|---------|---------|----------|---------|------|
| Onsite                 | —       | —    |         | —       |         | —       | <u> </u> | —       | —    |
| Daily, Summer<br>(Max) | —       |      | —       | —       | —       | —       | —        | —       | —    |
| Off-Road<br>Equipment  | 0.15    | 2.24 | 0.04    |         | 0.04    | 0.04    |          | 0.04    | 464  |
| Onsite truck           | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00 |
| Daily, Winter<br>(Max) | _       |      |         | _       |         |         | _        |         | —    |
| Off-Road<br>Equipment  | 0.15    | 2.24 | 0.04    | —       | 0.04    | 0.04    | —        | 0.04    | 464  |
| Onsite truck           | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00 |
| Average Daily          |         |      | _       | —       |         | —       | _        | —       | _    |
| Off-Road<br>Equipment  | 0.07    | 1.06 | 0.02    | _       | 0.02    | 0.02    | _        | 0.02    | 218  |
| Onsite truck           | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00 |
| Annual                 | —       |      |         | —       |         |         | —        | _       | _    |
| Off-Road<br>Equipment  | 0.01    | 0.19 | < 0.005 | —       | < 0.005 | < 0.005 | —        | < 0.005 | 36.2 |
| Onsite truck           | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00 |
| Offsite                | —       |      |         | —       |         |         | —        | _       | _    |
| Daily, Summer<br>(Max) | —       |      | —       | —       | —       |         | —        | —       | —    |
| Worker                 | 0.05    | 0.01 | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005  | < 0.005 | 11.2 |
| Vendor                 | < 0.005 | 0.03 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005  | < 0.005 | 8.16 |
| Hauling                | < 0.005 | 0.02 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005  | < 0.005 | 3.50 |

| Daily, Winter<br>(Max) |         | _        | —       | —       | _       | —       | _       | —       | _    |
|------------------------|---------|----------|---------|---------|---------|---------|---------|---------|------|
| Worker                 | 0.05    | 0.02     | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | 10.8 |
| Vendor                 | < 0.005 | 0.04     | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 8.22 |
| Hauling                | < 0.005 | 0.02     | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 3.52 |
| Average Daily          | —       | <u> </u> | —       | —       | —       | —       | —       | —       | —    |
| Worker                 | 0.02    | 0.01     | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 5.09 |
| Vendor                 | < 0.005 | 0.02     | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 3.86 |
| Hauling                | < 0.005 | 0.01     | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 1.65 |
| Annual                 | —       | <u> </u> | —       | —       |         | —       | —       | —       | —    |
| Worker                 | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.84 |
| Vendor                 | < 0.005 | < 0.005  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.64 |
| Hauling                | < 0.005 | < 0.005  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.27 |

### 3.9. Paving (2027) - Unmitigated

| Location               | ROG  | NOx  | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | CO2e |
|------------------------|------|------|---------|-------|---------|---------|--------|---------|------|
| Onsite                 | —    | —    | —       | —     | —       | —       | —      | —       | —    |
| Daily, Summer<br>(Max) | —    |      |         |       |         | —       | _      |         | —    |
| Daily, Winter<br>(Max) |      |      |         |       |         |         | _      |         | —    |
| Off-Road<br>Equipment  | 0.46 | 4.30 | 0.17    |       | 0.17    | 0.16    | _      | 0.16    | 995  |
| Paving                 | 0.00 | —    | —       | —     | —       | —       | —      | —       | —    |
| Onsite truck           | 0.00 | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Average Daily          | _    |      | _       |       |         | —       |        | _       | _    |
| Off-Road<br>Equipment  | 0.01 | 0.12 | < 0.005 |       | < 0.005 | < 0.005 | _      | < 0.005 | 27.3 |
| Paving                 | 0.00 | _    | _       | _     | _       | _       | _      | _       | _    |

| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|------|
| Annual                 | _       | —       | —       | —       | —       | —       | —       | —       | —    |
| Off-Road<br>Equipment  | < 0.005 | 0.02    | < 0.005 | -       | < 0.005 | < 0.005 | —       | < 0.005 | 4.51 |
| Paving                 | 0.00    | —       | -       | —       | —       | _       | —       | —       | —    |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                | —       | —       | —       | —       | —       | —       | —       | —       | —    |
| Daily, Summer<br>(Max) | -       | —       | -       | -       |         | -       | —       | —       | —    |
| Daily, Winter<br>(Max) | -       | —       | -       | -       | —       | -       | —       | —       | —    |
| Worker                 | 0.03    | 0.01    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 6.46 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | < 0.005 | 0.08    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 16.7 |
| Average Daily          |         | —       | —       | —       | —       | —       | —       | —       | —    |
| Worker                 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.18 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.46 |
| Annual                 | —       | —       | —       | —       | —       | —       | —       | —       | —    |
| Worker                 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.03 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.08 |

### 3.10. Paving (2027) - Mitigated

| Location               | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Onsite                 | —   | —   | —     | —     |       |        | —      | —      |      |
| Daily, Summer<br>(Max) | _   | _   | —     | —     | _     | —      | —      | —      | _    |

| _       |         |                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|---------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.19    | 4.63    | 0.06                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.00    | —       | —                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.00    | 0.00    | 0.00                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | —       | —                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.01    | 0.13    | < 0.005                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.00    | —       | —                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.00    | 0.00    | 0.00                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _       |         | —                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| < 0.005 | 0.02    | < 0.005                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                        | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.00    | —       | —                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.00    | 0.00    | 0.00                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | —       | —                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| —       | —       | —                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _       | _       | —                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.03    | 0.01    | 0.00                                                                                                                    | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.00    | 0.00    | 0.00                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| < 0.005 | 0.08    | < 0.005                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| —       | —       | —                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| < 0.005 | < 0.005 | 0.00                                                                                                                    | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.00    | 0.00    | 0.00                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| < 0.005 | < 0.005 | < 0.005                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |         | _                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| < 0.005 | < 0.005 | 0.00                                                                                                                    | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.00    | 0.00    | 0.00                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |         | 0.194.630.000.000.000.010.130.000.000.000.000.000.000.000.010.000.000.000.010.030.010.000.000.030.000.010.000.08< 0.005 | 0.194.630.060.000.000.000.000.010.130.000.000.000.000.000.000.000.000.000.020.0050.000.020.000.000.000.000.000.000.000.010.000.000.030.010.000.040.000.000.050.080.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00 <trr>0.000.000.00</trr> | 0.194.630.06-0.000.000.000.000.000.010.130.000.000.000.000.010.000.000.000.010.000.000.000.010.010.010.000.020.010.010.000.020.010.010.000.020.010.010.000.010.010.010.030.010.010.010.040.010.010.010.050.030.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01 <td>0.194.630.06-0.060.000.000.000.000.000.000.010.130.000.010.000.000.010.010.000.000.000.000.000.010.010.000.000.000.000.020.020.000.000.000.000.030.020.0050.040.050.010.000.000.000.000.030.010.010.010.00-0.030.010.010.010.01-0.030.010.010.010.01-0.030.010.010.010.01-0.040.020.010.010.01-0.050.050.010.010.01-0.050.050.0050.0050.005-0.050.050.0050.0050.005-0.050.050.0050.0050.005-0.050.050.0050.0050.005-0.050.050.0050.0050.005-0.050.050.0050.005</td> <td>Image and the set of the set</td> <td>Image: series of the series</td> <td>nnnnnnnnnn0.19A33.000.66.000.66.000.65.000.65.000.65.000.65.000.65.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.</td> | 0.194.630.06-0.060.000.000.000.000.000.000.010.130.000.010.000.000.010.010.000.000.000.000.000.010.010.000.000.000.000.020.020.000.000.000.000.030.020.0050.040.050.010.000.000.000.000.030.010.010.010.00-0.030.010.010.010.01-0.030.010.010.010.01-0.030.010.010.010.01-0.040.020.010.010.01-0.050.050.010.010.01-0.050.050.0050.0050.005-0.050.050.0050.0050.005-0.050.050.0050.0050.005-0.050.050.0050.0050.005-0.050.050.0050.0050.005-0.050.050.0050.005 | Image and the set of the set | Image: series of the series | nnnnnnnnnn0.19A33.000.66.000.66.000.65.000.65.000.65.000.65.000.65.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000. |

| Hauling | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.08 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|
|         |         |         |         |         |         |         |         |         |      |

### 3.11. Architectural Coating (2027) - Unmitigated

| Location                  | ROG     | NOx  | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | CO2e |
|---------------------------|---------|------|---------|-------|---------|---------|--------|---------|------|
| Onsite                    | —       | _    | _       | _     |         | _       | _      | —       | _    |
| Daily, Summer<br>(Max)    |         | —    | —       | —     | —       | —       | —      |         | _    |
| Daily, Winter<br>(Max)    |         | —    | —       | _     | —       | —       |        | —       | _    |
| Off-Road<br>Equipment     | 0.11    | 0.83 | 0.02    | _     | 0.02    | 0.02    |        | 0.02    | 134  |
| Architectural<br>Coatings | 50.4    | _    | —       | _     | _       |         | _      |         | _    |
| Onsite truck              | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Average Daily             | —       | —    | —       | —     | —       | —       | —      | —       | —    |
| Off-Road<br>Equipment     | 0.01    | 0.04 | < 0.005 | —     | < 0.005 | < 0.005 | —      | < 0.005 | 6.61 |
| Architectural<br>Coatings | 2.49    | —    | —       | —     | —       | —       | —      | —       | _    |
| Onsite truck              | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Annual                    | —       | —    | —       | —     | —       | —       | —      | —       | —    |
| Off-Road<br>Equipment     | < 0.005 | 0.01 | < 0.005 | —     | < 0.005 | < 0.005 | —      | < 0.005 | 1.09 |
| Architectural<br>Coatings | 0.45    | _    | —       | —     | _       | —       | _      | _       | _    |
| Onsite truck              | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Offsite                   | —       | —    | —       | —     | _       | —       | —      | —       | —    |
| Daily, Summer<br>(Max)    |         |      | _       |       |         |         |        |         |      |
| Daily, Winter<br>(Max)    |         |      |         |       |         | —       |        |         |      |

| Worker        | 0.01    | < 0.005  | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005  | < 0.005  | 2.16 |
|---------------|---------|----------|------|---------|---------|------|----------|----------|------|
| Vendor        | 0.00    | 0.00     | 0.00 | 0.00    | 0.00    | 0.00 | 0.00     | 0.00     | 0.00 |
| Hauling       | 0.00    | 0.00     | 0.00 | 0.00    | 0.00    | 0.00 | 0.00     | 0.00     | 0.00 |
| Average Daily |         | —        | —    | —       |         | —    | —        |          | —    |
| Worker        | < 0.005 | < 0.005  | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005  | < 0.005  | 0.11 |
| Vendor        | 0.00    | 0.00     | 0.00 | 0.00    | 0.00    | 0.00 | 0.00     | 0.00     | 0.00 |
| Hauling       | 0.00    | 0.00     | 0.00 | 0.00    | 0.00    | 0.00 | 0.00     | 0.00     | 0.00 |
| Annual        | —       | <u> </u> | —    |         |         | —    | <u> </u> | <u> </u> | _    |
| Worker        | < 0.005 | < 0.005  | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005  | < 0.005  | 0.02 |
| Vendor        | 0.00    | 0.00     | 0.00 | 0.00    | 0.00    | 0.00 | 0.00     | 0.00     | 0.00 |
| Hauling       | 0.00    | 0.00     | 0.00 | 0.00    | 0.00    | 0.00 | 0.00     | 0.00     | 0.00 |

# 3.12. Architectural Coating (2027) - Mitigated

| Location                  | ROG     | NOx  | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | CO2e |
|---------------------------|---------|------|---------|-------|---------|---------|--------|---------|------|
| Onsite                    | —       | —    | —       | —     | —       |         |        | —       | —    |
| Daily, Summer<br>(Max)    |         |      |         |       | —       |         | _      |         | —    |
| Daily, Winter<br>(Max)    | —       |      | —       | —     | —       | —       | —      | —       | _    |
| Off-Road<br>Equipment     | 0.02    | 1.07 | 0.03    | —     | 0.03    | 0.03    | —      | 0.03    | 134  |
| Architectural<br>Coatings | 50.4    |      | —       | —     | —       | —       | —      | —       | _    |
| Onsite truck              | 0.00    | 0.00 | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | 0.00 |
| Average Daily             | —       | —    | —       | —     | —       | —       | —      | —       |      |
| Off-Road<br>Equipment     | < 0.005 | 0.05 | < 0.005 | —     | < 0.005 | < 0.005 | —      | < 0.005 | 6.61 |
| Architectural<br>Coatings | 2.49    |      | _       |       |         | —       |        | _       |      |

| Onsite truck              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|---------|----------|---------|---------|---------|------|
| Annual                    | —       |         | —       | —       | —        | —       | _       | _       | —    |
| Off-Road<br>Equipment     | < 0.005 | 0.01    | < 0.005 | —       | < 0.005  | < 0.005 | —       | < 0.005 | 1.09 |
| Architectural<br>Coatings | 0.45    | —       | —       | —       | —        | —       | —       | —       | —    |
| Onsite truck              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | —       |         | —       | —       | —        | —       | _       | _       | —    |
| Daily, Summer<br>(Max)    | —       | —       | —       | —       | —        | —       | —       | —       | —    |
| Daily, Winter<br>(Max)    |         | —       |         |         | —        |         | _       |         | —    |
| Worker                    | 0.01    | < 0.005 | 0.00    | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005 | 2.16 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily             | —       |         | —       | —       | —        | —       | _       | _       | —    |
| Worker                    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005 | 0.11 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | —       |         |         | _       | <u> </u> | —       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005 | 0.02 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00 |

### 3.13. Trenching (2026) - Unmitigated

| Location               | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Onsite                 | —   |     | —     | —     |       | —      |        | —      | —    |
| Daily, Summer<br>(Max) | —   |     |       | —     |       | —      |        | —      | —    |

| Daily, Winter<br>(Max) | —       |          |         | _       |          |         |          |         | —       |
|------------------------|---------|----------|---------|---------|----------|---------|----------|---------|---------|
| Off-Road<br>Equipment  | 0.20    | 1.86     | 0.06    | _       | 0.06     | 0.05    |          | 0.05    | 433     |
| Onsite truck           | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    |
| Average Daily          | _       |          | —       | —       | _        | —       |          | —       | _       |
| Off-Road<br>Equipment  | < 0.005 | 0.02     | < 0.005 | _       | < 0.005  | < 0.005 |          | < 0.005 | 3.56    |
| Onsite truck           | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    |
| Annual                 | —       | <u> </u> | —       | —       | <u> </u> | —       | <u> </u> | —       | _       |
| Off-Road<br>Equipment  | < 0.005 | < 0.005  | < 0.005 | _       | < 0.005  | < 0.005 |          | < 0.005 | 0.59    |
| Onsite truck           | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    |
| Offsite                | —       |          | —       | —       |          | —       |          | —       | —       |
| Daily, Summer<br>(Max) | —       |          | _       | _       |          |         |          | —       | —       |
| Daily, Winter<br>(Max) | —       | _        | —       | _       | —        | _       | _        | —       | —       |
| Worker                 | 0.01    | < 0.005  | 0.00    | < 0.005 | < 0.005  | 0.00    | < 0.005  | < 0.005 | 2.67    |
| Vendor                 | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    |
| Hauling                | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    |
| Average Daily          |         | <u> </u> | —       | —       | <u> </u> | —       | <u> </u> | —       | _       |
| Worker                 | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005  | 0.00    | < 0.005  | < 0.005 | 0.02    |
| Vendor                 | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    |
| Hauling                | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    |
| Annual                 | —       | _        | —       | —       | _        | —       | _        | —       | _       |
| Worker                 | < 0.005 | < 0.005  | 0.00    | < 0.005 | < 0.005  | 0.00    | < 0.005  | < 0.005 | < 0.005 |
| Vendor                 | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    |
| Hauling                | 0.00    | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    |

# 3.14. Trenching (2026) - Mitigated

| Location               | ROG     | NOx     | PM10E   | PM10D   | PM10T   | PM2.5E  | PM2.5D  | PM2.5T  | CO2e |
|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|------|
| Onsite                 | —       | —       | —       | —       | —       | —       | —       | —       | —    |
| Daily, Summer<br>(Max) |         |         |         |         |         | —       |         |         |      |
| Daily, Winter<br>(Max) |         |         |         |         |         | —       |         |         |      |
| Off-Road<br>Equipment  | 0.07    | 2.28    | 0.04    |         | 0.04    | 0.03    |         | 0.03    | 433  |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily          | _       |         | —       | _       | _       | —       |         | —       | —    |
| Off-Road<br>Equipment  | < 0.005 | 0.02    | < 0.005 |         | < 0.005 | < 0.005 |         | < 0.005 | 3.56 |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                 | —       | —       | —       | —       | —       | —       | —       | —       | —    |
| Off-Road<br>Equipment  | < 0.005 | < 0.005 | < 0.005 | —       | < 0.005 | < 0.005 | —       | < 0.005 | 0.59 |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                | —       | —       | —       | —       | —       | —       | —       | —       | —    |
| Daily, Summer<br>(Max) |         |         | —       |         | _       | —       |         | —       |      |
| Daily, Winter<br>(Max) | _       | _       | —       | —       | —       | —       | _       | —       | —    |
| Worker                 | 0.01    | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 2.67 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily          |         |         | —       |         |         | —       |         |         |      |
| Worker                 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.02 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

| Hauling | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    |
|---------|---------|---------|------|---------|---------|------|---------|---------|---------|
| Annual  | —       | —       | —    | —       | —       | —    | —       | —       | _       |
| Worker  | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | < 0.005 |
| Vendor  | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    |
| Hauling | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    |

# 4. Operations Emissions Details

### 4.10. Soil Carbon Accumulation By Vegetation Type

#### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Vegetation             | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Total                  | _   | —   | —     | —     | _     | —      |        | —      | _    |
| Daily, Winter<br>(Max) | —   |     | —     | —     | —     | —      | —      | —      | —    |
| Total                  |     | —   | —     | —     | —     |        | —      | —      | —    |
| Annual                 |     | —   | —     | —     | —     |        | —      | —      | —    |
| Total                  |     |     | _     |       | —     |        | —      | _      | —    |

#### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

| Land Use               | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —   | —   | —     |       | —     | —      | —      | —      |      |
| Total                  | —   | —   |       | —     | —     | —      |        |        |      |
| Daily, Winter<br>(Max) |     | —   | _     |       | —     | —      | —      | —      |      |

| Total  | — |   |   |   |   |   | <u> </u> | — | _ |
|--------|---|---|---|---|---|---|----------|---|---|
| Annual | — | — | — | — | — | — | —        | — | _ |
| Total  |   |   | — |   |   | — |          | — |   |

#### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

| Species                | ROG | NOx | PM10E | PM10D | PM10T    | PM2.5E | PM2.5D   | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|----------|--------|----------|--------|------|
| Daily, Summer<br>(Max) | —   | —   | —     | —     | —        | —      | —        | —      | —    |
| Avoided                | —   |     | —     | —     | _        | —      | _        | —      | _    |
| Subtotal               |     |     | —     | _     | —        |        |          | —      | —    |
| Sequestered            | _   |     | —     | _     | _        | _      | <u> </u> | —      | —    |
| Subtotal               | —   | —   | —     | —     | <u> </u> | —      | <u> </u> | —      | —    |
| Removed                | —   |     | —     | —     | —        | —      | <u> </u> | —      | —    |
| Subtotal               | —   | —   | —     | —     | —        | —      |          | —      | —    |
| —                      | —   | —   | —     | —     | —        | —      |          | —      | —    |
| Daily, Winter<br>(Max) | _   | _   | —     | —     | _        | _      | _        | —      | —    |
| Avoided                | —   | —   | —     | —     |          | —      |          | —      | —    |
| Subtotal               | —   | —   | —     | —     |          | —      |          | —      | —    |
| Sequestered            | —   | —   | —     | —     | —        | —      | —        | —      | —    |
| Subtotal               | —   | —   | —     | —     | —        | —      | —        | —      | —    |
| Removed                | —   |     | _     |       | —        | —      | —        | _      | —    |
| Subtotal               | —   |     | _     |       | —        | —      | —        | _      | —    |
| —                      |     |     | _     |       | —        | —      | —        | _      | —    |
| Annual                 |     |     |       |       | —        | —      | —        |        | —    |
| Avoided                | —   |     | _     | _     | _        |        | _        | _      | —    |
| Subtotal               | —   |     | —     | —     |          | —      | _        | —      | —    |
| Sequestered            | —   |     | _     |       |          | —      | _        | _      | _    |

| Subtotal | — | — | — | — | — | — | — | — | _ |
|----------|---|---|---|---|---|---|---|---|---|
| Removed  |   | — | — | — | — | — | — | — | — |
| Subtotal |   | — | — | — | — | — | — | — | _ |
|          |   |   | — | — | — |   | _ | — |   |

#### 4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Vegetation             | ROG | NOx | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | CO2e |
|------------------------|-----|-----|-------|-------|-------|--------|--------|--------|------|
| Daily, Summer<br>(Max) | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Total                  | —   | —   | _     |       | —     | —      | —      | —      | —    |
| Daily, Winter<br>(Max) | —   |     | _     | _     |       | —      | —      |        | —    |
| Total                  | —   | —   | —     | —     | —     | —      | —      | —      | —    |
| Annual                 |     | _   | _     |       |       |        |        | —      | —    |
| Total                  | _   | _   | _     | _     | _     | _      | _      | —      | _    |

#### 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

| Land Use               | ROG | NOx      | PM10E | PM10D    | PM10T | PM2.5E   | PM2.5D   | PM2.5T | CO2e |
|------------------------|-----|----------|-------|----------|-------|----------|----------|--------|------|
| Daily, Summer<br>(Max) | —   | —        | —     | —        | —     | —        | —        | —      | —    |
| Total                  |     |          |       | —        | —     | <u> </u> |          |        | _    |
| Daily, Winter<br>(Max) |     |          |       |          | _     |          |          |        | —    |
| Total                  |     | <u> </u> |       | <u> </u> | —     |          | <u> </u> |        |      |
| Annual                 |     |          |       | <u> </u> | —     |          |          |        |      |
| Total                  | _   | _        | _     | _        | _     | _        | _        | —      | _    |

#### 4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

| Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, | , MT/yr for annual) |
|---------------------------------------------------------------------------------------|---------------------|
|---------------------------------------------------------------------------------------|---------------------|

| Species                | ROG      | NOx      | PM10E | PM10D | PM10T | PM2.5E | PM2.5D   | PM2.5T   | CO2e |
|------------------------|----------|----------|-------|-------|-------|--------|----------|----------|------|
| Daily, Summer<br>(Max) | —        | _        | —     |       | —     | —      | _        |          | —    |
| Avoided                |          |          | —     | —     | —     | —      | <u> </u> | —        | —    |
| Subtotal               |          |          |       | —     | —     | —      | _        | —        | —    |
| Sequestered            |          |          | —     |       | —     | _      | _        |          | —    |
| Subtotal               |          |          | —     |       |       | _      | _        |          | —    |
| Removed                |          | <u> </u> |       |       |       | _      | _        |          | —    |
| Subtotal               |          |          |       |       |       | _      | _        |          | —    |
| —                      |          | <u> </u> |       |       |       | _      | _        | <u> </u> | —    |
| Daily, Winter<br>(Max) | —        | —        |       |       | —     | _      | _        |          | —    |
| Avoided                |          | —        | —     |       | —     | —      |          | —        | —    |
| Subtotal               |          | —        | —     |       | —     | —      |          | —        | —    |
| Sequestered            |          | —        | —     |       | —     | —      |          | —        | —    |
| Subtotal               |          | —        | —     |       | —     | —      | <u> </u> | —        | —    |
| Removed                | —        | —        |       |       | —     | —      | _        |          | —    |
| Subtotal               |          | —        | _     | —     |       | —      | —        | _        | —    |
| —                      | —        |          | —     | —     | —     | —      | _        | —        | —    |
| Annual                 | <u> </u> |          | —     | —     | —     | —      | _        |          | —    |
| Avoided                |          |          | —     |       |       | _      | _        |          | —    |
| Subtotal               |          |          | —     |       |       | _      | _        |          | —    |
| Sequestered            |          |          |       |       |       | _      | _        | <u> </u> | —    |
| Subtotal               |          |          |       |       |       |        | _        |          | _    |
| Removed                | _        | _        |       | _     | _     | _      | _        |          | _    |
| Subtotal               | _        | _        |       | —     | _     | _      |          |          | _    |
| _                      | _        |          | _     |       | _     | _      |          | _        | _    |
# 5. Activity Data

# 5.1. Construction Schedule

| Phase Name            | Phase Type            | Start Date | End Date  | Days Per Week | Work Days per Phase | Phase Description |
|-----------------------|-----------------------|------------|-----------|---------------|---------------------|-------------------|
| Demolition            | Demolition            | 4/1/2026   | 4/29/2026 | 6.00          | 25.0                | —                 |
| Site Preparation      | Site Preparation      | 6/1/2026   | 6/3/2026  | 6.00          | 3.00                | —                 |
| Grading               | Grading               | 6/4/2026   | 6/7/2026  | 6.00          | 3.00                | —                 |
| Building Construction | Building Construction | 1/1/2027   | 7/20/2027 | 6.00          | 172                 | —                 |
| Paving                | Paving                | 2/1/2027   | 2/11/2027 | 6.00          | 10.0                | —                 |
| Architectural Coating | Architectural Coating | 2/1/2027   | 2/21/2027 | 6.00          | 18.0                | —                 |
| Trenching             | Trenching             | 11/1/2026  | 11/4/2026 | 6.00          | 3.00                | —                 |

# 5.2. Off-Road Equipment

## 5.2.1. Unmitigated

| Phase Name       | Equipment Type              | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|------------------|-----------------------------|-----------|-------------|----------------|---------------|------------|-------------|
| Demolition       | Concrete/Industrial<br>Saws | Diesel    | Average     | 1.00           | 8.00          | 33.0       | 0.73        |
| Demolition       | Rubber Tired Dozers         | Diesel    | Average     | 1.00           | 8.00          | 367        | 0.40        |
| Demolition       | Tractors/Loaders/Back hoes  | Diesel    | Average     | 3.00           | 8.00          | 84.0       | 0.37        |
| Site Preparation | Graders                     | Diesel    | Average     | 1.00           | 8.00          | 148        | 0.41        |
| Site Preparation | Rubber Tired Dozers         | Diesel    | Average     | 1.00           | 7.00          | 367        | 0.40        |
| Site Preparation | Tractors/Loaders/Back hoes  | Diesel    | Average     | 1.00           | 8.00          | 84.0       | 0.37        |
| Grading          | Graders                     | Diesel    | Average     | 1.00           | 8.00          | 148        | 0.41        |
| Grading          | Rubber Tired Dozers         | Diesel    | Average     | 1.00           | 8.00          | 367        | 0.40        |
| Grading          | Tractors/Loaders/Back hoes  | Diesel    | Average     | 2.00           | 7.00          | 84.0       | 0.37        |

| <b>Building Construction</b> | Forklifts                            | Diesel | Average | 1.00 | 6.00 | 82.0 | 0.20 |
|------------------------------|--------------------------------------|--------|---------|------|------|------|------|
| Building Construction        | Generator Sets                       | Diesel | Average | 1.00 | 8.00 | 14.0 | 0.74 |
| Building Construction        | Tractors/Loaders/Back hoes           | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 |
| Building Construction        | Other Material<br>Handling Equipment | Diesel | Average | 1.00 | 0.60 | 93.0 | 0.40 |
| Paving                       | Cement and Mortar<br>Mixers          | Diesel | Average | 1.00 | 6.00 | 10.0 | 0.56 |
| Paving                       | Pavers                               | Diesel | Average | 1.00 | 6.00 | 81.0 | 0.42 |
| Paving                       | Paving Equipment                     | Diesel | Average | 1.00 | 8.00 | 89.0 | 0.36 |
| Paving                       | Rollers                              | Diesel | Average | 1.00 | 7.00 | 36.0 | 0.38 |
| Paving                       | Tractors/Loaders/Back hoes           | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 |
| Architectural Coating        | Air Compressors                      | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |
| Trenching                    | Tractors/Loaders/Back hoes           | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 |
| Trenching                    | Excavators                           | Diesel | Average | 1.00 | 8.00 | 36.0 | 0.38 |

# 5.2.2. Mitigated

| Phase Name       | Equipment Type              | Fuel Type | Engine Tier    | Number per Day | Hours Per Day | Horsepower | Load Factor |
|------------------|-----------------------------|-----------|----------------|----------------|---------------|------------|-------------|
| Demolition       | Concrete/Industrial<br>Saws | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 33.0       | 0.73        |
| Demolition       | Rubber Tired Dozers         | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 367        | 0.40        |
| Demolition       | Tractors/Loaders/Back hoes  | Diesel    | Tier 4 Interim | 3.00           | 8.00          | 84.0       | 0.37        |
| Site Preparation | Graders                     | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 148        | 0.41        |
| Site Preparation | Rubber Tired Dozers         | Diesel    | Tier 4 Interim | 1.00           | 7.00          | 367        | 0.40        |
| Site Preparation | Tractors/Loaders/Back hoes  | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 84.0       | 0.37        |
| Grading          | Graders                     | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 148        | 0.41        |
| Grading          | Rubber Tired Dozers         | Diesel    | Tier 4 Interim | 1.00           | 8.00          | 367        | 0.40        |

| Grading               | Tractors/Loaders/Back                | Diesel | Tier 4 Interim | 2.00 | 7.00 | 84.0 | 0.37 |
|-----------------------|--------------------------------------|--------|----------------|------|------|------|------|
| Building Construction | Forklifts                            | Diesel | Tier 4 Interim | 1.00 | 6.00 | 82.0 | 0.20 |
| Building Construction | Generator Sets                       | Diesel | Average        | 1.00 | 8.00 | 14.0 | 0.74 |
| Building Construction | Tractors/Loaders/Back hoes           | Diesel | Tier 4 Interim | 1.00 | 6.00 | 84.0 | 0.37 |
| Building Construction | Other Material<br>Handling Equipment | Diesel | Tier 4 Interim | 1.00 | 0.60 | 93.0 | 0.40 |
| Paving                | Cement and Mortar<br>Mixers          | Diesel | Average        | 1.00 | 6.00 | 10.0 | 0.56 |
| Paving                | Pavers                               | Diesel | Tier 4 Interim | 1.00 | 6.00 | 81.0 | 0.42 |
| Paving                | Paving Equipment                     | Diesel | Tier 4 Interim | 1.00 | 8.00 | 89.0 | 0.36 |
| Paving                | Rollers                              | Diesel | Tier 4 Interim | 1.00 | 7.00 | 36.0 | 0.38 |
| Paving                | Tractors/Loaders/Back hoes           | Diesel | Tier 4 Interim | 1.00 | 8.00 | 84.0 | 0.37 |
| Architectural Coating | Air Compressors                      | Diesel | Tier 4 Interim | 1.00 | 6.00 | 37.0 | 0.48 |
| Trenching             | Tractors/Loaders/Back hoes           | Diesel | Tier 4 Interim | 1.00 | 8.00 | 84.0 | 0.37 |
| Trenching             | Excavators                           | Diesel | Tier 4 Interim | 1.00 | 8.00 | 36.0 | 0.38 |

# 5.3. Construction Vehicles

# 5.3.1. Unmitigated

| Phase Name       | Тгір Туре    | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|------------------|--------------|-----------------------|----------------|---------------|
| Demolition       | —            | —                     | —              | —             |
| Demolition       | Worker       | 12.5                  | 0.50           | LDA,LDT1,LDT2 |
| Demolition       | Vendor       |                       | 0.50           | HHDT,MHDT     |
| Demolition       | Hauling      | 32.7                  | 0.50           | HHDT          |
| Demolition       | Onsite truck | _                     | _              | HHDT          |
| Site Preparation | —            | —                     | —              | —             |
| Site Preparation | Worker       | 7.50                  | 0.50           | LDA,LDT1,LDT2 |

| Site Preparation      | Vendor       | _    | 0.50 | HHDT,MHDT     |
|-----------------------|--------------|------|------|---------------|
| Site Preparation      | Hauling      | 0.00 | 0.50 | HHDT          |
| Site Preparation      | Onsite truck | _    | _    | HHDT          |
| Grading               | _            | _    | _    |               |
| Grading               | Worker       | 10.0 | 0.50 | LDA,LDT1,LDT2 |
| Grading               | Vendor       | _    | 0.50 | HHDT,MHDT     |
| Grading               | Hauling      | 4.33 | 0.50 | HHDT          |
| Grading               | Onsite truck | _    | _    | HHDT          |
| Building Construction | _            | _    | _    | _             |
| Building Construction | Worker       | 20.9 | 0.50 | LDA,LDT1,LDT2 |
| Building Construction | Vendor       | 3.10 | 0.50 | HHDT,MHDT     |
| Building Construction | Hauling      | 1.01 | 0.50 | HHDT          |
| Building Construction | Onsite truck | _    | _    | HHDT          |
| Paving                | _            | _    | _    | _             |
| Paving                | Worker       | 12.5 | 0.50 | LDA,LDT1,LDT2 |
| Paving                | Vendor       | _    | 0.50 | HHDT,MHDT     |
| Paving                | Hauling      | 4.80 | 0.50 | HHDT          |
| Paving                | Onsite truck | _    | _    | HHDT          |
| Architectural Coating | _            | _    | _    |               |
| Architectural Coating | Worker       | 4.18 | 0.50 | LDA,LDT1,LDT2 |
| Architectural Coating | Vendor       | _    | 0.50 | HHDT,MHDT     |
| Architectural Coating | Hauling      | 0.00 | 0.50 | HHDT          |
| Architectural Coating | Onsite truck | _    | _    | HHDT          |
| Trenching             | _            | _    | _    | _             |
| Trenching             | Worker       | 5.00 | 0.50 | LDA,LDT1,LDT2 |
| Trenching             | Vendor       |      | 0.50 | HHDT,MHDT     |
| Trenching             | Hauling      | 0.00 | 0.50 | HHDT          |
| Trenching             | Onsite truck | _    | _    | HHDT          |

# 5.3.2. Mitigated

| Phase Name            | Тгір Туре    | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|-----------------------|--------------|-----------------------|----------------|---------------|
| Demolition            |              | _                     | _              | _             |
| Demolition            | Worker       | 12.5                  | 0.50           | LDA,LDT1,LDT2 |
| Demolition            | Vendor       | _                     | 0.50           | HHDT,MHDT     |
| Demolition            | Hauling      | 32.7                  | 0.50           | HHDT          |
| Demolition            | Onsite truck | _                     |                | HHDT          |
| Site Preparation      |              | _                     | _              | _             |
| Site Preparation      | Worker       | 7.50                  | 0.50           | LDA,LDT1,LDT2 |
| Site Preparation      | Vendor       |                       | 0.50           | HHDT,MHDT     |
| Site Preparation      | Hauling      | 0.00                  | 0.50           | HHDT          |
| Site Preparation      | Onsite truck |                       |                | HHDT          |
| Grading               |              | _                     | _              | _             |
| Grading               | Worker       | 10.0                  | 0.50           | LDA,LDT1,LDT2 |
| Grading               | Vendor       |                       | 0.50           | HHDT,MHDT     |
| Grading               | Hauling      | 4.33                  | 0.50           | HHDT          |
| Grading               | Onsite truck |                       |                | HHDT          |
| Building Construction |              |                       | _              | —             |
| Building Construction | Worker       | 20.9                  | 0.50           | LDA,LDT1,LDT2 |
| Building Construction | Vendor       | 3.10                  | 0.50           | HHDT,MHDT     |
| Building Construction | Hauling      | 1.01                  | 0.50           | HHDT          |
| Building Construction | Onsite truck |                       |                | HHDT          |
| Paving                |              |                       |                | _             |
| Paving                | Worker       | 12.5                  | 0.50           | LDA,LDT1,LDT2 |
| Paving                | Vendor       | _                     | 0.50           | HHDT,MHDT     |
| Paving                | Hauling      | 4.80                  | 0.50           | HHDT          |
| Paving                | Onsite truck | _                     | _              | HHDT          |
| Architectural Coating | _            | _                     | —              | _             |

| Architectural Coating | Worker       | 4.18 | 0.50 | LDA,LDT1,LDT2 |
|-----------------------|--------------|------|------|---------------|
| Architectural Coating | Vendor       | _    | 0.50 | HHDT,MHDT     |
| Architectural Coating | Hauling      | 0.00 | 0.50 | HHDT          |
| Architectural Coating | Onsite truck | _    | _    | HHDT          |
| Trenching             |              | _    | _    | _             |
| Trenching             | Worker       | 5.00 | 0.50 | LDA,LDT1,LDT2 |
| Trenching             | Vendor       | _    | 0.50 | HHDT,MHDT     |
| Trenching             | Hauling      | 0.00 | 0.50 | HHDT          |
| Trenching             | Onsite truck | _    | —    | HHDT          |

# 5.4. Vehicles

## 5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

# 5.5. Architectural Coatings

| Phase Name            | Residential Interior Area<br>Coated (sq ft) | Residential Exterior Area<br>Coated (sq ft) | Non-Residential Interior Area<br>Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|-----------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------|
| Architectural Coating | 130,451                                     | 43,484                                      | 0.00                                            | 0.00                                            | —                           |

# 5.6. Dust Mitigation

## 5.6.1. Construction Earthmoving Activities

| Phase Name       | Material Imported (cy) | Material Exported (cy) | Acres Graded (acres) | Material Demolished (Building<br>Square Footage) | Acres Paved (acres) |
|------------------|------------------------|------------------------|----------------------|--------------------------------------------------|---------------------|
| Demolition       | 0.00                   | 0.00                   | 0.00                 | 24,693                                           | —                   |
| Site Preparation |                        | —                      | 2.81                 | 0.00                                             | —                   |
| Grading          | 100                    | _                      | 3.00                 | 0.00                                             | _                   |
| Paving           | 0.00                   | 0.00                   | 0.00                 | 0.00                                             | _                   |

## 5.6.2. Construction Earthmoving Control Strategies

| Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction |
|----------------------------|---------------------|----------------|-----------------|
| Water Exposed Area         | 2                   | 61%            | 61%             |

# 5.7. Construction Paving

| Land Use        | Area Paved (acres) | % Asphalt |
|-----------------|--------------------|-----------|
| Condo/Townhouse |                    | 0%        |

## 5.8. Construction Electricity Consumption and Emissions Factors

## kWh per Year and Emission Factor (lb/MWh)

| Year | kWh per Year | CO2  | CH4  | N2O  |
|------|--------------|------|------|------|
| 2026 | 0.00         | 0.00 | 0.00 | 0.00 |
| 2027 | 0.00         | 0.00 | 0.00 | 0.00 |

## 5.18. Vegetation

## 5.18.1. Land Use Change

## 5.18.1.1. Unmitigated

| Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres |
|--------------------------|----------------------|---------------|-------------|
|                          |                      |               |             |

## 5.18.1.2. Mitigated

| Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres |
|--------------------------|----------------------|---------------|-------------|
|                          |                      |               |             |

## 5.18.1. Biomass Cover Type

## 5.18.1.1. Unmitigated

| Biomass Cover Type  | Initial Acres | Final Acres |
|---------------------|---------------|-------------|
| 5.18.1.2. Mitigated |               |             |

| Biomass Cover Type    | Initial A | cres F                       | -inal Acres                  |
|-----------------------|-----------|------------------------------|------------------------------|
| 5.18.2. Sequestration |           |                              |                              |
| 5.18.2.1. Unmitigated |           |                              |                              |
| Тгее Туре             | Number    | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) |
| 5.18.2.2. Mitigated   |           |                              |                              |
| Tree Type             | Number    | Electricity Saved (kWh/year) | Natural Gas Saved (htu/vear) |

# 6. Climate Risk Detailed Report

# 6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

| Climate Hazard               | Result for Project Location | Unit                                       |
|------------------------------|-----------------------------|--------------------------------------------|
| Temperature and Extreme Heat | 12.7                        | annual days of extreme heat                |
| Extreme Precipitation        | 4.40                        | annual days with precipitation above 20 mm |
| Sea Level Rise               | _                           | meters of inundation depth                 |
| Wildfire                     | 8.55                        | annual hectares burned                     |

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about <sup>3</sup>/<sub>4</sub> an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

## 6.2. Initial Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | N/A            | N/A               | N/A                     | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | N/A            | N/A               | N/A                     | N/A                 |
| Wildfire                     | N/A            | N/A               | N/A                     | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 0              | 0                 | 0                       | N/A                 |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

# 6.3. Adjusted Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | N/A            | N/A               | N/A                     | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | N/A            | N/A               | N/A                     | N/A                 |
| Wildfire                     | N/A            | N/A               | N/A                     | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |

| Snowpack Reduction      | N/A | N/A | N/A | N/A |
|-------------------------|-----|-----|-----|-----|
| Air Quality Degradation | 1   | 1   | 1   | 2   |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

# 6.4. Climate Risk Reduction Measures

# 7. Health and Equity Details

# 7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

| Indicator                       | Result for Project Census Tract |
|---------------------------------|---------------------------------|
| Exposure Indicators             |                                 |
| AQ-Ozone                        | 13.6                            |
| AQ-PM                           | 16.1                            |
| AQ-DPM                          | 87.7                            |
| Drinking Water                  | 61.4                            |
| Lead Risk Housing               | 39.0                            |
| Pesticides                      | 0.00                            |
| Toxic Releases                  | 29.6                            |
| Traffic                         | 72.1                            |
| Effect Indicators               |                                 |
| CleanUp Sites                   | 62.0                            |
| Groundwater                     | 35.0                            |
| Haz Waste Facilities/Generators | 50.1                            |
| Impaired Water Bodies           | 0.00                            |
| Solid Waste                     | 0.00                            |
|                                 |                                 |

| Sensitive Population            | _    |
|---------------------------------|------|
| Asthma                          | 1.61 |
| Cardio-vascular                 | 4.44 |
| Low Birth Weights               | 22.6 |
| Socioeconomic Factor Indicators |      |
| Education                       | 33.9 |
| Housing                         | 24.9 |
| Linguistic                      | 64.4 |
| Poverty                         | 14.3 |
| Unemployment                    | 41.8 |

# 7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

| Indicator              | Result for Project Census Tract |
|------------------------|---------------------------------|
| Economic               |                                 |
| Above Poverty          | 83.2157064                      |
| Employed               | 93.31451302                     |
| Median HI              | 75.45232901                     |
| Education              |                                 |
| Bachelor's or higher   | 98.10085975                     |
| High school enrollment | 100                             |
| Preschool enrollment   | 63.67252663                     |
| Transportation         |                                 |
| Auto Access            | 26.17733864                     |
| Active commuting       | 85.82060824                     |
| Social                 | _                               |
| 2-parent households    | 59.74592583                     |
| Voting                 | 87.68125241                     |

| Neighborhood                                 | _           |
|----------------------------------------------|-------------|
| Alcohol availability                         | 11.77980239 |
| Park access                                  | 10.40677531 |
| Retail density                               | 93.51982548 |
| Supermarket access                           | 94.25125112 |
| Tree canopy                                  | 81.80418324 |
| Housing                                      |             |
| Homeownership                                | 9.303220839 |
| Housing habitability                         | 42.89747209 |
| Low-inc homeowner severe housing cost burden | 75.68330553 |
| Low-inc renter severe housing cost burden    | 80.52098037 |
| Uncrowded housing                            | 28.82073656 |
| Health Outcomes                              |             |
| Insured adults                               | 98.9734377  |
| Arthritis                                    | 96.4        |
| Asthma ER Admissions                         | 99.2        |
| High Blood Pressure                          | 91.8        |
| Cancer (excluding skin)                      | 71.8        |
| Asthma                                       | 95.7        |
| Coronary Heart Disease                       | 97.4        |
| Chronic Obstructive Pulmonary Disease        | 98.5        |
| Diagnosed Diabetes                           | 96.0        |
| Life Expectancy at Birth                     | 88.2        |
| Cognitively Disabled                         | 66.4        |
| Physically Disabled                          | 93.4        |
| Heart Attack ER Admissions                   | 98.8        |
| Mental Health Not Good                       | 96.5        |
| Chronic Kidney Disease                       | 95.6        |

| Obesity                               | 93.1 |
|---------------------------------------|------|
| Pedestrian Injuries                   | 64.7 |
| Physical Health Not Good              | 98.5 |
| Stroke                                | 97.8 |
| Health Risk Behaviors                 |      |
| Binge Drinking                        | 48.9 |
| Current Smoker                        | 96.9 |
| No Leisure Time for Physical Activity | 95.4 |
| Climate Change Exposures              |      |
| Wildfire Risk                         | 0.0  |
| SLR Inundation Area                   | 0.0  |
| Children                              | 45.9 |
| Elderly                               | 73.9 |
| English Speaking                      | 28.2 |
| Foreign-born                          | 91.6 |
| Outdoor Workers                       | 62.2 |
| Climate Change Adaptive Capacity      |      |
| Impervious Surface Cover              | 20.0 |
| Traffic Density                       | 44.4 |
| Traffic Access                        | 87.4 |
| Other Indices                         | _    |
| Hardship                              | 12.4 |
| Other Decision Support                |      |
| 2016 Voting                           | 89.5 |

# 7.3. Overall Health & Equity Scores

| Metric                                             | Result for Project Census Tract |
|----------------------------------------------------|---------------------------------|
| CalEnviroScreen 4.0 Score for Project Location (a) | 14.0                            |

| Healthy Places Index Score for Project Location (b)                                 | 89.0 |
|-------------------------------------------------------------------------------------|------|
| Project Located in a Designated Disadvantaged Community (Senate Bill 535)           | No   |
| Project Located in a Low-Income Community (Assembly Bill 1550)                      | No   |
| Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No   |

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

## 7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed. 7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

# 8. User Changes to Default Data

| Screen                              | Justification                                                                                                                                                                                                                                                       |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Use                            | Number of units, total lot acreage, and square footage from provided project plans/ filled out construction worksheet.                                                                                                                                              |
| Construction: Construction Phases   | Construction dates and phases provided by filled out construction worksheet.                                                                                                                                                                                        |
| Construction: Off-Road Equipment    | Blend on defaults and information provided from filled out construction worksheet.                                                                                                                                                                                  |
| Construction: Trips and VMT         | Demolition = 23,000-sf of pavement demo'd and hauled (21.3 trips/day), Building Construction = Est. 101 concrete truck round trips (1.01 trips/day), Paving = Est. 12 asphalt truck round trips (4.8 trips/day). HRA = 0.5 mile trip length for localized emissions |
| Construction: On-Road Fugitive Dust | Air District BMPs 15 mph - required by Palo Alto.                                                                                                                                                                                                                   |
| Operations: Vehicle Data            | Provided trip gen.                                                                                                                                                                                                                                                  |
| Operations: Hearths                 | No hearths.                                                                                                                                                                                                                                                         |
| Operations: Energy Use              | Project design is all-electric. Confirmed no natural gas by applicant. Convert natural gas to electricity.                                                                                                                                                          |
| Operations: Water and Waste Water   | Wastewater treatment 100% aerobic - no septic tanks or lagoons.                                                                                                                                                                                                     |

Attachment 2: Cumulative Screening and Health Risk Modeling from Existing TAC Sources

| File Name:                         | El Camino I    | Real - 4335 E                          | CR - Santa Cla | ara (SF) - 20 | 026 - Annu     | al.EF    |          |          |          |
|------------------------------------|----------------|----------------------------------------|----------------|---------------|----------------|----------|----------|----------|----------|
| CT-EMFAC2021 Version:              | 1.0.2.0        |                                        |                |               |                |          |          |          |          |
| Run Date:                          | 8/28/20        | )24 12:14                              |                |               |                |          |          |          |          |
| Area:                              | Santa Clara    | (SF)                                   |                |               |                |          |          |          |          |
| Analysis Year:                     | 2026<br>Annual |                                        |                |               |                |          |          |          |          |
| Season.                            | Annuai         |                                        |                |               |                |          |          |          |          |
|                                    | VMT I          | <br>Diesel VMT                         | Gas VMT        |               |                |          |          |          |          |
| Vehicle Category                   | Fraction I     | Fraction                               | Fraction       |               |                |          |          |          |          |
| 0,                                 | Across         | Within                                 | Within         |               |                |          |          |          |          |
|                                    | Category       | Category                               | Category       |               |                |          |          |          |          |
| Truck 1                            | 0.026          | 0.416                                  | 0.563          |               |                |          |          |          |          |
| Truck 2                            | 0.006          | 0.904                                  | 0.045          |               |                |          |          |          |          |
| Non-Truck                          | 0.968          | 0.007                                  | 0.914          |               |                |          |          |          |          |
|                                    | Maior/Coll     | ====================================== |                | =======       | ======         |          |          |          |          |
| Road Type:<br>Silt Loading Factor: |                | ector                                  | 0 022 a/m2     |               |                |          |          |          |          |
| Precipitation Correction:          | CARB           |                                        | D = 63  days   | N - 365 day   | vc             |          |          |          |          |
|                                    | CAND           | ===========                            | P – 05 udys    | in – 505 ua   | ys<br>======== |          |          |          |          |
| Fleet Average Running Ex           | xhaust Emis    | sion Factors                           | (grams/veh-    | mile)         |                |          |          |          |          |
| Pollutant Name                     | <= 5 mpł       | 10 mph                                 | 15 mph         | 20 mph        | 25 mph         | 30 mph   | 35 mph   | 40 mph   | 45 mph   |
| PM2.5                              | 0.008328       | 0.005452                               | 0.003741       | 0.002698      | 0.002048       | 0.001632 | 0.001365 | 0.001201 | 0.001114 |
| TOG                                | 0.1214         | 0.078701                               | 0.053276       | 0.038154      | 0.028923       | 0.023052 | 0.019257 | 0.016844 | 0.015426 |
| Diesel PM                          | 0.001051       | 0.000881                               | 0.000702       | 0.000566      | 0.000471       | 0.000402 | 0.000353 | 0.000323 | 0.000311 |
| Fleet Average Running Lo           | oss Emissior   | Factors (gra                           | ims/veh-hou    | r)            |                |          |          |          |          |
| Pollutant Namo                     | Emission E     | actor                                  |                |               |                |          |          |          |          |
| TOG                                | 0 986873       |                                        |                |               |                |          |          |          |          |
|                                    | =============  |                                        |                |               |                |          |          |          |          |
| Fleet Average Tire Wear            | Factors (gra   | ms/veh-mile                            | e)             |               |                |          |          |          |          |
| Pollutant Name                     | Emission Fa    | actor                                  |                |               |                |          |          |          |          |
| PM2.5                              | 0.002047       |                                        |                |               |                |          |          |          |          |
| Fleet Average Brake Wea            | ar Factors (g  | rams/veh-m                             | ile)           |               |                |          |          |          |          |
| Pollutant Name                     | <= 5 mpł       | 10 mph                                 | 15 mph         | 20 mph        | 25 mph         | 30 mph   | 35 mph   | 40 mph   | 45 mph   |
| PM2.5                              | 0.003272       | 0.003817                               | 0.00436        | 0.004899      | 0.005205       | 0.005305 | 0.005383 | 0.004927 | 0.003925 |
| Fleet Average Road Dust            | Factors (gra   | ms/veh-mil                             | e)             |               |                |          |          |          |          |
| Pollutant Name                     | Emission F     | actor                                  |                |               |                |          |          |          |          |
| PM2.5                              | 0.014055       |                                        |                |               |                |          |          |          |          |
|                                    | =====EN[       | )======                                |                |               | ========       |          |          |          |          |

## CT-EMFAC2021 Emissions Factors for Santa Clara County 2026

## El Camino Real 2026 Traffic Emissions and Health Risk Calculations

| Analysis Year = 2026                     | ;                                      |                               |  |  |  |  |
|------------------------------------------|----------------------------------------|-------------------------------|--|--|--|--|
| Vehicle<br>Type                          | 2022 Caltrans<br>Vehicles<br>(veh/day) | 2026<br>Vehicles<br>(veh/day) |  |  |  |  |
| Truck 1 (MDT)                            | 847                                    | 881                           |  |  |  |  |
| Truck 2 (HDT)                            | 178                                    | 185                           |  |  |  |  |
| Non-Truck                                | 38,975                                 | 40,534                        |  |  |  |  |
| Total                                    | 40,000                                 | 41,600                        |  |  |  |  |
| Increase From 2022<br>Vehicles/Direction |                                        | 1.04<br><b>20.800</b>         |  |  |  |  |
| Avg Vehicles/Hour/Direction              |                                        | 867                           |  |  |  |  |

#### Traffic Data Year = 2022

| 2022 Caltrans Traffic AADT Volumes and |                           | Total      | Trucks by Axle |        |        |       |       |
|----------------------------------------|---------------------------|------------|----------------|--------|--------|-------|-------|
| 2022 Caltrans Truck AADT (% trucks)    |                           | AADT Total | Truck          | 2      | 3      | 4     | 5     |
| Rte 82 - Chatleston Road, Palo Alto    |                           | 40,000     | 1,024          | 847    | 107    | 18    | 53    |
| Rte 82 - Embarcadero Road, Palo Alto   |                           |            |                | 82.72% | 10.42% | 1.74% | 5.12% |
|                                        | Percent of Total Vehicles |            |                | 2.61%  | 0.33%  | 0.06% | 0.16% |

Traffic Increase per Year (%) = 1.00%

 1,025
 Trucks
 100.00%

 0.55%
 HDT
 100.00%

 2.61%
 MDT
 100.00%

 3.15%
 Total
 100.00%

 96.8%
 Other
 100.00%

4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions Year = 2026

|            |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            | (Sigma z) |
|------------|---------------------------|-----------|-----------|--------|--------|-------|-------|---------|---------|----------|--------|---------|-----------|-------------|------------|-----------|
|            |                           |           |           | Link   | Link   | Link  | Link  | Release | Average | Average  |        |         |           |             | Initial    | Initial   |
|            |                           |           |           | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area   | Area    | Emission  | Emission    | Vertical   | Vertical  |
| Road Link  | Description               | Direction | No. Lanes | (m)    | (mi)   | (m)   | (ft)  | (m)     | (mph)   | per Day  | (sq m) | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height (m) | Dimension |
|            |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            |           |
| DPM_NB_ECR | El Camino Real Northbound | NB        | 3         | 718.1  | 0.45   | 17.0  | 55.7  | 3.4     | 30      | 20,800   | 12,188 | 131,192 | 3.543E-09 | 2.612E-09   | 6.8        | 3.16      |
|            |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            |           |
| DPM_SB_ECR | El Camino Real Southbound | SB        | 3         | 715.5  | 0.44   | 17.0  | 55.7  | 3.4     | 30      | 20,800   | 12,144 | 130,717 | 3.543E-09 | 2.612E-09   | 6.8        | 3.16      |
|            |                           |           |           |        |        |       |       |         | Total   | 41,600   |        |         |           |             |            |           |

Emission Factors - DPM

| Speed Category                    | 1       | 2 | 3 | 4 |
|-----------------------------------|---------|---|---|---|
| Travel Speed (mph)                | 30      |   |   |   |
| Emissions per Vehicle (g/VMT)     | 0.00040 |   |   |   |
| Emisson Factors from CT-EMFAC2021 |         |   |   |   |

#### 2026 Hourly Traffic Volumes and DPM Emissions - DPM\_NB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 3.98% | 828  | 4.12E-05 | 9    | 6.44% | 1340 | 6.67E-05 | 17    | 5.53% | 1150   | 5.73E-05 |
| 2    | 2.67% | 555  | 2.77E-05 | 10   | 7.40% | 1539 | 7.67E-05 | 18    | 3.14% | 653    | 3.25E-05 |
| 3    | 2.84% | 591  | 2.94E-05 | 11   | 6.32% | 1315 | 6.55E-05 | 19    | 2.35% | 489    | 2.44E-05 |
| 4    | 3.30% | 686  | 3.42E-05 | 12   | 6.88% | 1431 | 7.13E-05 | 20    | 0.86% | 179    | 8.91E-06 |
| 5    | 2.16% | 449  | 2.24E-05 | 13   | 6.27% | 1304 | 6.50E-05 | 21    | 3.08% | 641    | 3.19E-05 |
| 6    | 3.30% | 686  | 3.42E-05 | 14   | 6.21% | 1292 | 6.44E-05 | 22    | 4.21% | 876    | 4.36E-05 |
| 7    | 6.03% | 1254 | 6.25E-05 | 15   | 5.13% | 1067 | 5.32E-05 | 23    | 2.62% | 545    | 2.72E-05 |
| 8    | 4.56% | 948  | 4.73E-05 | 16   | 3.88% | 807  | 4.02E-05 | 24    | 0.85% | 177    | 8.81E-06 |
|      |       |      |          |      |       |      |          | Total |       | 20,802 |          |

### 2026 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM\_SB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 3.98% | 828  | 4.11E-05 | 9    | 6.44% | 1340 | 6.65E-05 | 17    | 5.53% | 1150   | 5.71E-05 |
| 2    | 2.67% | 555  | 2.76E-05 | 10   | 7.40% | 1539 | 7.64E-05 | 18    | 3.14% | 653    | 3.24E-05 |
| 3    | 2.84% | 591  | 2.93E-05 | 11   | 6.32% | 1315 | 6.53E-05 | 19    | 2.35% | 489    | 2.43E-05 |
| 4    | 3.30% | 686  | 3.41E-05 | 12   | 6.88% | 1431 | 7.10E-05 | 20    | 0.86% | 179    | 8.88E-06 |
| 5    | 2.16% | 449  | 2.23E-05 | 13   | 6.27% | 1304 | 6.47E-05 | 21    | 3.08% | 641    | 3.18E-05 |
| 6    | 3.30% | 686  | 3.41E-05 | 14   | 6.21% | 1292 | 6.41E-05 | 22    | 4.21% | 876    | 4.35E-05 |
| 7    | 6.03% | 1254 | 6.23E-05 | 15   | 5.13% | 1067 | 5.30E-05 | 23    | 2.62% | 545    | 2.71E-05 |
| 8    | 4.56% | 948  | 4.71E-05 | 16   | 3.88% | 807  | 4.01E-05 | 24    | 0.85% | 177    | 8.78E-06 |
|      |       |      |          |      |       |      |          | Total |       | 20,802 |          |

# 4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions Year = 2026

| Y | ear | = |  |  |  |
|---|-----|---|--|--|--|
|   |     |   |  |  |  |

|             |                           |           |           |        |        |       |       |         |         |          |        |         | Lin       | e Area      |            |           |
|-------------|---------------------------|-----------|-----------|--------|--------|-------|-------|---------|---------|----------|--------|---------|-----------|-------------|------------|-----------|
|             |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            | (Sigma z) |
|             |                           |           |           | Link   | Link   | Link  | Link  | Release | Average | Average  |        |         |           |             | Initial    | Initial   |
|             |                           |           |           | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area   | Area    | Emission  | Emission    | Vertical   | Vertical  |
| Road Link   | Description               | Direction | No. Lanes | (m)    | (mi)   | (m)   | (ft)  | (m)     | (mph)   | per Day  | (sq m) | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height (m) | Dimension |
|             |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            |           |
| PM25_NB_ECR | El Camino Real Northbound | NB        | 3         | 718.1  | 0.45   | 17.0  | 56    | 1.3     | 30      | 20,800   | 12,188 | 131,192 | 1.438E-08 | 1.061E-08   | 2.6        | 1.21      |
|             |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            |           |
| PM25_SB_ECR | El Camino Real Southbound | SB        | 3         | 715.5  | 0.44   | 17.0  | 56    | 1.3     | 30      | 20,800   | 12,144 | 130,717 | 1.438E-08 | 1.061E-08   | 2.6        | 1.21      |
|             |                           |           |           |        |        |       |       |         | Total   | 41,600   |        |         |           |             |            |           |

ission Factors - PM2.5

| EIIISSIOII FACTOIS - FIVIZ.5  |          |   |   |   |
|-------------------------------|----------|---|---|---|
| Speed Category                | 1        | 2 | 3 | 4 |
| Travel Speed (mph)            | 30       |   |   |   |
| Emissions per Vehicle (g/VMT) | 0.001632 |   |   |   |
|                               |          |   |   |   |

Emisson Factors from CT-EMFAC2021

## 2026 Hourly Traffic Volumes and PM2.5 Emissions - PM25\_NB\_ECR

|      |            |      |          |      | % Per |      |          |       | % Per |        |          |
|------|------------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | % Per Hour | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 1.15%      | 239  | 4.84E-05 | 9    | 7.11% | 1479 | 2.99E-04 | 17    | 7.38% | 1535   | 3.11E-04 |
| 2    | 0.42%      | 87   | 1.77E-05 | 10   | 4.39% | 913  | 1.85E-04 | 18    | 8.18% | 1701   | 3.44E-04 |
| 3    | 0.41%      | 85   | 1.73E-05 | 11   | 4.66% | 969  | 1.96E-04 | 19    | 5.70% | 1186   | 2.40E-04 |
| 4    | 0.26%      | 54   | 1.09E-05 | 12   | 5.89% | 1225 | 2.48E-04 | 20    | 4.27% | 888    | 1.80E-04 |
| 5    | 0.50%      | 104  | 2.10E-05 | 13   | 6.15% | 1279 | 2.59E-04 | 21    | 3.26% | 678    | 1.37E-04 |
| 6    | 0.90%      | 187  | 3.79E-05 | 14   | 6.04% | 1256 | 2.54E-04 | 22    | 3.30% | 686    | 1.39E-04 |
| 7    | 3.79%      | 788  | 1.59E-04 | 15   | 7.01% | 1458 | 2.95E-04 | 23    | 2.46% | 512    | 1.04E-04 |
| 8    | 7.76%      | 1614 | 3.26E-04 | 16   | 7.14% | 1485 | 3.00E-04 | 24    | 1.87% | 389    | 7.87E-05 |
|      |            |      |          |      |       |      |          | Total |       | 20,800 |          |

#### 2026 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM25\_SB\_ECR

|      |            |      |          |      | % Per |      |          |       | % Per |        |          |
|------|------------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | % Per Hour | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 1.15%      | 239  | 4.82E-05 | 9    | 7.11% | 1479 | 2.98E-04 | 17    | 7.38% | 1535   | 3.09E-04 |
| 2    | 0.42%      | 87   | 1.76E-05 | 10   | 4.39% | 913  | 1.84E-04 | 18    | 8.18% | 1701   | 3.43E-04 |
| 3    | 0.41%      | 85   | 1.72E-05 | 11   | 4.66% | 969  | 1.95E-04 | 19    | 5.70% | 1186   | 2.39E-04 |
| 4    | 0.26%      | 54   | 1.09E-05 | 12   | 5.89% | 1225 | 2.47E-04 | 20    | 4.27% | 888    | 1.79E-04 |
| 5    | 0.50%      | 104  | 2.10E-05 | 13   | 6.15% | 1279 | 2.58E-04 | 21    | 3.26% | 678    | 1.37E-04 |
| 6    | 0.90%      | 187  | 3.77E-05 | 14   | 6.04% | 1256 | 2.53E-04 | 22    | 3.30% | 686    | 1.38E-04 |
| 7    | 3.79%      | 788  | 1.59E-04 | 15   | 7.01% | 1458 | 2.94E-04 | 23    | 2.46% | 512    | 1.03E-04 |
| 8    | 7.76%      | 1614 | 3.25E-04 | 16   | 7.14% | 1485 | 2.99E-04 | 24    | 1.87% | 389    | 7.84E-05 |
|      |            |      |          |      |       |      |          | Total |       | 20,800 |          |

#### 4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real TOC Exhaust Modeling - Roadway Links, Traffic Volumos, and TOC Exhaust En

TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions Year = 2026

|             |                           |           |       |        |        |       |       |         |         |          |        |         | Li        | ne Area     |          |           |
|-------------|---------------------------|-----------|-------|--------|--------|-------|-------|---------|---------|----------|--------|---------|-----------|-------------|----------|-----------|
|             |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |          | (Sigma z) |
|             |                           |           |       | Link   | Link   | Link  | Link  | Release | Average | Average  |        |         |           |             | Initial  | Initial   |
|             |                           |           | No.   | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area   | Area    | Emission  | Emission    | Vertical | Vertical  |
| Road Link   | Description               | Direction | Lanes | (m)    | (mi)   | (m)   | (ft)  | ( m)    | (mph)   | per Day  | (sq m) | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height   | Dimension |
|             |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |          |           |
| TEXH_NB_ECR | El Camino Real Northbound | NB        | 3     | 718.1  | 0.45   | 17.0  | 56    | 1.3     | 30      | 20,800   | 12,188 | 131,192 | 2.032E-07 | 1.498E-07   | 2.6      | 1.21      |
|             |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |          |           |
| TEXH_SB_ECR | El Camino Real Southbound | SB        | 3     | 715.5  | 0.44   | 17.0  | 56    | 1.3     | 30      | 20,800   | 12,144 | 130,717 | 2.032E-07 | 1.498E-07   | 2.6      | 1.21      |
|             |                           |           |       |        |        |       |       |         | Total   | 41,600   |        |         |           |             |          |           |

Emission Factors - TOG Exhaust

| Speed Category                | 1       | 2 | 3 | 4 |
|-------------------------------|---------|---|---|---|
| Travel Speed (mph)            | 30      |   |   |   |
| Emissions per Vehicle (g/VMT) | 0.02305 |   |   |   |
|                               |         |   |   |   |

Emisson Factors from CT-EMFAC2021

### 2026 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH\_NB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 1.15% | 239  | 6.83E-04 | 9    | 7.11% | 1479 | 4.23E-03 | 17    | 7.38% | 1535   | 4.39E-03 |
| 2    | 0.42% | 87   | 2.50E-04 | 10   | 4.39% | 913  | 2.61E-03 | 18    | 8.18% | 1701   | 4.86E-03 |
| 3    | 0.41% | 85   | 2.44E-04 | 11   | 4.66% | 969  | 2.77E-03 | 19    | 5.70% | 1186   | 3.39E-03 |
| 4    | 0.26% | 54   | 1.55E-04 | 12   | 5.89% | 1225 | 3.50E-03 | 20    | 4.27% | 888    | 2.54E-03 |
| 5    | 0.50% | 104  | 2.97E-04 | 13   | 6.15% | 1279 | 3.65E-03 | 21    | 3.26% | 678    | 1.94E-03 |
| 6    | 0.90% | 187  | 5.35E-04 | 14   | 6.04% | 1256 | 3.59E-03 | 22    | 3.30% | 686    | 1.96E-03 |
| 7    | 3.79% | 788  | 2.25E-03 | 15   | 7.01% | 1458 | 4.17E-03 | 23    | 2.46% | 512    | 1.46E-03 |
| 8    | 7.76% | 1614 | 4.61E-03 | 16   | 7.14% | 1485 | 4.24E-03 | 24    | 1.87% | 389    | 1.11E-03 |
|      |       |      |          |      |       |      |          | Total |       | 20,800 |          |

### 2026 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH\_SB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 1.15% | 239  | 6.81E-04 | 9    | 7.11% | 1479 | 4.21E-03 | 17    | 7.38% | 1535   | 4.37E-03 |
| 2    | 0.42% | 87   | 2.49E-04 | 10   | 4.39% | 913  | 2.60E-03 | 18    | 8.18% | 1701   | 4.84E-03 |
| 3    | 0.41% | 85   | 2.43E-04 | 11   | 4.66% | 969  | 2.76E-03 | 19    | 5.70% | 1186   | 3.38E-03 |
| 4    | 0.26% | 54   | 1.54E-04 | 12   | 5.89% | 1225 | 3.49E-03 | 20    | 4.27% | 888    | 2.53E-03 |
| 5    | 0.50% | 104  | 2.96E-04 | 13   | 6.15% | 1279 | 3.64E-03 | 21    | 3.26% | 678    | 1.93E-03 |
| 6    | 0.90% | 187  | 5.33E-04 | 14   | 6.04% | 1256 | 3.58E-03 | 22    | 3.30% | 686    | 1.95E-03 |
| 7    | 3.79% | 788  | 2.24E-03 | 15   | 7.01% | 1458 | 4.15E-03 | 23    | 2.46% | 512    | 1.46E-03 |
| 8    | 7.76% | 1614 | 4.60E-03 | 16   | 7.14% | 1485 | 4.23E-03 | 24    | 1.87% | 389    | 1.11E-03 |
|      |       |      |          |      |       |      |          | Total |       | 20,800 |          |

# 4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real

TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions Year = 2026

|              |                           |           |       |        |        |       |       |         |         |          |        |         | Line      | Area        |          |                      |
|--------------|---------------------------|-----------|-------|--------|--------|-------|-------|---------|---------|----------|--------|---------|-----------|-------------|----------|----------------------|
|              |                           |           |       | Link   | Link   | Link  | Link  | Release | Average | Average  |        |         |           |             | Initial  | (Sigma z)<br>Initial |
|              |                           |           | No.   | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area   | Area    | Emission  | Emission    | Vertical | Vertical             |
| Road Link    | Description               | Direction | Lanes | (m)    | (mi)   | (m)   | (ft)  | (m)     | (mph)   | per Day  | (sq m) | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height   | Dimension            |
|              |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |          |                      |
| TEVAP_NB_ECR | El Camino Real Northbound | NB        | 3     | 718.1  | 0.45   | 17.0  | 56    | 1.3     | 30      | 20,800   | 12,188 | 131,192 | 2.899E-07 | 2.138E-07   | 2.6      | 1.21                 |
|              |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |          |                      |
| TEVAP_SB_ECR | El Camino Real Southbound | SB        | 3     | 715.5  | 0.44   | 17.0  | 56    | 1.3     | 30      | 20,800   | 12,144 | 130,717 | 2.899E-07 | 2.138E-07   | 2.6      | 1.21                 |
|              |                           |           |       |        |        |       |       |         | Total   | 41,600   |        |         |           |             |          |                      |
|              |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |          |                      |

Emission Factors - PM2.5 - Evaporative TOG

| Speed Category                          | 1       | 2 | 3 | 4 |
|-----------------------------------------|---------|---|---|---|
| Travel Speed (mph)                      | 30      |   |   |   |
| Emissions per Vehicle per Hour (g/hour) | 0.98687 |   |   |   |
| Emissions per Vehicle per Mile (g/VMT)  | 0.03290 |   |   |   |
|                                         |         |   |   | - |

Emisson Factors from CT-EMFAC2021

## 2026 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP\_NB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 1.15% | 239  | 9.75E-04 | 9    | 7.11% | 1479 | 6.03E-03 | 17    | 7.38% | 1535   | 6.26E-03 |
| 2    | 0.42% | 87   | 3.56E-04 | 10   | 4.39% | 913  | 3.72E-03 | 18    | 8.18% | 1701   | 6.94E-03 |
| 3    | 0.41% | 85   | 3.48E-04 | 11   | 4.66% | 969  | 3.95E-03 | 19    | 5.70% | 1186   | 4.83E-03 |
| 4    | 0.26% | 54   | 2.21E-04 | 12   | 5.89% | 1225 | 5.00E-03 | 20    | 4.27% | 888    | 3.62E-03 |
| 5    | 0.50% | 104  | 4.24E-04 | 13   | 6.15% | 1279 | 5.22E-03 | 21    | 3.26% | 678    | 2.76E-03 |
| 6    | 0.90% | 187  | 7.63E-04 | 14   | 6.04% | 1256 | 5.12E-03 | 22    | 3.30% | 686    | 2.80E-03 |
| 7    | 3.79% | 788  | 3.21E-03 | 15   | 7.01% | 1458 | 5.95E-03 | 23    | 2.46% | 512    | 2.09E-03 |
| 8    | 7.76% | 1614 | 6.58E-03 | 16   | 7.14% | 1485 | 6.06E-03 | 24    | 1.87% | 389    | 1.59E-03 |
|      |       |      |          |      |       |      |          | Total |       | 20,800 |          |

| 2020 HOURIV FRAILE VOIUMES PER DIRECTION AND TOG EVADORALIVE EMISSIONS - TEVAP 3D ECP | 2026 Hourly | v Traffic Volumes | Per Direction and | TOG Evaporative | Emissions - T | EVAP SI | B ECR |
|---------------------------------------------------------------------------------------|-------------|-------------------|-------------------|-----------------|---------------|---------|-------|
|---------------------------------------------------------------------------------------|-------------|-------------------|-------------------|-----------------|---------------|---------|-------|

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 1.15% | 239  | 9.72E-04 | 9    | 7.11% | 1479 | 6.01E-03 | 17    | 7.38% | 1535   | 6.24E-03 |
| 2    | 0.42% | 87   | 3.55E-04 | 10   | 4.39% | 913  | 3.71E-03 | 18    | 8.18% | 1701   | 6.91E-03 |
| 3    | 0.41% | 85   | 3.46E-04 | 11   | 4.66% | 969  | 3.94E-03 | 19    | 5.70% | 1186   | 4.82E-03 |
| 4    | 0.26% | 54   | 2.20E-04 | 12   | 5.89% | 1225 | 4.98E-03 | 20    | 4.27% | 888    | 3.61E-03 |
| 5    | 0.50% | 104  | 4.23E-04 | 13   | 6.15% | 1279 | 5.20E-03 | 21    | 3.26% | 678    | 2.75E-03 |
| 6    | 0.90% | 187  | 7.61E-04 | 14   | 6.04% | 1256 | 5.10E-03 | 22    | 3.30% | 686    | 2.79E-03 |
| 7    | 3.79% | 788  | 3.20E-03 | 15   | 7.01% | 1458 | 5.92E-03 | 23    | 2.46% | 512    | 2.08E-03 |
| 8    | 7.76% | 1614 | 6.56E-03 | 16   | 7.14% | 1485 | 6.03E-03 | 24    | 1.87% | 389    | 1.58E-03 |
|      |       |      | -        | -    |       |      | -        | Total |       | 20,800 |          |

## 4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions

2026 Year =

|            |                           |           |       |        |        |       |       |         |         |          | Li     | ne Area |           |             |            |           |
|------------|---------------------------|-----------|-------|--------|--------|-------|-------|---------|---------|----------|--------|---------|-----------|-------------|------------|-----------|
|            |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |            | (Sigma z) |
|            |                           |           |       | Link   | Link   | Link  | Link  | Release | Average | Average  |        |         |           |             | Initial    | Initial   |
|            |                           |           | No.   | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area   | Area    | Emission  | Emission    | Vertical   | Vertical  |
| Road Link  | Description               | Direction | Lanes | (m)    | (mi)   | (m)   | (ft)  | ( m)    | (mph)   | per Day  | (sq m) | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height (m) | Dimension |
|            |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |            |           |
| FUG_NB_ECR | El Camino Real Northbound | NB        | 3     | 718.1  | 0.45   | 17.0  | 56    | 1.3     | 30      | 20,800   | 12,188 | 131,192 | 1.887E-07 | 1.391E-07   | 2.6        | 1.21      |
|            |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |            |           |
| FUG_SB_ECR | El Camino Real Southbound | SB        | 3     | 715.5  | 0.44   | 17.0  | 56    | 1.3     | 30      | 20,800   | 12,144 | 130,717 | 1.887E-07 | 1.391E-07   | 2.6        | 1.21      |
|            |                           |           |       |        |        |       |       |         | Total   | 41,600   |        |         |           |             |            |           |

Emission Factors - Fugitive PM2.5

| Speed Category                                       | 1       | 2 | 3 | 4 |
|------------------------------------------------------|---------|---|---|---|
| Travel Speed (mph)                                   | 30      |   |   |   |
| Tire Wear - Emissions per Vehicle (g/VMT)            | 0.00205 |   |   |   |
| Brake Wear - Emissions per Vehicle (g/VMT)           | 0.00531 |   |   |   |
| Road Dust - Emissions per Vehicle (g/VMT)            | 0.01406 |   |   |   |
| Total Fugitive PM2.5 - Emissions per Vehicle (g/VMT) | 0.02141 |   |   |   |
|                                                      |         |   |   |   |

Emisson Factors from CT-EMFAC2021

### 2026 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG\_NB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 1.15% | 239  | 6.35E-04 | 9    | 7.11% | 1479 | 3.92E-03 | 17    | 7.38% | 1535   | 4.07E-03 |
| 2    | 0.42% | 87   | 2.32E-04 | 10   | 4.39% | 913  | 2.42E-03 | 18    | 8.18% | 1701   | 4.51E-03 |
| 3    | 0.41% | 85   | 2.26E-04 | 11   | 4.66% | 969  | 2.57E-03 | 19    | 5.70% | 1186   | 3.15E-03 |
| 4    | 0.26% | 54   | 1.43E-04 | 12   | 5.89% | 1225 | 3.25E-03 | 20    | 4.27% | 888    | 2.36E-03 |
| 5    | 0.50% | 104  | 2.76E-04 | 13   | 6.15% | 1279 | 3.39E-03 | 21    | 3.26% | 678    | 1.80E-03 |
| 6    | 0.90% | 187  | 4.97E-04 | 14   | 6.04% | 1256 | 3.33E-03 | 22    | 3.30% | 686    | 1.82E-03 |
| 7    | 3.79% | 788  | 2.09E-03 | 15   | 7.01% | 1458 | 3.87E-03 | 23    | 2.46% | 512    | 1.36E-03 |
| 8    | 7.76% | 1614 | 4.28E-03 | 16   | 7.14% | 1485 | 3.94E-03 | 24    | 1.87% | 389    | 1.03E-03 |
|      |       |      |          |      |       |      |          | Total |       | 20,800 |          |

#### 2026 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG\_SB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 1.15% | 239  | 6.32E-04 | 9    | 7.11% | 1479 | 3.91E-03 | 17    | 7.38% | 1535   | 4.06E-03 |
| 2    | 0.42% | 87   | 2.31E-04 | 10   | 4.39% | 913  | 2.41E-03 | 18    | 8.18% | 1701   | 4.50E-03 |
| 3    | 0.41% | 85   | 2.25E-04 | 11   | 4.66% | 969  | 2.56E-03 | 19    | 5.70% | 1186   | 3.13E-03 |
| 4    | 0.26% | 54   | 1.43E-04 | 12   | 5.89% | 1225 | 3.24E-03 | 20    | 4.27% | 888    | 2.35E-03 |
| 5    | 0.50% | 104  | 2.75E-04 | 13   | 6.15% | 1279 | 3.38E-03 | 21    | 3.26% | 678    | 1.79E-03 |
| 6    | 0.90% | 187  | 4.95E-04 | 14   | 6.04% | 1256 | 3.32E-03 | 22    | 3.30% | 686    | 1.81E-03 |
| 7    | 3.79% | 788  | 2.08E-03 | 15   | 7.01% | 1458 | 3.85E-03 | 23    | 2.46% | 512    | 1.35E-03 |
| 8    | 7.76% | 1614 | 4.27E-03 | 16   | 7.14% | 1485 | 3.93E-03 | 24    | 1.87% | 389    | 1.03E-03 |
|      |       |      |          |      |       |      |          | Total |       | 20,800 |          |

## 4335 & 4345 El Camino Real, Palo Alto, CA - El Camino Real Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations Off-Site 1st (1.5m) and 2nd (4.5m) Floor Receptor Heights

| Emission Year               | 2026                                                   |
|-----------------------------|--------------------------------------------------------|
| <b>Receptor Information</b> | Maximum On-Site Receptor                               |
| Number of Receptors         | 242                                                    |
| Receptor Height             | 1st (1.5m) and 2nd (4.5m) Floors                       |
| Receptor Distances          | 7 meter grid spacing at existing residential receptors |

## **Meteorological Conditions**

| BAQMD Moffett Fed Airfield Met Data | 2013-2017 |
|-------------------------------------|-----------|
| Land Use Classification             | Urban     |
| Wind Speed                          | Variable  |
| Wind Direction                      | Variable  |

## **Off-Site Cancer Risk Maximum Concentrations**

| Meteorological |        | Concentration (µg/m3) |                        |           |  |  |  |  |
|----------------|--------|-----------------------|------------------------|-----------|--|--|--|--|
| Data Years     | DPM    | Exhaust TOG           | <b>Evaporative TOG</b> |           |  |  |  |  |
| 2013-2017      | 0.0057 | 0.4261                | 0.6080                 | 1st Floor |  |  |  |  |
| 2013-2017      | 0.0052 | 0.3121                | 0.4453                 | 2nd Floor |  |  |  |  |

## Off-Site PM2.5 Maximum Concentrations

| Meteorological | PM          | 2.5 Concentratio |               |           |
|----------------|-------------|------------------|---------------|-----------|
| Data Years     | Total PM2.5 | Fugitive PM2.5   | Vehicle PM2.5 |           |
| 2013-2017      | 0.4259      | 0.3957           | 0.0302        | 1st Floor |
| 2013-2017      | 0.3119      | 0.2898           | 0.0221        | 2nd Floor |

#### 4335 & 4345 El Camino Real, Palo Alto, CA - El Camino Real Cancer Risk & PM2.5 Impacts at On-Site 1st Floor Receptors - 1.5m receptor heights 30 Year Residential Exposure

#### Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where:  $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 
  - ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

  - FAH = Fraction of time spent at home (unitless)
- Inhalation Dose =  $C_{air} x DBR x A x (EF/365) x 10^{-6}$
- Where:  $C_{air} = concentration in air (\mu g/m^3)$ 
  - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)
  - $10^{-6}$  = Conversion factor

| Cancer Potency Factors (mg/kg-day) <sup>-1</sup> |          |  |  |  |  |  |
|--------------------------------------------------|----------|--|--|--|--|--|
| TAC                                              | CPF      |  |  |  |  |  |
| DPM                                              | 1.10E+00 |  |  |  |  |  |
| Vehicle TOG Exhaust                              | 6.28E-03 |  |  |  |  |  |
| Vehicle TOG Evaporative                          | 3.70E-04 |  |  |  |  |  |

Values

| Infant/Child Adult                                                                                   |     |      |     |     |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|-----|------|-----|-----|--|--|--|--|--|--|--|
| Age> 3rd Trimester 0 - 2 2 - 16 16 - 30                                                              |     |      |     |     |  |  |  |  |  |  |  |
| Parameter                                                                                            |     |      |     |     |  |  |  |  |  |  |  |
| ASF = 10 10 3 1                                                                                      |     |      |     |     |  |  |  |  |  |  |  |
| DBR* =                                                                                               | 361 | 1090 | 572 | 261 |  |  |  |  |  |  |  |
| A =                                                                                                  | 1   | 1    | 1   | 1   |  |  |  |  |  |  |  |
| EF = 350 350 350 350                                                                                 |     |      |     |     |  |  |  |  |  |  |  |
| AT = 70 70 70 70                                                                                     |     |      |     |     |  |  |  |  |  |  |  |
| FAH = 1.00 1.00 1.00 0.73                                                                            |     |      |     |     |  |  |  |  |  |  |  |
| <sup>#</sup> 95th percentile breathing rates for infants and 80th percentile for children and adults |     |      |     |     |  |  |  |  |  |  |  |

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

|               | Max         | ximum - Exposur | e Information |             | Conc   | entration (u | g/m3)       | Canc  | er Risk (per | million)    |       |        |          |       |
|---------------|-------------|-----------------|---------------|-------------|--------|--------------|-------------|-------|--------------|-------------|-------|--------|----------|-------|
|               | Exposure    |                 |               |             |        |              |             |       |              |             |       |        |          |       |
|               | _           |                 |               | Age         |        | Exhaust      | Evaporative |       |              |             | TOTAL |        |          |       |
| Exposure      | Duration    |                 |               | Sensitivity | DPM    | TOG          | TOG         | DPM   | Exhaust      | Evaporative |       |        |          |       |
| Year          | (years)     | Age             | Year          | Factor      |        |              |             |       | TOG          | TOG         |       |        | Maximum  |       |
|               |             |                 |               |             |        |              |             |       |              |             |       | Hazard | Fugitive | Total |
| 0             | 0.25        | -0.25 - 0*      | 2027          | 10          | 0.0057 | 0.4261       | 0.6080      | 0.078 | 0.033        | 0.0028      | 0.11  | Index  | PM2.5    | PM2.5 |
| 1             | 1           | 0 - 1           | 2027          | 10          | 0.0057 | 0.4261       | 0.6080      | 0.941 | 0.400        | 0.0336      | 1.37  | 0.001  | 0.40     | 0.43  |
| 2             | 1           | 1 - 2           | 2028          | 10          | 0.0057 | 0.4261       | 0.6080      | 0.941 | 0.400        | 0.0336      | 1.37  |        |          |       |
| 3             | 1           | 2 - 3           | 2029          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 4             | 1           | 3 - 4           | 2030          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 5             | 1           | 4 - 5           | 2031          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 6             | 1           | 5 - 6           | 2032          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 7             | 1           | 6 - 7           | 2033          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 8             | 1           | 7 - 8           | 2034          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 9             | 1           | 8 - 9           | 2035          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 10            | 1           | 9 - 10          | 2036          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 11            | 1           | 10 - 11         | 2037          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 12            | 1           | 11 - 12         | 2038          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 13            | 1           | 12 - 13         | 2039          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 14            | 1           | 13 - 14         | 2040          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 15            | 1           | 14 - 15         | 2041          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 16            | 1           | 15 - 16         | 2042          | 3           | 0.0057 | 0.4261       | 0.6080      | 0.148 | 0.063        | 0.0053      | 0.22  |        |          |       |
| 17            | 1           | 16-17           | 2043          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 18            | 1           | 17-18           | 2044          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 19            | 1           | 18-19           | 2045          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 20            | 1           | 19-20           | 2046          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 21            | 1           | 20-21           | 2047          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 22            | 1           | 21-22           | 2048          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 23            | 1           | 22-23           | 2049          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 24            | 1           | 23-24           | 2050          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 25            | 1           | 24-25           | 2051          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 26            | 1           | 25-26           | 2052          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 27            | 1           | 26-27           | 2053          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 28            | 1           | 27-28           | 2054          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 29            | 1           | 28-29           | 2055          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| 30            | 1           | 29-30           | 2056          | 1           | 0.0057 | 0.4261       | 0.6080      | 0.016 | 0.007        | 0.0006      | 0.02  |        |          |       |
| Total Increas | od Concor D | iel.            |               |             |        | 1            |             | 4.26  | 1 811        | 0.152       | 6.23  | 1      |          |       |

#### 4335 & 4345 El Camino Real, Palo Alto, CA - El Camino Real Cancer Risk & PM2.5 Impacts at On-Site 2nd Floor Receptors - 4.5m receptor heights 30 Year Residential Exposure

#### Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where:  $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 
  - ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

  - FAH = Fraction of time spent at home (unitless)
- Inhalation Dose =  $C_{air} x DBR x A x (EF/365) x 10^{-6}$
- Where:  $C_{air} = concentration in air (\mu g/m^3)$ 
  - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)
  - $10^{-6}$  = Conversion factor

| Cancer Potency Factors (mg/kg-day) <sup>-1</sup> |          |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|
| TAC                                              | CPF      |  |  |  |  |  |  |  |  |  |
| DPM                                              | 1.10E+00 |  |  |  |  |  |  |  |  |  |
| Vehicle TOG Exhaust                              | 6.28E-03 |  |  |  |  |  |  |  |  |  |
| Vehicle TOG Evaporative                          | 3.70E-04 |  |  |  |  |  |  |  |  |  |

Values

|                                                                                           | Inf | ant/Child |   | Adult |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-----|-----------|---|-------|--|--|--|--|--|--|--|
| Age> 3rd Trimester 0 - 2 2 - 16 16 - 30                                                   |     |           |   |       |  |  |  |  |  |  |  |
| Parameter                                                                                 |     |           |   |       |  |  |  |  |  |  |  |
| ASF = 10 10 3 1                                                                           |     |           |   |       |  |  |  |  |  |  |  |
| DBR* = 361 1090 572 261                                                                   |     |           |   |       |  |  |  |  |  |  |  |
| A =                                                                                       | 1   | 1         | 1 | 1     |  |  |  |  |  |  |  |
| EF = 350 350 350 350                                                                      |     |           |   |       |  |  |  |  |  |  |  |
| AT = 70 70 70 70                                                                          |     |           |   |       |  |  |  |  |  |  |  |
| FAH = 1.00 1.00 1.00 0.73                                                                 |     |           |   |       |  |  |  |  |  |  |  |
| * 95th percentile breathing rates for infants and 80th percentile for children and adults |     |           |   |       |  |  |  |  |  |  |  |

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

|               | Max         | ximum - Exposu | e Information |             | Conc   | entration (u | g/m3)       | Canc  | er Risk (per | million)    |       |        |          |       |
|---------------|-------------|----------------|---------------|-------------|--------|--------------|-------------|-------|--------------|-------------|-------|--------|----------|-------|
|               | Exposure    |                |               |             |        |              |             |       |              |             |       |        |          |       |
|               | -           |                |               | Age         |        | Exhaust      | Evaporative |       |              |             | TOTAL |        |          |       |
| Exposure      | Duration    |                |               | Sensitivity | DPM    | TOG          | TOG         | DPM   | Exhaust      | Evaporative |       |        |          |       |
| Year          | (years)     | Age            | Year          | Factor      |        |              |             |       | TOG          | TOG         |       |        | Maximum  |       |
|               |             |                |               |             |        |              |             |       |              |             |       | Hazard | Fugitive | Total |
| 0             | 0.25        | -0.25 - 0*     | 2027          | 10          | 0.0052 | 0.3121       | 0.4453      | 0.070 | 0.024        | 0.0020      | 0.10  | Index  | PM2.5    | PM2.5 |
| 1             | 1           | 0 - 1          | 2027          | 10          | 0.0052 | 0.3121       | 0.4453      | 0.851 | 0.293        | 0.0246      | 1.17  | 0.001  | 0.29     | 0.31  |
| 2             | 1           | 1 - 2          | 2028          | 10          | 0.0052 | 0.3121       | 0.4453      | 0.851 | 0.293        | 0.0246      | 1.17  |        |          |       |
| 3             | 1           | 2 - 3          | 2029          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 4             | 1           | 3 - 4          | 2030          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 5             | 1           | 4 - 5          | 2031          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 6             | 1           | 5 - 6          | 2032          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 7             | 1           | 6 - 7          | 2033          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 8             | 1           | 7 - 8          | 2034          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 9             | 1           | 8 - 9          | 2035          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 10            | 1           | 9 - 10         | 2036          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 11            | 1           | 10 - 11        | 2037          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 12            | 1           | 11 - 12        | 2038          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 13            | 1           | 12 - 13        | 2039          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 14            | 1           | 13 - 14        | 2040          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 15            | 1           | 14 - 15        | 2041          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 16            | 1           | 15 - 16        | 2042          | 3           | 0.0052 | 0.3121       | 0.4453      | 0.134 | 0.046        | 0.0039      | 0.18  |        |          |       |
| 17            | 1           | 16-17          | 2043          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 18            | 1           | 17-18          | 2044          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 19            | 1           | 18-19          | 2045          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 20            | 1           | 19-20          | 2046          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 21            | 1           | 20-21          | 2047          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 22            | 1           | 21-22          | 2048          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 23            | 1           | 22-23          | 2049          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 24            | 1           | 23-24          | 2050          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 25            | 1           | 24-25          | 2051          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 26            | 1           | 25-26          | 2052          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 27            | 1           | 26-27          | 2053          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 28            | 1           | 27-28          | 2054          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 29            | 1           | 28-29          | 2055          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| 30            | 1           | 29-30          | 2056          | 1           | 0.0052 | 0.3121       | 0.4453      | 0.015 | 0.005        | 0.0004      | 0.02  |        |          |       |
| Total Increas | od Concor D | iel.           |               |             |        | 1            |             | 3.86  | 1 3 2 6      | 0.111       | 5 20  | 1      |          |       |

| File Name:<br>CT-EMFAC2021 Version:<br>Run Date:<br>Area:<br>Analysis Year:<br>Season: | El Camino<br>1.0.2.0<br>8/28/2<br>Santa Clar<br>2028<br>Annual | Real - 4335 E<br>2024 12:15<br>a (SF) | CR - Santa Cl                 | ara (SF) - 20      | 028 - Annu         | al.EF              |                    |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|
| Vehicle Category                                                                       | VMT<br>Fraction<br>Across                                      | Diesel VMT<br>Fraction<br>Within      | Gas VMT<br>Fraction<br>Within |                    |                    |                    |                    |
| Truck 1<br>Truck 2<br>Non-Truck                                                        | 0.026<br>0.006<br>0.968                                        | 0.409<br>0.886<br>0.006               | 0.541<br>0.044<br>0.909       |                    |                    |                    |                    |
| Road Type:<br>Silt Loading Factor:<br>Precipitation Correction:                        | Major/Col<br>CAR                                               | lector<br>B<br>B                      | 0.032 g/m2<br>P = 63 days     | N = 365 da         |                    |                    |                    |
| Fleet Average Running E                                                                | xhaust Emi                                                     | ssion Factors                         | (grams/veh-                   | mile)              |                    |                    |                    |
| Pollutant Name<br>PM2.5                                                                | <= 5 mpł<br>0.007411                                           | 10 mph<br>0.004847                    | 15 mph<br>0.003325            | 20 mph<br>0.002399 | 25 mph<br>0.001821 | 30 mph<br>0.001452 | 35 mph<br>0.001215 |
| Diesel PM                                                                              | 0.104852                                                       | 0.000742                              | 0.045938                      | 0.032901           | 0.024953           | 0.000348           | 0.010633           |
| Fleet Average Running L                                                                | oss Emissio                                                    | n Factors (gra                        | ims/veh-hou                   | <br>Ir)            |                    |                    |                    |
| Pollutant Name<br>TOG                                                                  | Emission<br>0.945083                                           | Factor                                |                               |                    |                    |                    |                    |
| Fleet Average Tire Wear                                                                | Factors (gra                                                   | ams/veh-mile                          | 2)                            |                    |                    |                    |                    |
| Pollutant Name<br>PM2.5                                                                | Emission<br>0.002047                                           | Factor                                |                               |                    |                    |                    |                    |
| Fleet Average Brake Wea                                                                | ar Factors (                                                   | grams/veh-m                           | ile)                          |                    |                    |                    |                    |
| Pollutant Name<br>PM2.5                                                                | <= 5 mpł<br>0.003255                                           | 10 mph<br>0.0038                      | 15 mph<br>0.004342            | 20 mph<br>0.004882 | 25 mph<br>0.005186 | 30 mph<br>0.005284 | 35 mph<br>0.005359 |
| Fleet Average Road Dust                                                                | Factors (gr                                                    | ams/veh-mil                           | e)                            |                    |                    |                    |                    |
| Pollutant Name<br>PM2.5                                                                | Emission<br>0.014111<br>=====EN                                | Factor                                |                               |                    |                    |                    |                    |

40 mph45 mph0.001070.0009950.0145510.0133220.0002830.000274

40 mph 45 mph 0.004903 0.003906

## CT-EMFAC2021 Emissions Factors for Santa Clara County 2028

## El Camino Real 2028 Traffic Emissions and Health Risk Calculations

| Analysis Year =          | Analysis Year = 2028 |            |  |  |  |  |  |  |  |  |  |
|--------------------------|----------------------|------------|--|--|--|--|--|--|--|--|--|
|                          | 2022 Caltrans        | 2028       |  |  |  |  |  |  |  |  |  |
| Vehicle                  | Vehicles             | s Vehicles |  |  |  |  |  |  |  |  |  |
| Туре                     | (veh/day)            | (veh/day)  |  |  |  |  |  |  |  |  |  |
| Truck 1 (MDT)            | 847                  | 898        |  |  |  |  |  |  |  |  |  |
| Truck 2 (HDT)            | 178                  | 189        |  |  |  |  |  |  |  |  |  |
| Non-Truck                | 38,975               | 41,314     |  |  |  |  |  |  |  |  |  |
| Total                    | 40,000               | 42,400     |  |  |  |  |  |  |  |  |  |
|                          |                      |            |  |  |  |  |  |  |  |  |  |
| Increase From 2022       |                      | 1.06       |  |  |  |  |  |  |  |  |  |
| Vehicles/Direction       |                      | 21,200     |  |  |  |  |  |  |  |  |  |
| Avg Vehicles/Hour/Direct | tion                 | 883        |  |  |  |  |  |  |  |  |  |

#### Traffic Data Year = 2022

| 2022 Caltrans Traffic AADT Volumes and |                           |            | Total | Trucks by Axle |        |       |       |
|----------------------------------------|---------------------------|------------|-------|----------------|--------|-------|-------|
| 2022 Caltrans Truck AADT (% trucks)    |                           | AADT Total | Truck | 2              | 3      | 4     | 5     |
| Rte 82 - Chatleston Road, Palo Alto    | 40,000                    | 1,024      | 847   | 107            | 18     | 53    |       |
| Rte 82 - Embarcadero Road, Palo Alto   |                           |            |       | 82.72%         | 10.42% | 1.74% | 5.12% |
|                                        | Percent of Total Vehicles |            |       | 2.61%          | 0.33%  | 0.06% | 0.16% |

Traffic Increase per Year (%) = 1.00%

 1,025
 Trucks
 100.00%

 0.55%
 HDT
 100.00%

 2.61%
 MDT
 100.00%

 3.15%
 Total
 100.00%

 96.8%
 Other
 100.00%

#### 4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions Year = 2028

|            |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            | (Sigma z) |
|------------|---------------------------|-----------|-----------|--------|--------|-------|-------|---------|---------|----------|--------|---------|-----------|-------------|------------|-----------|
|            |                           |           |           | Link   | Link   | Link  | Link  | Release | Average | Average  |        |         |           |             | Initial    | Initial   |
|            |                           |           |           | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area   | Area    | Emission  | Emission    | Vertical   | Vertical  |
| Road Link  | Description               | Direction | No. Lanes | (m)    | (mi)   | (m)   | (ft)  | (m)     | (mph)   | per Day  | (sq m) | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height (m) | Dimension |
|            |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            |           |
| DPM_NB_ECR | El Camino Real Northbound | NB        | 3         | 718.1  | 0.45   | 17.0  | 55.7  | 3.4     | 30      | 21,200   | 12,188 | 131,192 | 3.126E-09 | 2.305E-09   | 6.8        | 3.16      |
|            |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            |           |
| DPM_SB_ECR | El Camino Real Southbound | SB        | 3         | 715.5  | 0.44   | 17.0  | 55.7  | 3.4     | 30      | 21,200   | 12,144 | 130,717 | 3.126E-09 | 2.305E-09   | 6.8        | 3.16      |
|            |                           |           |           |        |        |       |       |         | Total   | 42,400   |        |         |           |             |            |           |

Emission Factors - DPM

L

| Travel Speed (mph) 30<br>Emissions per Vehicle (g/VMT) 0.00035 | Speed Category                | 1       | 2 | 3 | 4 |
|----------------------------------------------------------------|-------------------------------|---------|---|---|---|
| Emissions per Vehicle (g/VMT) 0.00035                          | Travel Speed (mph)            | 30      |   |   |   |
|                                                                | Emissions per Vehicle (g/VMT) | 0.00035 |   |   |   |

Emisson Factors from CT-EMFAC2021

#### 2028 Hourly Traffic Volumes and DPM Emissions - DPM\_NB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 3.96% | 840  | 3.62E-05 | 9    | 6.46% | 1370 | 5.91E-05 | 17    | 5.61% | 1189   | 5.13E-05 |
| 2    | 2.66% | 564  | 2.43E-05 | 10   | 7.36% | 1560 | 6.73E-05 | 18    | 3.24% | 687    | 2.96E-05 |
| 3    | 2.88% | 611  | 2.63E-05 | 11   | 6.40% | 1357 | 5.85E-05 | 19    | 2.22% | 471    | 2.03E-05 |
| 4    | 3.28% | 695  | 3.00E-05 | 12   | 6.97% | 1478 | 6.37E-05 | 20    | 0.86% | 182    | 7.86E-06 |
| 5    | 2.09% | 443  | 1.91E-05 | 13   | 6.23% | 1321 | 5.70E-05 | 21    | 3.06% | 649    | 2.80E-05 |
| 6    | 3.34% | 708  | 3.05E-05 | 14   | 6.17% | 1308 | 5.64E-05 | 22    | 4.25% | 901    | 3.89E-05 |
| 7    | 6.06% | 1285 | 5.54E-05 | 15   | 5.10% | 1081 | 4.66E-05 | 23    | 2.55% | 541    | 2.33E-05 |
| 8    | 4.54% | 962  | 4.15E-05 | 16   | 3.86% | 818  | 3.53E-05 | 24    | 0.85% | 180    | 7.77E-06 |
|      |       |      |          |      |       | -    |          | Total |       | 21,200 |          |

### 2028 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM\_SB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 3.96% | 840  | 3.61E-05 | 9    | 6.46% | 1370 | 5.89E-05 | 17    | 5.61% | 1189   | 5.11E-05 |
| 2    | 2.66% | 564  | 2.42E-05 | 10   | 7.36% | 1560 | 6.71E-05 | 18    | 3.24% | 687    | 2.95E-05 |
| 3    | 2.88% | 611  | 2.62E-05 | 11   | 6.40% | 1357 | 5.83E-05 | 19    | 2.22% | 471    | 2.02E-05 |
| 4    | 3.28% | 695  | 2.99E-05 | 12   | 6.97% | 1478 | 6.35E-05 | 20    | 0.86% | 182    | 7.84E-06 |
| 5    | 2.09% | 443  | 1.90E-05 | 13   | 6.23% | 1321 | 5.68E-05 | 21    | 3.06% | 649    | 2.79E-05 |
| 6    | 3.34% | 708  | 3.04E-05 | 14   | 6.17% | 1308 | 5.62E-05 | 22    | 4.25% | 901    | 3.87E-05 |
| 7    | 6.06% | 1285 | 5.52E-05 | 15   | 5.10% | 1081 | 4.65E-05 | 23    | 2.55% | 541    | 2.32E-05 |
| 8    | 4.54% | 962  | 4.14E-05 | 16   | 3.86% | 818  | 3.52E-05 | 24    | 0.85% | 180    | 7.74E-06 |
|      |       |      |          |      |       |      |          | Total |       | 21,200 |          |

# 4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions Year = 2028

| Y | ear | = |  |  |
|---|-----|---|--|--|
|   |     |   |  |  |

|             |                           |           |           | Link   | Link   | Link  | Link  | Release | Average | Average  |        |         |           |             | Initial    | Initial   |
|-------------|---------------------------|-----------|-----------|--------|--------|-------|-------|---------|---------|----------|--------|---------|-----------|-------------|------------|-----------|
|             |                           |           |           | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area   | Area    | Emission  | Emission    | Vertical   | Vertical  |
| Road Link   | Description               | Direction | No. Lanes | (m)    | (mi)   | (m)   | (ft)  | (m)     | (mph)   | per Day  | (sq m) | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height (m) | Dimension |
|             |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            |           |
| PM25_NB_ECR | El Camino Real Northbound | NB        | 3         | 718.1  | 0.45   | 17.0  | 56    | 1.3     | 30      | 21,200   | 12,188 | 131,192 | 1.304E-08 | 9.617E-09   | 2.6        | 1.21      |
|             |                           |           |           |        |        |       |       |         |         |          |        |         |           |             |            |           |
| PM25_SB_ECR | El Camino Real Southbound | SB        | 3         | 715.5  | 0.44   | 17.0  | 56    | 1.3     | 30      | 21,200   | 12,144 | 130,717 | 1.304E-08 | 9.617E-09   | 2.6        | 1.21      |
|             |                           |           |           |        |        |       |       |         | Total   | 42,400   |        |         |           |             |            |           |

ission Factors - PM2.5

| Speed Category                | 1        | 2 | 3 | 4 |
|-------------------------------|----------|---|---|---|
| Travel Speed (mph)            | 30       |   |   |   |
| Emissions per Vehicle (g/VMT) | 0.001452 |   |   |   |
|                               |          |   |   |   |

Emisson Factors from CT-EMFAC2021

## 2028 Hourly Traffic Volumes and PM2.5 Emissions - PM25\_NB\_ECR

|      |            |      |          |      | % Per |      |          |       | % Per |        |          |
|------|------------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | % Per Hour | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 1.15%      | 244  | 4.39E-05 | 9    | 7.11% | 1507 | 2.71E-04 | 17    | 7.39% | 1567   | 2.82E-04 |
| 2    | 0.42%      | 89   | 1.60E-05 | 10   | 4.39% | 931  | 1.67E-04 | 18    | 8.18% | 1734   | 3.12E-04 |
| 3    | 0.40%      | 85   | 1.53E-05 | 11   | 4.66% | 988  | 1.78E-04 | 19    | 5.70% | 1208   | 2.17E-04 |
| 4    | 0.26%      | 55   | 9.92E-06 | 12   | 5.89% | 1249 | 2.25E-04 | 20    | 4.27% | 905    | 1.63E-04 |
| 5    | 0.49%      | 104  | 1.87E-05 | 13   | 6.15% | 1304 | 2.35E-04 | 21    | 3.25% | 689    | 1.24E-04 |
| 6    | 0.90%      | 191  | 3.43E-05 | 14   | 6.04% | 1280 | 2.30E-04 | 22    | 3.30% | 700    | 1.26E-04 |
| 7    | 3.79%      | 803  | 1.45E-04 | 15   | 7.01% | 1486 | 2.67E-04 | 23    | 2.46% | 522    | 9.39E-05 |
| 8    | 7.76%      | 1645 | 2.96E-04 | 16   | 7.14% | 1514 | 2.72E-04 | 24    | 1.87% | 396    | 7.13E-05 |
|      |            |      |          |      |       |      |          | Total |       | 21,196 |          |

#### 2028 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM25\_SB\_ECR

|      |            |      |          |      | % Per |      |          |       | % Per |        |          |
|------|------------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | % Per Hour | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 1.15%      | 244  | 4.37E-05 | 9    | 7.11% | 1507 | 2.70E-04 | 17    | 7.39% | 1567   | 2.81E-04 |
| 2    | 0.42%      | 89   | 1.60E-05 | 10   | 4.39% | 931  | 1.67E-04 | 18    | 8.18% | 1734   | 3.11E-04 |
| 3    | 0.40%      | 85   | 1.52E-05 | 11   | 4.66% | 988  | 1.77E-04 | 19    | 5.70% | 1208   | 2.17E-04 |
| 4    | 0.26%      | 55   | 9.88E-06 | 12   | 5.89% | 1249 | 2.24E-04 | 20    | 4.27% | 905    | 1.62E-04 |
| 5    | 0.49%      | 104  | 1.86E-05 | 13   | 6.15% | 1304 | 2.34E-04 | 21    | 3.25% | 689    | 1.24E-04 |
| 6    | 0.90%      | 191  | 3.42E-05 | 14   | 6.04% | 1280 | 2.30E-04 | 22    | 3.30% | 700    | 1.25E-04 |
| 7    | 3.79%      | 803  | 1.44E-04 | 15   | 7.01% | 1486 | 2.66E-04 | 23    | 2.46% | 522    | 9.35E-05 |
| 8    | 7.76%      | 1645 | 2.95E-04 | 16   | 7.14% | 1514 | 2.71E-04 | 24    | 1.87% | 396    | 7.11E-05 |
|      |            |      |          |      |       |      |          | Total |       | 21,196 |          |

### 4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions Year = 2028

|             |                           |           |       |        |        |       |       |         |         |          | Line Area |         |           |             |          |           |
|-------------|---------------------------|-----------|-------|--------|--------|-------|-------|---------|---------|----------|-----------|---------|-----------|-------------|----------|-----------|
|             |                           |           |       |        |        |       |       |         |         |          |           |         |           |             |          | (Sigma z) |
|             |                           |           |       | Link   | Link   | Link  | Link  | Release | Average | Average  |           |         |           |             | Initial  | Initial   |
|             |                           |           | No.   | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area      | Area    | Emission  | Emission    | Vertical | Vertical  |
| Road Link   | Description               | Direction | Lanes | (m)    | (mi)   | (m)   | (ft)  | (m)     | (mph)   | per Day  | (sq m)    | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height   | Dimension |
|             |                           |           |       |        |        |       |       |         |         |          |           |         |           |             |          |           |
| TEXH_NB_ECR | El Camino Real Northbound | NB        | 3     | 718.1  | 0.45   | 17.0  | 56    | 1.3     | 30      | 21,200   | 12,188    | 131,192 | 1.788E-07 | 1.318E-07   | 2.6      | 1.21      |
|             |                           |           |       |        |        |       |       |         |         |          |           |         |           |             |          |           |
| TEXH_SB_ECR | El Camino Real Southbound | SB        | 3     | 715.5  | 0.44   | 17.0  | 56    | 1.3     | 30      | 21,200   | 12,144    | 130,717 | 1.788E-07 | 1.318E-07   | 2.6      | 1.21      |
|             |                           |           |       |        |        |       |       |         | Total   | 42,400   |           |         |           |             |          |           |

I Emission Factors - TOG Exhaust

| Speed Category                | 1       | 2 | 3 | 4 |
|-------------------------------|---------|---|---|---|
| Travel Speed (mph)            | 30      |   |   |   |
| Emissions per Vehicle (g/VMT) | 0.01990 |   |   |   |
|                               |         |   |   |   |

Emisson Factors from CT-EMFAC2021

### 2028 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH\_NB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 1.15% | 244  | 6.01E-04 | 9    | 7.11% | 1507 | 3.72E-03 | 17    | 7.39% | 1567   | 3.86E-03 |
| 2    | 0.42% | 89   | 2.20E-04 | 10   | 4.39% | 931  | 2.30E-03 | 18    | 8.18% | 1734   | 4.28E-03 |
| 3    | 0.40% | 85   | 2.09E-04 | 11   | 4.66% | 988  | 2.44E-03 | 19    | 5.70% | 1208   | 2.98E-03 |
| 4    | 0.26% | 55   | 1.36E-04 | 12   | 5.89% | 1249 | 3.08E-03 | 20    | 4.27% | 905    | 2.23E-03 |
| 5    | 0.49% | 104  | 2.56E-04 | 13   | 6.15% | 1304 | 3.22E-03 | 21    | 3.25% | 689    | 1.70E-03 |
| 6    | 0.90% | 191  | 4.71E-04 | 14   | 6.04% | 1280 | 3.16E-03 | 22    | 3.30% | 700    | 1.73E-03 |
| 7    | 3.79% | 803  | 1.98E-03 | 15   | 7.01% | 1486 | 3.67E-03 | 23    | 2.46% | 522    | 1.29E-03 |
| 8    | 7.76% | 1645 | 4.06E-03 | 16   | 7.14% | 1514 | 3.73E-03 | 24    | 1.87% | 396    | 9.78E-04 |
|      |       |      |          |      |       |      |          | Total |       | 21,196 |          |

## 2028 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH\_SB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 1.15% | 244  | 5.99E-04 | 9    | 7.11% | 1507 | 3.70E-03 | 17    | 7.39% | 1567   | 3.85E-03 |
| 2    | 0.42% | 89   | 2.19E-04 | 10   | 4.39% | 931  | 2.29E-03 | 18    | 8.18% | 1734   | 4.26E-03 |
| 3    | 0.40% | 85   | 2.08E-04 | 11   | 4.66% | 988  | 2.43E-03 | 19    | 5.70% | 1208   | 2.97E-03 |
| 4    | 0.26% | 55   | 1.35E-04 | 12   | 5.89% | 1249 | 3.07E-03 | 20    | 4.27% | 905    | 2.22E-03 |
| 5    | 0.49% | 104  | 2.55E-04 | 13   | 6.15% | 1304 | 3.20E-03 | 21    | 3.25% | 689    | 1.69E-03 |
| 6    | 0.90% | 191  | 4.69E-04 | 14   | 6.04% | 1280 | 3.15E-03 | 22    | 3.30% | 700    | 1.72E-03 |
| 7    | 3.79% | 803  | 1.97E-03 | 15   | 7.01% | 1486 | 3.65E-03 | 23    | 2.46% | 522    | 1.28E-03 |
| 8    | 7.76% | 1645 | 4.04E-03 | 16   | 7.14% | 1514 | 3.72E-03 | 24    | 1.87% | 396    | 9.74E-04 |
|      |       |      |          |      |       |      |          | Total |       | 21,196 |          |

# 4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real

TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions Year = 2028

|              |                           |           |       |        |        |       |       |         |         |          |        |         | Line      | Area        |          |                      |
|--------------|---------------------------|-----------|-------|--------|--------|-------|-------|---------|---------|----------|--------|---------|-----------|-------------|----------|----------------------|
|              |                           |           |       | Link   | Link   | Link  | Link  | Release | Average | Average  |        |         |           |             | Initial  | (Sigma z)<br>Initial |
|              |                           |           | No.   | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area   | Area    | Emission  | Emission    | Vertical | Vertical             |
| Road Link    | Description               | Direction | Lanes | (m)    | (mi)   | (m)   | (ft)  | ( m)    | (mph)   | per Day  | (sq m) | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height   | Dimension            |
|              |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |          |                      |
| TEVAP_NB_ECR | El Camino Real Northbound | NB        | 3     | 718.1  | 0.45   | 17.0  | 56    | 1.3     | 30      | 21,200   | 12,188 | 131,192 | 2.830E-07 | 2.087E-07   | 2.6      | 1.21                 |
|              |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |          |                      |
| TEVAP_SB_ECR | El Camino Real Southbound | SB        | 3     | 715.5  | 0.44   | 17.0  | 56    | 1.3     | 30      | 21,200   | 12,144 | 130,717 | 2.830E-07 | 2.087E-07   | 2.6      | 1.21                 |
|              |                           |           |       |        |        |       |       |         | Total   | 42,400   |        |         |           |             |          |                      |
|              |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |          |                      |

Emission Factors - PM2.5 - Evaporative TOG

| Speed Category                          | 1       | 2 | 3 | 4 |
|-----------------------------------------|---------|---|---|---|
| Travel Speed (mph)                      | 30      |   |   |   |
| Emissions per Vehicle per Hour (g/hour) | 0.94508 |   |   |   |
| Emissions per Vehicle per Mile (g/VMT)  | 0.03150 |   |   |   |
|                                         |         |   |   | - |

Emisson Factors from CT-EMFAC2021

## 2028 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP\_NB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 1.15% | 244  | 9.52E-04 | 9    | 7.11% | 1507 | 5.89E-03 | 17    | 7.39% | 1567   | 6.12E-03 |
| 2    | 0.42% | 89   | 3.48E-04 | 10   | 4.39% | 931  | 3.63E-03 | 18    | 8.18% | 1734   | 6.77E-03 |
| 3    | 0.40% | 85   | 3.31E-04 | 11   | 4.66% | 988  | 3.86E-03 | 19    | 5.70% | 1208   | 4.72E-03 |
| 4    | 0.26% | 55   | 2.15E-04 | 12   | 5.89% | 1249 | 4.88E-03 | 20    | 4.27% | 905    | 3.53E-03 |
| 5    | 0.49% | 104  | 4.06E-04 | 13   | 6.15% | 1304 | 5.09E-03 | 21    | 3.25% | 689    | 2.69E-03 |
| 6    | 0.90% | 191  | 7.45E-04 | 14   | 6.04% | 1280 | 5.00E-03 | 22    | 3.30% | 700    | 2.73E-03 |
| 7    | 3.79% | 803  | 3.14E-03 | 15   | 7.01% | 1486 | 5.80E-03 | 23    | 2.46% | 522    | 2.04E-03 |
| 8    | 7.76% | 1645 | 6.42E-03 | 16   | 7.14% | 1514 | 5.91E-03 | 24    | 1.87% | 396    | 1.55E-03 |
|      |       |      |          |      |       |      |          | Total |       | 21,196 |          |

| 2028 Houriv Traffic Volumes Per Direction and TOG Evaporative emissions - TEVAP SD ECR |
|----------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------|

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 1.15% | 244  | 9.49E-04 | 9    | 7.11% | 1507 | 5.86E-03 | 17    | 7.39% | 1567   | 6.10E-03 |
| 2    | 0.42% | 89   | 3.46E-04 | 10   | 4.39% | 931  | 3.62E-03 | 18    | 8.18% | 1734   | 6.75E-03 |
| 3    | 0.40% | 85   | 3.30E-04 | 11   | 4.66% | 988  | 3.84E-03 | 19    | 5.70% | 1208   | 4.70E-03 |
| 4    | 0.26% | 55   | 2.14E-04 | 12   | 5.89% | 1249 | 4.86E-03 | 20    | 4.27% | 905    | 3.52E-03 |
| 5    | 0.49% | 104  | 4.04E-04 | 13   | 6.15% | 1304 | 5.07E-03 | 21    | 3.25% | 689    | 2.68E-03 |
| 6    | 0.90% | 191  | 7.42E-04 | 14   | 6.04% | 1280 | 4.98E-03 | 22    | 3.30% | 700    | 2.72E-03 |
| 7    | 3.79% | 803  | 3.13E-03 | 15   | 7.01% | 1486 | 5.78E-03 | 23    | 2.46% | 522    | 2.03E-03 |
| 8    | 7.76% | 1645 | 6.40E-03 | 16   | 7.14% | 1514 | 5.89E-03 | 24    | 1.87% | 396    | 1.54E-03 |
|      |       |      |          | -    |       |      |          | Total |       | 21,196 |          |

## 4335 & 4345 El Camino Real, Palo Alto, CA - Roadway Modeling Emissions Roadway - El Camino Real Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions

2028 Year =

|            |                           |           |       |        |        |       |       |         |         |          |        |         | Li        | ine Area    |            |           |
|------------|---------------------------|-----------|-------|--------|--------|-------|-------|---------|---------|----------|--------|---------|-----------|-------------|------------|-----------|
|            |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |            | (Sigma z) |
|            |                           |           |       | Link   | Link   | Link  | Link  | Release | Average | Average  |        |         |           |             | Initial    | Initial   |
|            |                           |           | No.   | Length | Length | Width | Width | Height  | Speed   | Vehicles | Area   | Area    | Emission  | Emission    | Vertical   | Vertical  |
| Road Link  | Description               | Direction | Lanes | (m)    | (mi)   | (m)   | (ft)  | ( m)    | (mph)   | per Day  | (sq m) | (sq ft) | (g/s/m2)  | (lb/hr/ft2) | height (m) | Dimension |
|            |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |            |           |
| FUG_NB_ECR | El Camino Real Northbound | NB        | 3     | 718.1  | 0.45   | 17.0  | 56    | 1.3     | 30      | 21,200   | 12,188 | 131,192 | 1.926E-07 | 1.420E-07   | 2.6        | 1.21      |
|            |                           |           |       |        |        |       |       |         |         |          |        |         |           |             |            |           |
| FUG_SB_ECR | El Camino Real Southbound | SB        | 3     | 715.5  | 0.44   | 17.0  | 56    | 1.3     | 30      | 21,200   | 12,144 | 130,717 | 1.926E-07 | 1.420E-07   | 2.6        | 1.21      |
|            |                           |           |       |        |        |       |       |         | Total   | 42,400   |        |         |           |             |            |           |

Emission Factors - Fugitive PM2.5

| Speed Category                                       | 1       | 2 | 3 | 4 |
|------------------------------------------------------|---------|---|---|---|
| Travel Speed (mph)                                   | 30      |   |   |   |
| Tire Wear - Emissions per Vehicle (g/VMT)            | 0.00205 |   |   |   |
| Brake Wear - Emissions per Vehicle (g/VMT)           | 0.00528 |   |   |   |
| Road Dust - Emissions per Vehicle (g/VMT)            | 0.01411 |   |   |   |
| Total Fugitive PM2.5 - Emissions per Vehicle (g/VMT) | 0.02144 |   |   |   |
|                                                      |         |   |   |   |

Emisson Factors from CT-EMFAC2021

### 2028 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG\_NB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/s      | Hour | Hour  | VPH  | g/s      | Hour  | Hour  | VPH    | g/s      |
| 1    | 1.15% | 244  | 6.48E-04 | 9    | 7.11% | 1507 | 4.01E-03 | 17    | 7.39% | 1567   | 4.16E-03 |
| 2    | 0.42% | 89   | 2.37E-04 | 10   | 4.39% | 931  | 2.47E-03 | 18    | 8.18% | 1734   | 4.61E-03 |
| 3    | 0.40% | 85   | 2.25E-04 | 11   | 4.66% | 988  | 2.63E-03 | 19    | 5.70% | 1208   | 3.21E-03 |
| 4    | 0.26% | 55   | 1.46E-04 | 12   | 5.89% | 1249 | 3.32E-03 | 20    | 4.27% | 905    | 2.41E-03 |
| 5    | 0.49% | 104  | 2.76E-04 | 13   | 6.15% | 1304 | 3.47E-03 | 21    | 3.25% | 689    | 1.83E-03 |
| 6    | 0.90% | 191  | 5.07E-04 | 14   | 6.04% | 1280 | 3.40E-03 | 22    | 3.30% | 700    | 1.86E-03 |
| 7    | 3.79% | 803  | 2.14E-03 | 15   | 7.01% | 1486 | 3.95E-03 | 23    | 2.46% | 522    | 1.39E-03 |
| 8    | 7.76% | 1645 | 4.37E-03 | 16   | 7.14% | 1514 | 4.02E-03 | 24    | 1.87% | 396    | 1.05E-03 |
|      |       |      |          |      |       |      |          | Total |       | 21,196 |          |

#### 2028 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG\_SB\_ECR

|      | % Per |      |          |      | % Per |      |          |       | % Per |        |          |
|------|-------|------|----------|------|-------|------|----------|-------|-------|--------|----------|
| Hour | Hour  | VPH  | g/mile   | Hour | Hour  | VPH  | g/mile   | Hour  | Hour  | VPH    | g/mile   |
| 1    | 1.15% | 244  | 6.46E-04 | 9    | 7.11% | 1507 | 3.99E-03 | 17    | 7.39% | 1567   | 4.15E-03 |
| 2    | 0.42% | 89   | 2.36E-04 | 10   | 4.39% | 931  | 2.46E-03 | 18    | 8.18% | 1734   | 4.59E-03 |
| 3    | 0.40% | 85   | 2.25E-04 | 11   | 4.66% | 988  | 2.62E-03 | 19    | 5.70% | 1208   | 3.20E-03 |
| 4    | 0.26% | 55   | 1.46E-04 | 12   | 5.89% | 1249 | 3.31E-03 | 20    | 4.27% | 905    | 2.40E-03 |
| 5    | 0.49% | 104  | 2.75E-04 | 13   | 6.15% | 1304 | 3.45E-03 | 21    | 3.25% | 689    | 1.82E-03 |
| 6    | 0.90% | 191  | 5.05E-04 | 14   | 6.04% | 1280 | 3.39E-03 | 22    | 3.30% | 700    | 1.85E-03 |
| 7    | 3.79% | 803  | 2.13E-03 | 15   | 7.01% | 1486 | 3.94E-03 | 23    | 2.46% | 522    | 1.38E-03 |
| 8    | 7.76% | 1645 | 4.36E-03 | 16   | 7.14% | 1514 | 4.01E-03 | 24    | 1.87% | 396    | 1.05E-03 |
|      |       |      |          |      |       |      |          | Total |       | 21,196 |          |

## 4335 & 4345 El Camino Real, Palo Alto, CA - El Camino Real Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations On-Site 1st (1.5m) amd 2nd (4.5m) Floor Receptor Heights

| 2028                             |
|----------------------------------|
| Maximum On-Site Receptor         |
| 29                               |
| 1st (1.5m) and 2nd (4.5m) Floors |
| At each residential unit         |
|                                  |

## **Meteorological Conditions**

| BAQMD Moffett Fed Airfield Met Data | 2013-2017 |
|-------------------------------------|-----------|
| Land Use Classification             | Urban     |
| Wind Speed                          | Variable  |
| Wind Direction                      | Variable  |

## **On-Site Cancer Risk Maximum Concentrations**

| Meteorological |        | Concentration (µ | ıg/m3)                 |           |
|----------------|--------|------------------|------------------------|-----------|
| Data Years     | DPM    | Exhaust TOG      | <b>Evaporative TOG</b> |           |
| 2013-2017      | 0.0040 | 0.2669           | 0.4224                 | 1st Floor |
| 2013-2017      | 0.0037 | 0.2172           | 0.3438                 | 2nd Floor |

## **On-Site PM2.5 Maximum Concentrations**

| Meteorological | PM          | 2.5 Concentratio | n (µg/m3)     |           |
|----------------|-------------|------------------|---------------|-----------|
| Data Years     | Total PM2.5 | Fugitive PM2.5   | Vehicle PM2.5 |           |
| 2013-2017      | 0.3069      | 0.2875           | 0.0195        | 1st Floor |
| 2013-2017      | 0.2499      | 0.2340           | 0.0159        | 2nd Floor |

#### 4335 & 4345 El Camino Real, Palo Alto, CA - El Camino Real Cancer Risk & PM2.5 Impacts at On-Site 1st Floor Receptors - 1.5m receptor heights 30 Year Residential Exposure

#### Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where:  $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 
  - ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

  - FAH = Fraction of time spent at home (unitless)
- Inhalation Dose =  $C_{air} x DBR x A x (EF/365) x 10^{-6}$
- Where:  $C_{air} = concentration in air (\mu g/m^3)$ 
  - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)
  - $10^{-6}$  = Conversion factor

| Cancer Potency Factors (m | g/kg-day) <sup>-1</sup> |
|---------------------------|-------------------------|
| TAC                       | CPF                     |
| DPM                       | 1.10E+00                |
| Vehicle TOG Exhaust       | 6.28E-03                |
| Vehicle TOG Evaporative   | 3.70E-04                |

Values

|              | Inf                  | Adult           |              |                   |
|--------------|----------------------|-----------------|--------------|-------------------|
| Age>         | <b>3rd Trimester</b> | 0 - 2           | 2 - 16       | 16-30             |
| Parameter    |                      |                 |              |                   |
| ASF =        | 10                   | 10              | 3            | 1                 |
| DBR* =       | 361                  | 1090            | 572          | 261               |
| A =          | 1                    | 1               | 1            | 1                 |
| EF =         | 350                  | 350             | 350          | 350               |
| AT =         | 70                   | 70              | 70           | 70                |
| FAH=         | 1.00                 | 1.00            | 1.00         | 0.73              |
| * 95th perce | ntile breathing rate | s for infants a | nd 80th perc | entile for childr |

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

| Maximum - Exposure Information |             |            |      |             | Concentration (ug/m3) |         |             | Cancer Risk (per million) |         |             |       |        |          |       |
|--------------------------------|-------------|------------|------|-------------|-----------------------|---------|-------------|---------------------------|---------|-------------|-------|--------|----------|-------|
|                                | Exposure    |            |      |             |                       |         |             |                           |         |             |       |        |          |       |
|                                | -           |            |      | Age         |                       | Exhaust | Evaporative |                           |         |             | TOTAL |        |          |       |
| Exposure                       | Duration    |            |      | Sensitivity | DPM                   | TOG     | TOG         | DPM                       | Exhaust | Evaporative |       |        |          |       |
| Year                           | (years)     | Age        | Year | Factor      |                       |         |             |                           | TOG     | TOG         |       |        | Maximum  |       |
|                                |             |            |      |             |                       |         |             |                           |         |             |       | Hazard | Fugitive | Total |
| 0                              | 0.25        | -0.25 - 0* | 2027 | 10          | 0.0040                | 0.2669  | 0.4224      | 0.055                     | 0.021   | 0.0019      | 0.08  | Index  | PM2.5    | PM2.5 |
| 1                              | 1           | 0 - 1      | 2027 | 10          | 0.0040                | 0.2669  | 0.4224      | 0.660                     | 0.250   | 0.0233      | 0.93  | 0.001  | 0.29     | 0.31  |
| 2                              | 1           | 1 - 2      | 2028 | 10          | 0.0040                | 0.2669  | 0.4224      | 0.660                     | 0.250   | 0.0233      | 0.93  |        |          |       |
| 3                              | 1           | 2 - 3      | 2029 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 4                              | 1           | 3 - 4      | 2030 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 5                              | 1           | 4 - 5      | 2031 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 6                              | 1           | 5 - 6      | 2032 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 7                              | 1           | 6 - 7      | 2033 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 8                              | 1           | 7 - 8      | 2034 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 9                              | 1           | 8 - 9      | 2035 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 10                             | 1           | 9 - 10     | 2036 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 11                             | 1           | 10 - 11    | 2037 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 12                             | 1           | 11 - 12    | 2038 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 13                             | 1           | 12 - 13    | 2039 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 14                             | 1           | 13 - 14    | 2040 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 15                             | 1           | 14 - 15    | 2041 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 16                             | 1           | 15 - 16    | 2042 | 3           | 0.0040                | 0.2669  | 0.4224      | 0.104                     | 0.039   | 0.0037      | 0.15  |        |          |       |
| 17                             | 1           | 16-17      | 2043 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 18                             | 1           | 17-18      | 2044 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 19                             | 1           | 18-19      | 2045 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 20                             | 1           | 19-20      | 2046 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 21                             | 1           | 20-21      | 2047 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 22                             | 1           | 21-22      | 2048 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 23                             | 1           | 22-23      | 2049 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 24                             | 1           | 23-24      | 2050 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 25                             | 1           | 24-25      | 2051 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 26                             | 1           | 25-26      | 2052 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 27                             | 1           | 26-27      | 2053 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 28                             | 1           | 27-28      | 2054 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 29                             | 1           | 28-29      | 2055 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| 30                             | 1           | 29-30      | 2056 | 1           | 0.0040                | 0.2669  | 0.4224      | 0.012                     | 0.004   | 0.0004      | 0.02  |        |          |       |
| Total Inavoas                  | od Concor D | lie le     |      |             |                       |         | 1           | 2.00                      | 1 1 2 4 | 0.106       | 4 22  |        |          |       |

#### 4335 & 4345 El Camino Real, Palo Alto, CA - El Camino Real Cancer Risk & PM2.5 Impacts at On-Site 2nd Floor Receptors - 4.5m receptor heights 30 Year Residential Exposure

#### Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where:  $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 
  - ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

  - FAH = Fraction of time spent at home (unitless)
- Inhalation Dose =  $C_{air} x DBR x A x (EF/365) x 10^{-6}$
- Where:  $C_{air} = concentration in air (\mu g/m^3)$ 
  - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)
  - $10^{-6}$  = Conversion factor

| Cancer Potency Factors (mg/kg-day) <sup>-1</sup> |          |  |  |  |  |  |  |  |  |
|--------------------------------------------------|----------|--|--|--|--|--|--|--|--|
| TAC                                              | CPF      |  |  |  |  |  |  |  |  |
| DPM                                              | 1.10E+00 |  |  |  |  |  |  |  |  |
| Vehicle TOG Exhaust                              | 6.28E-03 |  |  |  |  |  |  |  |  |
| Vehicle TOG Evaporative                          | 3.70E-04 |  |  |  |  |  |  |  |  |

Values

|              | Inf                  | Adult           |              |                   |
|--------------|----------------------|-----------------|--------------|-------------------|
| Age>         | <b>3rd Trimester</b> | 0 - 2           | 2 - 16       | 16-30             |
| Parameter    |                      |                 |              |                   |
| ASF =        | 10                   | 10              | 3            | 1                 |
| DBR* =       | 361                  | 1090            | 572          | 261               |
| A =          | 1                    | 1               | 1            | 1                 |
| EF =         | 350                  | 350             | 350          | 350               |
| AT =         | 70                   | 70              | 70           | 70                |
| FAH=         | 1.00                 | 1.00            | 1.00         | 0.73              |
| * 95th perce | ntile breathing rate | s for infants a | nd 80th perc | entile for childr |

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

| Maximum - Exposure Information |             |            | Conc | entration (ug | g/m3)  | Cancer Risk (per million) |             |       |         |             |       |        |          |       |
|--------------------------------|-------------|------------|------|---------------|--------|---------------------------|-------------|-------|---------|-------------|-------|--------|----------|-------|
|                                | Exposure    |            |      |               |        |                           |             |       |         |             |       |        |          |       |
|                                |             |            |      | Age           |        | Exhaust                   | Evaporative |       |         |             | TOTAL |        |          |       |
| Exposure                       | Duration    |            |      | Sensitivity   | DPM    | TOG                       | TOG         | DPM   | Exhaust | Evaporative |       |        |          |       |
| Year                           | (years)     | Age        | Year | Factor        |        |                           |             |       | TOG     | TOG         |       |        | Maximum  |       |
|                                |             |            |      |               |        |                           |             |       |         |             |       | Hazard | Fugitive | Total |
| 0                              | 0.25        | -0.25 - 0* | 2027 | 10            | 0.0037 | 0.2172                    | 0.3438      | 0.050 | 0.017   | 0.0016      | 0.07  | Index  | PM2.5    | PM2.5 |
| 1                              | 1           | 0 - 1      | 2027 | 10            | 0.0037 | 0.2172                    | 0.3438      | 0.606 | 0.204   | 0.0190      | 0.83  | 0.001  | 0.23     | 0.25  |
| 2                              | 1           | 1 - 2      | 2028 | 10            | 0.0037 | 0.2172                    | 0.3438      | 0.606 | 0.204   | 0.0190      | 0.83  |        |          |       |
| 3                              | 1           | 2 - 3      | 2029 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 4                              | 1           | 3 - 4      | 2030 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 5                              | 1           | 4 - 5      | 2031 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 6                              | 1           | 5 - 6      | 2032 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 7                              | 1           | 6 - 7      | 2033 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 8                              | 1           | 7 - 8      | 2034 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 9                              | 1           | 8 - 9      | 2035 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 10                             | 1           | 9 - 10     | 2036 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 11                             | 1           | 10 - 11    | 2037 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 12                             | 1           | 11 - 12    | 2038 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 13                             | 1           | 12 - 13    | 2039 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 14                             | 1           | 13 - 14    | 2040 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 15                             | 1           | 14 - 15    | 2041 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 16                             | 1           | 15 - 16    | 2042 | 3             | 0.0037 | 0.2172                    | 0.3438      | 0.095 | 0.032   | 0.0030      | 0.13  |        |          |       |
| 17                             | 1           | 16-17      | 2043 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 18                             | 1           | 17-18      | 2044 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 19                             | 1           | 18-19      | 2045 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 20                             | 1           | 19-20      | 2046 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 21                             | 1           | 20-21      | 2047 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 22                             | 1           | 21-22      | 2048 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 23                             | 1           | 22-23      | 2049 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 24                             | 1           | 23-24      | 2050 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 25                             | 1           | 24-25      | 2051 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 26                             | 1           | 25-26      | 2052 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 27                             | 1           | 26-27      | 2053 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 28                             | 1           | 27-28      | 2054 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 29                             | 1           | 28-29      | 2055 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| 30                             | 1           | 29-30      | 2056 | 1             | 0.0037 | 0.2172                    | 0.3438      | 0.011 | 0.004   | 0.0003      | 0.01  |        |          |       |
| Total Increas                  | ad Cancar D | iel.       |      |               |        |                           |             | 2.75  | 0.023   | 0.086       | 3.76  | 1      |          |       |

#### 4335 & 4345 El Camino Real, Palo Alto, CA - El Camino Real Cancer Risk & PM2.5 Impacts at On-Site 1st Floor Receptors - 1.5m receptor heights - With MERV13 Filtration 30 Year Residential Exposure

#### Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where:  $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 
  - ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

  - FAH = Fraction of time spent at home (unitless)
- Inhalation Dose =  $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$
- Where:  $C_{air} = concentration in air (\mu g/m^3)$ 
  - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor
  - EF = Exposure frequency (days/year)
  - $10^{-6} =$ Conversion factor

| Cancer Potency Factors (mg/kg-day) <sup>-1</sup> |          |  |  |  |  |  |  |  |
|--------------------------------------------------|----------|--|--|--|--|--|--|--|
| TAC                                              | CPF      |  |  |  |  |  |  |  |
| DPM                                              | 1.10E+00 |  |  |  |  |  |  |  |
| Vehicle TOG Exhaust                              | 6.28E-03 |  |  |  |  |  |  |  |
| Vehicle TOG Evaporative                          | 3.70E-04 |  |  |  |  |  |  |  |

Values

|              | Inf                  | Adult           |              |                   |
|--------------|----------------------|-----------------|--------------|-------------------|
| Age>         | <b>3rd Trimester</b> | 0 - 2           | 16-30        |                   |
| Parameter    |                      |                 |              |                   |
| ASF =        | 10                   | 10              | 3            | 1                 |
| DBR* =       | 361                  | 1090            | 572          | 261               |
| A =          | 1                    | 1               | 1            | 1                 |
| EF =         | 350                  | 350             | 350          | 350               |
| AT =         | 70                   | 70              | 70           | 70                |
| FAH=         | 1.00                 | 1.00            | 1.00         | 0.73              |
| * 95th perce | ntile breathing rate | s for infants a | nd 80th perc | entile for childr |

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

| Maximum - Exposure Information |             |            |      | Concentration (ug/m3) |        | Cancer Risk (per million) |             |       |         |             |       |        |          |       |
|--------------------------------|-------------|------------|------|-----------------------|--------|---------------------------|-------------|-------|---------|-------------|-------|--------|----------|-------|
|                                | Exposure    |            |      |                       |        |                           |             |       |         |             |       |        |          |       |
|                                | -           |            |      | Age                   |        | Exhaust                   | Evaporative |       |         |             | TOTAL |        |          |       |
| Exposure                       | Duration    |            |      | Sensitivity           | DPM    | TOG                       | TOG         | DPM   | Exhaust | Evaporative |       |        |          |       |
| Year                           | (years)     | Age        | Year | Factor                |        |                           |             |       | TOG     | TOG         |       |        | Maximum  |       |
|                                |             |            |      |                       |        |                           |             |       |         |             |       | Hazard | Fugitive | Total |
| 0                              | 0.25        | -0.25 - 0* | 2027 | 10                    | 0.0012 | 0.2669                    | 0.4224      | 0.016 | 0.021   | 0.0019      | 0.04  | Index  | PM2.5    | PM2.5 |
| 1                              | 1           | 0 - 1      | 2027 | 10                    | 0.0012 | 0.2669                    | 0.4224      | 0.198 | 0.250   | 0.0233      | 0.47  | 0.000  | 0.09     | 0.09  |
| 2                              | 1           | 1 - 2      | 2028 | 10                    | 0.0012 | 0.2669                    | 0.4224      | 0.198 | 0.250   | 0.0233      | 0.47  |        |          |       |
| 3                              | 1           | 2 - 3      | 2029 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 4                              | 1           | 3 - 4      | 2030 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 5                              | 1           | 4 - 5      | 2031 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 6                              | 1           | 5 - 6      | 2032 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 7                              | 1           | 6 - 7      | 2033 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 8                              | 1           | 7 - 8      | 2034 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 9                              | 1           | 8 - 9      | 2035 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 10                             | 1           | 9 - 10     | 2036 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 11                             | 1           | 10 - 11    | 2037 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 12                             | 1           | 11 - 12    | 2038 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 13                             | 1           | 12 - 13    | 2039 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 14                             | 1           | 13 - 14    | 2040 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 15                             | 1           | 14 - 15    | 2041 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 16                             | 1           | 15 - 16    | 2042 | 3                     | 0.0012 | 0.2669                    | 0.4224      | 0.031 | 0.039   | 0.0037      | 0.07  |        |          |       |
| 17                             | 1           | 16-17      | 2043 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 18                             | 1           | 17-18      | 2044 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 19                             | 1           | 18-19      | 2045 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 20                             | 1           | 19-20      | 2046 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 21                             | 1           | 20-21      | 2047 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 22                             | 1           | 21-22      | 2048 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 23                             | 1           | 22-23      | 2049 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 24                             | 1           | 23-24      | 2050 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 25                             | 1           | 24-25      | 2051 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 26                             | 1           | 25-26      | 2052 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 27                             | 1           | 26-27      | 2053 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 28                             | 1           | 27-28      | 2054 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 29                             | 1           | 28-29      | 2055 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| 30                             | 1           | 29-30      | 2056 | 1                     | 0.0012 | 0.2669                    | 0.4224      | 0.003 | 0.004   | 0.0004      | 0.01  |        |          |       |
| Total Increas                  | od Concor D | iel.       |      |                       |        | 1                         | 1           | 0.00  | 1 134   | 0.106       | 2.14  |        |          |       |


**Risk & Hazard Stationary Source Inquiry Form** 

This form is required when users request stationary source data from BAAQMD

This form is to be used with the BAAQMD's Google Earth stationary source screening tables.

Click here for guidance on coducting risk & hazard screening, including roadways & freeways, refer to the District's Risk & Hazard Analysis flow chart.

Click here for District's Recommended Methods for Screening and Modeling Local Risks and Hazards document.

| Table A: Reques                              | ter Contact Information                                                             |                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date of Request                              | 8/29/2024                                                                           | For Air District assistance, the following steps must be com                                                                                                                                                                                                                                              |
| Contact Name                                 | Jordyn Bauer                                                                        | 1. Complete all the contact and project information                                                                                                                                                                                                                                                       |
| Affiliation<br>Phone<br>Email                | Illingworth & Rodkin, Inc.<br>707-794-0400 x106<br>jbauer@illingworthrodkin.co<br>m | <ol> <li>Download and install the free program Google Ear<br/>stationary source application files from the District'<br/>Methodology.aspx. The small points on the map rep<br/>back-up generators, gas stations, dry cleaners, boile<br/>location, and preliminary estimated cancer risk, haze</li> </ol> |
| Project Name                                 | 4335 & 4345 El Camino<br>Real                                                       | 3. Find the project site in Google Earth by inputting I                                                                                                                                                                                                                                                   |
| Address                                      | 4335 & 4345 El Camino<br>Real                                                       | <ol> <li>Identify stationary sources within at least a 1000ft<br/>the Information Table, by using the Google Earth add</li> </ol>                                                                                                                                                                         |
| City                                         | Palo Alto                                                                           | 5 List the stationary source information in                                                                                                                                                                                                                                                               |
| County                                       | Santa Clara                                                                         |                                                                                                                                                                                                                                                                                                           |
| Type (residential,<br>commercial, mixed      |                                                                                     | 6. Note that a small percentage of the stationa<br>be noted by an asterisk next to the Plant Name<br>further.                                                                                                                                                                                             |
| use, industrial, etc.)<br>Project Size (# of | Residential                                                                         | 7. Email this completed form to District staff. Distric information or data are not available, source emissic                                                                                                                                                                                             |
| square feet)                                 | 29                                                                                  | Note that a public records request received for the same st                                                                                                                                                                                                                                               |
| Comments:                                    |                                                                                     | Submit forms, maps, and questions to Matthew Hanson at                                                                                                                                                                                                                                                    |

1. Complete all the contact and project information requested in

Table A ncomplete forms will not be processed. Please include a project site map.

2. Download and install the free program Google Earth, http://www.google.com/earth/download/ge/, and then download the county specific Google Earth stationary source application files from the District's website, http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx. The small points on the map represent stationary sources permitted by the District (Map A on right). These permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc. Click on a point to view the source's Information Table, including the name, location, and preliminary estimated cancer risk, hazard index, and PM2.5 concentration.

3. Find the project site in Google Earth by inputting the site's address in the Google Earth search box.

4. Identify stationary sources within at least a 1000ft radius of project site. Verify that the location of the source on the map matches with the source's address in the Information Table, by using the Google Earth address search box to confirm the source's address location. Please report any mapping errors to the District.

5. List the stationary source information in blue section only.

ve Health Risk Screening Assessment (HRSA) data INSTEAD of screening level data. These sources will 6. Note that a small percentage of the stational be noted by an asterisk next to the Plant Name Table B ght). If HRSA values are presented, these values have already been modeled and cannot be adjusted further.

7. Email this completed form to District staff. District staff will provide the most recent risk, hazard, and PM2.5 data that are available for the source(s). If this information or data are not available, source emissions data will be provided. Staff will respond to inquiries within three weeks.

ote that a public records request received for the same stationary source information will cancel the processing of your SSIF request.

bmit forms. maps. and questions to Matthew Hanson at 415-749-8733. or mhanson@baagmd.gov

|                    | Table B: Google Earth data |                                  |                     |                          |                          |                                |                         | Estimated                   | d MEI                  |                 |            |             |          |          |
|--------------------|----------------------------|----------------------------------|---------------------|--------------------------|--------------------------|--------------------------------|-------------------------|-----------------------------|------------------------|-----------------|------------|-------------|----------|----------|
| Distance from      |                            |                                  |                     |                          |                          |                                |                         |                             |                        |                 | Distance   | Adjusted    | Adjusted |          |
| Receptor (feet) or |                            |                                  |                     |                          |                          |                                |                         |                             |                        |                 | Adjustment | Cancer Risk | Hazard   | Adjusted |
| MEI <sup>1</sup>   | Plant No.                  | Facility Name                    | Address             | Cancer Risk <sup>2</sup> | Hazard Risk <sup>2</sup> | PM <sub>2.5</sub> <sup>2</sup> | Source No. <sup>3</sup> | Type of Source <sup>4</sup> | Fuel Code <sup>5</sup> | Status/Comments | Multiplier | Estimate    | Risk     | PM2.5    |
| 480                |                            | 200563 Toyota Research Institute | 4440 EL CAMINO REAL | 28.76                    | 0.01                     | 0.04                           |                         | Generator                   |                        | 2022 Dataset    | 0.14       | 4.03        | 0.001    | 0.01     |
| 150                |                            | 109042 El Camino 76 Inc.         | 4350 El Camino Real | 7.1                      | 0.03                     |                                |                         | Gas Dispensing Facility     |                        | 2022 Dataset    | 0.31       | 2.17        | 0.01     | #VALUE!  |

#### Footnotes:

1. Maximally exposed individual

|                 |                   | Project S  | ite         |          |          |
|-----------------|-------------------|------------|-------------|----------|----------|
| Distance from   |                   | Distance   | Adjusted    | Adjusted |          |
| Receptor (feet) |                   | Adjustment | Cancer Risk | Hazard   | Adjusted |
| or MEI          | FACID (Plant No.) | Multiplier | Estimate    | Risk     | PM2.5    |
| 540             | 200563            | 0.10       | 2.88        | 0.001    | 0.004    |
| 140             | 112102            | 0.36       | 2.59        | 0.01     | #VALUE!  |

2. These Cancer Risk, Hazard Index, and PM2.5 columns represent the values in the Google Earth Plant Information Table.

3. Each plant may have multiple permits and sources.

4. Permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc.

5. Fuel codes: 98 = diesel, 189 = Natural Gas.

6. If a Health Risk Screening Assessment (HRSA) was completed for the source, the application number will be listed here.

7. The date that the HRSA was completed.

8. Engineer who completed the HRSA. For District purposes only.

9. All HRSA completed before 1/5/2010 need to be multiplied by an age sensitivity factor of 1.7.

10. The HRSA "Chronic Health" number represents the Hazard Index.

11. Further information about common sources:

a. Sources that only include diesel internal combustion engines can be adjusted using the BAAQMD's Diesel Multiplier worksheet.

b. The risk from natural gas boilers used for space heating when <25 MM BTU/hr would have an estimated cancer risk of one in a million or less, and a chronic hazard index of 0.003 or

c. BAAQMD Reg 11 Rule 16 required that all co-residential (sharing a wall, floor, ceiling or is in the same building as a residential unit) dry cleaners cease use of perc on July 1, 2010.

Therefore, there is no cancer risk, hazard or PM2.5 concentrations from co-residential dry cleaning businesses in the BAAQMD.

d. Non co-residential dry cleaners must phase out use of perc by Jan. 1, 2023. Therefore, the risk from these dry cleaners does not need to be factored in over a 70-year period, but instead should reflect

e. Gas stations can be adjusted using BAAQMD's Gas Station Distance Mulitplier worksheet.

f. Unless otherwise noted, exempt sources are considered insignificant. See BAAQMD Reg 2 Rule 1 for a list of exempt sources.

g. This spray booth is considered to be insignificant.

Date last updated:

03/13/2018



## Area of Interest (AOI) Information

Area : 4,317,840.62 ft<sup>2</sup>

Aug 15 2024 16:32:26 Pacific Daylight Time



Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its atfliates. Esri Community Maps contributors, Map layer by Esri

## Summary

| Name                         | Count | Area(ft²) | Length(ft) |
|------------------------------|-------|-----------|------------|
| Permitted Stationary Sources | 2     | N/A       | N/A        |

## Permitted Stationary Sources

| # | Address                 | Cancer_R                                                            | is             | Chronic_Ha                   |                    | City           | County      |
|---|-------------------------|---------------------------------------------------------------------|----------------|------------------------------|--------------------|----------------|-------------|
| 1 | 4440 EL CAMINO REAL     | 28.76                                                               |                | 0.01                         | Los Alto           | s              | Santa Clara |
| 2 | 4350 El Camino Real     | 7.10                                                                |                | 0.03                         | Los Alto           | S              | Santa Clara |
| # | Details                 | Facility_                                                           | I              | Facility_N                   |                    | Latitude       | Longitude   |
| 1 | Generator               | 200563                                                              |                | Toyota Research<br>Institute | 37.40              |                | -122.12     |
| 2 | Gas Dispensing Facility | 109042-1                                                            |                | El Camino 76 Inc.            | 37.40              |                | -122.12     |
| # | NAICS                   | NAICS_Inc                                                           | du             | NAICS_Sect                   | N                  | AICS_Subs      | PM25        |
| 1 | 333999                  | All Other Miscella<br>General Purpose<br>Machinery<br>Manufacturing | aneous         | Manufacturing                | Machine<br>Manufao | ery<br>cturing | 0.04        |
| 2 | 447110                  | Gasoline Stations<br>Convenience Sto                                | s with<br>ores | Retail Trade                 | Gasoline Stations  |                | 0.00        |
| # | # State Zip Count       |                                                                     |                |                              |                    | Count          |             |
| 1 | CA                      |                                                                     | 94022          |                              |                    | 1              |             |
| 2 | CA                      |                                                                     | 94022          |                              |                    | 1              |             |

NOTE: A larger buffer than 1,000 may be warranted depending on proximity to significant sources.

# Appendix D

Construction Health Risk Technical Report

66 Franklin Street, Suite 300 Oakland, California 94607 510-834-4455



January 9, 2025 Project No: 24-16517

Emily Kallas, AICP, Senior Planner City of Palo Alto 250 Hamilton Avenue Palo Alto, California 94301

#### Subject: Construction Health Risk Technical Letter Report for the 4335 & 4345 El Camino Real Project, 4335 & 4345 El Camino Real, Palo Alto, California 94306

Dear Austin:

Rincon Consultants, Inc. (Rincon) has prepared this technical letter report to evaluate potential air quality impacts resulting from construction of the proposed 4335 & 4345 El Camino Real Project (herein referred to as "proposed project" or "project"), located in the City of Palo Alto, California. An Air Quality Assessment was prepared by Illingworth & Rodkin, Inc. in December 2024. The Air Quality Assessment included a refined health risk analysis for project operation; however, construction health risk was analyzed qualitatively. This technical letter report was prepared in order to conduct a refined construction health risk assessment to support the findings of the existing Air Quality Assessment.

## **Description of Project**

The 1.35-acre project site is currently developed with a commercial building, a motel, and an associated parking lot. The proposed project would demolish the existing uses and construct 29 threestory townhome-style condominiums in five buildings totaling 64,420 square feet. Construction is expected to begin in April 2026 and be completed by approximately July 2027. The project has committed to using construction equipment with U.S. EPA Tier 4 emission standards for particulate matter.

# **Air Quality**

## **Environmental Setting**

The federal and State Clean Air Acts (CAA) mandate the control and reduction of certain air pollutants. Under these laws, the U.S. Environmental Protection Agency (USEPA) and the California Air Resources Board (CARB) have established the National Ambient Air Quality Standards (NAAQS) and the California Ambient Air Quality Standards (CAAQS) for "criteria pollutants" and other pollutants. Some pollutants are emitted directly from a source (e.g., vehicle tailpipe, an exhaust stack of a factory, etc.) into the atmosphere, including carbon monoxide (CO), volatile organic compounds (VOC)/reactive organic gases (ROG),<sup>1</sup> nitrogen oxides (NO<sub>X</sub>), particulate matter with diameters of ten microns or less (PM<sub>10</sub>) and 2.5 microns or less (PM<sub>2.5</sub>), sulfur dioxide, and lead. Other pollutants are created indirectly through chemical reactions in the atmosphere, such as ozone, which is created by atmospheric chemical and

<sup>&</sup>lt;sup>1</sup> CARB defines VOC and ROG similarly as, "any compound of carbon excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate," with the exception that VOC are compounds that participate in atmospheric photochemical reactions. For the purposes of this analysis, ROG and VOC are considered comparable in terms of mass emissions, and the term VOC is used in this analysis.

photochemical reactions primarily between VOC and NO<sub>x</sub>. Secondary pollutants include oxidants, ozone, and sulfate and nitrate particulates (smog).

Air pollutant emissions are generated primarily by stationary and mobile sources. Stationary sources can be divided into two major subcategories:

Point sources occur at a specific location and are often identified by an exhaust vent or stack. Examples include boilers or combustion equipment that produce electricity or generate heat.

 Area sources are widely distributed and include such sources as residential and commercial water heaters, painting operations, lawn mowers, agricultural fields, landfills, and some consumer products.

Mobile sources refer to emissions from motor vehicles, including tailpipe and evaporative emissions, and can also be divided into two major subcategories:

- On-road sources may be legally operated on roadways and highways.
- Off-road sources include aircraft, ships, trains, and self-propelled construction equipment.

Air pollutants can also be generated by the natural environment, such as when high winds suspend fine dust particles.

## **Toxic Air Contaminants**

A TAC is an air pollutant that may cause or contribute to an increase in mortality or serious illness or which may pose a present or potential hazard to human health. TACs may result in long-term health effects such as cancer, birth defects, neurological damage, asthma, or genetic damage, or short-term acute effects such as eye watering, respiratory irritation, runny nose, throat pain, and headaches. TACs are considered either carcinogenic or non-carcinogenic based on the nature of the health effects associated with exposure. For carcinogenic TACs, potential health impacts are evaluated in terms of overall relative risk expressed as excess cancer cases per one million exposed individuals. Non-carcinogenic TACs differ in that there is generally assumed to be a safe level of exposure below which no negative health impact is believed to occur. These levels are determined on a pollutant-by-pollutant basis.

TACs include both organic and inorganic chemical substances. One of the main sources of TACs in California is diesel engines that emit exhaust containing solid material known as diesel particulate matter; however, TACs may be emitted from a variety of common sources, including gasoline stations, motor vehicles, dry cleaners, industrial operations, painting operations, and research and teaching facilities.

## Methodology

Dispersion modeling of TAC and PM<sub>2.5</sub> emissions was conducted using the AERMOD dispersion model. To evaluate the potential impacts of TACs emitted during construction of the proposed project, a standalone spreadsheet was used to quantify risk from air dispersion modeling results. Potential health risks to nearby sensitive receptors from the emission of TACs during construction were analyzed in accordance with the BAAQMD *CEQA Air Quality Guidelines (2022)*. Where available, modeling assumptions and model inputs were made consistent with the project-specific Air Quality Assessment (Illingworth & Rodkin Inc. 2024). Results from the construction health risk assessment were then combined with the operational and cumulative risk results from the project-specific Air Quality



Assessment in order to determine whether the project would exceed BAAQMD's cumulative-source thresholds. Modeling assumptions and inputs are available in Attachment 1.

## Construction

Emissions from each area of construction activity were calculated using values from the CalEEMod outputs provided in the project-specific Air Quality Assessment (Illingworth & Rodkin Inc. 2024). As detailed in that report, construction characteristics such as start and end dates for each phase, grading and paving area, and building square footage were provided by the project applicant. Per applicant provided information, all construction equipment would be equipped with Tier 4 engines. The proposed project would include export of demolished material from the existing structure. Therefore, material hauling would occur and construction haul routes were included in modeling.

AERMOD includes a variety of source types, including point, volume, and line volume sources. In order to accurately characterize the emissions generated by construction activities at the Project site, polygon area sources were used to represent stationary construction emissions sources. Haul routes were modeled in AERMOD as line volume sources. Construction emissions would occur during daytime hours. Therefore, the dispersion modeling allocates the emissions during the daytime construction hours.

## Sensitive Receptors

The closest existing sensitive receptors to the project site are located in the adjacent multi-family residences to the southeast. There are additional sensitive receptors located at further distances to the north and south of the site. Sensitive receptors identified for modeling were placed at the location of residential land uses near the project site. Those sites not specifically modeled would result in risk that would be less than the risk modeled for those receptors included in the analysis due to increased dispersion of pollutants at distances greater than the 1,000-foot radius.

## Meteorology and Topography

AERMOD requires meteorological and topographic data. Pre-processed meteorological data was obtained from the Moffet Federal Airfield approximately 3.8 miles east of the project site. The dataset was developed by BAAQMD for use in AERMOD and includes five years of meteorological data between 2013 and 2017. The NED 1/3-Degree topographic model from the project area was used. BAAQMD recommends the use of flagpole receptors at a height of 1.5 meters. Consistent with BAAQMD methodology, receptor heights of 5 feet (1.5 meters) and 15 feet (4.5 meters) were used to represent the breathing heights on the first and second floors of the nearby single- and multi-family residences.

## **Risk Analysis**

Health risk impacts are assessed using the health risk calculation methodology that is consistent with Appendix E of BAAQMD's *CEQA Air Quality Guidelines* (2022). Health impacts address project DPM emissions and the effects on nearby sensitive uses. The incremental excess cancer risk is an estimate of the added risk a person exposed to a specific source of a TAC may have of developing cancer from that exposure, with all other conditions held constant. To provide a perspective on risk, the American Cancer Society (2018) reports that in the United States, men have about a 40 in 100 chance (0.40 probability) and women about a 38 in 100 chance (0.38) of developing cancer during a lifetime. Based on this background cancer risk level in the general population, application of a  $1.0 \times 10^{-5}$  excess risk limit means that the contribution from a toxic hazard should not cause the resultant cancer risk for the exposed population to exceed 0.40001 for men or 0.38001 for women.



Health impacts are evaluated using a dose-response assessment, which describes the relationship between the level of exposure to a substance (i.e., the dose) and the incidence or occurrence of injury (i.e., the response). In order to determine the total dose to off-site sensitive receptors, the applicable pathways of exposure should be identified. The applicable exposure pathways (e.g., inhalation) are identified for the emitted substances, and the receptor locations are identified. The applicable exposure pathways determine the exposure algorithms that are used to estimate dose. After the exposure pathways are identified, the applicable fate and transport algorithms are used to estimate concentrations in the applicable exposure media (e.g., air) and the exposure algorithms are used to determine the substance-specific dose. In accordance with the OEHHA Guidance, the inhalation pathway was evaluated for construction-related DPM. For the inhalation pathway, the dose is directly proportional to the breathing rate. As a conservative (i.e., health protective) approach, maximum breathing rates were used in this analysis.

Once dose is calculated, cancer risk is calculated by accounting for cancer potency of the specific pollutant, age sensitivity, exposure duration, averaging time for lifetime cancer risk, and fraction of time spent at home (sensitive receptor). The cancer potency factor (CPF) is specific for each pollutant and is determined through peer-reviewed scientific studies. For example, the Scientific Review Panel recommends a CPF for DPM of  $3.0 \times 10-4$  (µg/m<sup>3</sup>)<sup>-1</sup> and a slope factor of 1.1 (ppm-day)<sup>-1</sup>. The ASFs account for greater susceptibility in early life as compared to adult exposure, starting from the third trimester of pregnancy to 16 years. The fraction of time at home (FAH) takes into account the time actually residing at the sensitive receptor location. FAH also takes into account time spent at home for various age groups. For example, newborns are expected to reside at home for longer periods of time compared to school-age children, and the elderly (retirees) are expected to spend more time at home compared to people of working age. Construction of the proposed project would occur over less than two years. Therefore, the third trimester age bin and birth to 2-year age bin were used.

Each age group has different exposure parameters which require cancer risk to be calculated separately for each age group. The estimation of cancer risk uses the following algorithms:

Risk = Dose inhalation × Inhalation CPF × ASF(Equation 1)

Where:

Dose inhalation = CAIR × DBR × A × EF × ED × FAH/AT (Equation 2) Inhalation CPF = inhalation cancer potency factor ASF = age-sensitivity factor

Where:

CAIR = concentration of compound in air in micrograms per cubic meter ( $\mu g/m^3$ )

DBR = breathing rate in liter per kilogram of body weight per day (L/kg-body weight/day)

A = inhalation absorption factor (1 for DPM)

EF = exposure frequency in days per year (day/year)

ED = exposure duration in years (year)

FAH = fraction of time at home

AT = averaging time period over which exposure is averaged in days (day)

The OEHHA recommended values for the equations described, as well as the daily breathing rates (DBF) above were used in the HRA. Specific modeling details are included in Attachment 1.



The incremental increase in cancer risk is the result of multiplying the dose by the pollutant-specific CPF values. Cancer risk is calculated by multiplying the inhalation dose by the inhalation CPF to yield the potential inhalation excess cancer risk. Cancer risk was evaluated for sensitive receptors in the surrounding area. Only the risk from the maximally exposed receptor is reported/analyzed herein. Risk for all receptors is included as part of Attachment 1.

### **Toxic Air Contaminants**

#### Construction

CARB's Air Quality and Land Use Handbook: A Community Health Perspective (April 2005) recommends against siting sensitive receptors within 500 feet of a freeway, urban roads with 100,000 vehicles/day, or rural roads with 50,000 vehicles/day. While these siting distances are not particular to construction activities, the primary source of TAC emissions from both freeways and construction equipment is DPM. Therefore, for projects within 1,000 feet of sensitive receptors a refined health risk would be conducted.

#### Cumulative

Appendix E of BAAQMD's *CEQA Air Quality Guidelines* (2022) also recommends assessing cumulative impacts of a new source or sources in combination with existing sources located within 1,000 feet of the project site. Because health risk focuses on sensitive receptors, cumulative impacts to the maximally exposed individual (MEI), the residences adjacent to the southern boundary of the project site, were analyzed. The cumulative risk analysis includes the operation of the proposed project as well as all existing sources within a 1,000-foot radius of the MEI. Within 1,000 feet of the MEI, there are two stationary sources. Additionally, the cumulative analysis includes risk and PM<sub>2.5</sub> concentration associated with roadway traffic on El Camino Real. The average daily traffic for El Camino Real is 41,600 vehicles per day (Illingworth & Rodkin 2024). In addition to the proposed project, the following sources were analyzed as part of the cumulative analysis and are identified with their facility name, number, and distance from the MEI:

- Toyota Research Institute (200563; MEI at 480 feet);
- El Camino Real 76 Inc. (109042-1; MEI at 150 feet);
- El Camino Real (ADT 41,600)

# **Significance Thresholds**

## **Toxic Air Containments**

In the absence of a qualified Community Risk Reduction Plan, BAAQMD has established the following *Thresholds of Significance* for local community risks and hazards associated with TACs and PM<sub>2.5</sub> for assessing individual source impacts at a local level. Impacts would be significant if:

- The project would result in an increased cancer risk of > 10 in a million
- The project would result in an increased non-cancer (i.e., Chronic or Acute) risk of > 1.0 Hazard Index
- The project would result in an ambient  $PM_{2.5}$  concentration increase of > 0.3 µg/m<sup>3</sup> annual average



A project would be considered to have a cumulatively considerable impact if the aggregate total of current and proposed TAC sources within a 1,000 feet radius of the project fence-line in addition to the project would exceed the *Cumulative Thresholds* of *Significance*. Impacts would be significant if:

- The project would result in an increased cancer risk of > 100 in a million
- The project would result in an increased non-cancer (i.e., Chronic) risk of > 10 Hazard Index
- The project would result in an ambient  $PM_{2.5}$  concentration increase of > 0.8  $\mu$ g/m<sup>3</sup> annual average

Excess cancer risks are defined as those occurring in excess of or above and beyond those risks that would normally be associated with a location or activity if toxic pollutants were not present. Non-carcinogenic health effects are expressed as a hazard index, which is the ratio of expected exposure levels to an acceptable reference exposure level.

# Results

## **Construction Impacts**

The project would involve the construction of 29 residential units in five buildings totaling 64,420 square feet.

The MEI is the modeled residential receptor experiencing the highest incremental excess cancer risk under 30-year residential exposure duration during construction. The MEI near the project site would be exposed to a 30-year excess cancer risk of approximately 5.97 in one million, which does not exceed BAAQMD's recommended cancer risk criteria of ten excess cases of cancer in one million individuals (BAAQMD 2022). The MEI is located nearest to the residences on El Camino Real, immediately southeast of the Project site boundary. The maximum Chronic health risk is approximately 0.044, which does not exceed BAAQMD's Hazard Index threshold of one. The maximum PM<sub>2.5</sub> annual average is approximately 0.06 µg/m<sup>3</sup>, which does not exceed the BAAQMD threshold of 0.3.

In addition, the project would comply with the CARB Air Toxics Control Measure that limits diesel powered equipment and vehicle idling to no more than five minutes at a location, and the CARB In-Use Off-Road Diesel Vehicle Regulation; compliance with these requirements would minimize emissions of TACs during construction. All off-road diesel powered construction equipment would be equipped with Tier 4 engines. The Tier 4 standards reduce DPM emissions by approximately 81 to 96 percent as compared to equipment that meet the Tier 2 off-road emissions standards, depending on the specific horsepower rating of each piece of equipment. Construction health risk is quantified in Table 1; as shown in the table, potential health risk would be below BAAQMD significance thresholds. Therefore, project construction would not expose sensitive receptors to substantial TAC concentrations, and impacts would be less than significant.

#### Table 1 Construction Health Risk Assessment

| Scenario                      | Excess Cancer Risk<br>(per million) | Hazard Index <sup>1</sup> | PM <sub>2.5</sub> μg/m³<br>annual average |
|-------------------------------|-------------------------------------|---------------------------|-------------------------------------------|
| Project Construction          | 5.97                                | 0.044                     | 0.06                                      |
| BAAQMD Significance Threshold | >10                                 | >1                        | >0.3                                      |
| Threshold Exceeded?           | No                                  | No                        | No                                        |

PM<sub>2.5</sub> = particulate matter less than 2.5 microns in size; µg/m<sup>3</sup> = micrograms per cubic meter

<sup>1</sup> Noncancer health impacts are determined by dividing the airborne concentration at the receptor by the appropriate Reference Exposure Level (REL) for that substance. A REL is defined as the concentration at which no adverse noncancer health effects are anticipated. Because noncancer health impacts are assessed as the ratio of airborne concentration versus the REL, the resulting hazard index is unitless.

Source: BAAQMD 2022. For health risk calculations, see Attachment 1.

## **Cumulative Impacts**

As discussed under *Methodology*, the operational and cumulative health risk associated with the project were analyzed in an Air Quality Assessment prepared by Illingworth & Rodkin (2024). Table 2 shows the cumulative health risk associated with both construction and operation in addition to nearby stationary sources and vehicular traffic on El Camino Real.

| Table 2 Impacts from Complined Sources within 1.000 Feel of the Mc | Table 2 | Impacts from | <b>Combined Sources</b> | within 1.000 Feet of the ME |
|--------------------------------------------------------------------|---------|--------------|-------------------------|-----------------------------|
|--------------------------------------------------------------------|---------|--------------|-------------------------|-----------------------------|

| Source                                                                                 | Excess Cancer Risk<br>(per million) | Hazard Index <sup>1</sup> | PM <sub>2.5</sub> μg/m <sup>3</sup><br>annual average |
|----------------------------------------------------------------------------------------|-------------------------------------|---------------------------|-------------------------------------------------------|
| Project Construction                                                                   | 5.97                                | 0.044                     | 0.06                                                  |
| BAAQMD Single-Source Threshold                                                         | >10.0                               | >1.0                      | >0.3                                                  |
| Threshold Exceeded?                                                                    | No                                  | No                        | No                                                    |
| El Camino Real, ADT 41,600                                                             | 6.23                                | <0.01                     | 0.43                                                  |
| Toyota Research Institute (Facility ID #200563, Generator), MEI at 480 feet            | 4.03                                | <0.01                     | 0.01                                                  |
| El Camino 76 Inc. (Facility ID #109042-1, Gas<br>Dispensing Facility), MEI at 150 feet | 2.17                                | 0.01                      | -                                                     |
| Cumulative Total                                                                       | 18.4                                | <0.074                    | 0.5                                                   |
| BAAQMD Cumulative Source Threshold                                                     | >100                                | >10                       | >0.8                                                  |
| Threshold Exceeded?                                                                    | No                                  | No                        | No                                                    |

 $PM_{2.5}$  = particulate matter less than 2.5 microns in size;  $\mu g/m^3$  = micrograms per cubic meter

<sup>1</sup> Noncancer health impacts are determined by dividing the airborne concentration at the receptor by the appropriate Reference Exposure Level (REL) for that substance. A REL is defined as the concentration at which no adverse noncancer health effects are anticipated. Because noncancer health impacts are assessed as the ratio of airborne concentration versus the REL, the resulting hazard index is unitless.

Source: Illingworth & Rodkin 2024. For construction health risk calculations, see Attachment 1.



# Conclusion

The refined construction health risk assessment conducted for the project found that the MEI near the project site would be exposed to a 30-year excess cancer risk of approximately 5.97 in one million, which does not exceed BAAQMD's recommended cancer risk criteria of ten excess cases of cancer in one million individuals (BAAQMD 2022). Additionally, project construction would not exceed BAAQMD's Hazard Index threshold or annual average  $PM_{2.5}$  concentration threshold. Therefore, project construction would not expose sensitive receptors to substantial TAC concentrations.

The results for project construction were combined with health risk impacts from operation and other nearby sources to determine cumulative impacts. As shown in Table 2, cumulative impacts would be less than significant. This conclusion is consistent with the findings of the project-specific Air Quality Assessment prepared by Illingworth & Rodkin Inc.

Based on the findings of this technical letter report, the project would not result in health risk impacts associated with construction and operation of the project.

Sincerely, **Rincon Consultants, Inc.** 

NO

Lucas Carneiro Air Quality & GHG Specialist

Michal

Michael Stewart, PE Senior Air Quality Specialist

## Attachments

Attachment 1 Health Risk Calculations



# References

- American Cancer Society (ACS). 2018. Cancer Facts & Figures 2018. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-andstatistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf (accessed January 2025).
- Bay Area Air Quality Management District (BAAQMD). 2022a. 2022 CEQA Air Quality Guidelines. April. https://www.baaqmd.gov/plans-and-climate/california-environmental-quality-actceqa/updated-ceqa-guidelines (accessed January 2025).
- California Air Resources Board (CARB). 2005. Air Quality and Land Use Handbook: A Community Health Perspective. April 2005. https://sfmohcd.org/sites/default/files/20%20-%20CARB%2C%20Air%20Quality%20and%20Land%20Use%20Handbook%202005.pdf. (accessed January 2025).
- Illingworth & Rodkin, Inc. 2024. 4335 & 4345 El Camino Real Air Quality Assessment. December 6, 2024 (accessed January 2025).

# **Attachment 1**

Health Risk Calculations

Construction Modeling Assumptions

**AERMOD Sources** 

| PolyArea [1]                 |     |     |
|------------------------------|-----|-----|
| Offroad Construction Exhaust |     |     |
| Release Height               | 5   | m   |
| Emissions rate               | 1   | g/s |
| Init Vert Dimension          | 1.4 | m   |
| SCAQMD LST Guidance, 2008    |     |     |
|                              |     |     |
| Line Volume [2]              |     |     |
| Onroad Hauling Exhaust       |     |     |
| Vehicle Height               | 4   | m   |
| Plume Height                 | 6.8 | m   |
| Plume Width                  | 24  | m   |
| Release Height               | 3.4 | m   |
| Emissions rate               | 1   | g/s |
|                              |     |     |

[1] SCAQMD, Final Localized Significance Threshold Methodology

[2] BAAQMD, CEQA AQ Guidelines, Appendix E, Table 11, Recommended Volume Source Configuration for Construction Projects

Meteorology:

Moffet Field

| Airport ASOS Met Sites      | Moffet Field,          | NAS (KNUQ)     | 23244   |
|-----------------------------|------------------------|----------------|---------|
| Data Downloads              | Latitude               | Longitude      |         |
| iite Data                   | 37.405925              | -122.049028    |         |
| (1 Mb , revised 11/14/2022) |                        |                |         |
|                             | Wind Sensor Height (m) | Tower Base Hei | ght (m) |
|                             | 10.0                   | 11.9           |         |

Health Risk Assessment Results Summary

| Scenario                         | Excess Cancer Risk<br>(per million) | Chronic<br>Health Risk <sup>1</sup> | PM <sub>2.5</sub> μg/m <sup>3</sup> annual<br>average |
|----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------------------|
| Adjacent Residences              | 5.97                                | 0.044                               | 0.06                                                  |
| BAAQMD Significance<br>Threshold | >10                                 | >1                                  | >0.3                                                  |
| Threshold Exceeded?              | No                                  | No                                  | No                                                    |

 $PM_{2.5}$  = particulate matter less than 2.5 microns in size;  $\mu\text{g/m}^3$  = micrograms per cubic meter

<sup>1</sup> Noncancer health impacts are determined by dividing the airborne concentration at the receptor by the appropriate Reference Exposure Level (REL) for that substance. A REL is defined as the concentration at which no adverse noncancer health effects are anticipated. Because noncancer health impacts are assessed as the ratio of airborne concentration versus the REL, the resulting hazard index is unitless.

<sup>2</sup> There is no acute reference exposure level for diesel exhaust to calculate acute health risk. Furthermore, except for unusual circumstances of high exposure, Office of Environmental Health Hazard Assessment does not recommend acute analysis for DPM.

Source: BAAQMD 2024, Rincon Consultants 2024. For health risk calculations, see Appendix A.

Health Risk Assessment Risk Factors

| Residential Risk                          | Abbreviation    | UOM                     | 3rd Trimester | 0<2   |
|-------------------------------------------|-----------------|-------------------------|---------------|-------|
| Daily Breathing Rate (95th %'ile)         | DBR             | L/kg-day                | 361           | 1090  |
| Fraction Of Time At Home                  | FAH             | unitless                | 1             | 1     |
| Exposure Frequency                        | EF              | days/year               | 0.96          | 0.96  |
| Age Sensitivity Factor                    | ASF             | unitless                | 10            | 10    |
| Inhalation Absorption Factor              | А               | unitless                | 1             | 1     |
| Conversion Factor                         | CF <sub>1</sub> | m³/L                    | 0.001         | 0.001 |
| Conversion Factor                         | CF <sub>2</sub> | μg/m³                   | 0.001         | 0.001 |
| Cancer Potency Factor (diesel exhaust)    | CPF             | mg/kg-day <sup>-1</sup> | 1.1           | 1.1   |
| Averaging Time (for residential exposure) | AT              | years                   | 70.00         | 70.00 |

Health Risk Assessment Exposure Duration Assumptions for Offroad Equipment Residential Receptors

|                       |                                                |            |           | End Date        | 6/30/2026 | 6/30/2028 |          |
|-----------------------|------------------------------------------------|------------|-----------|-----------------|-----------|-----------|----------|
|                       |                                                | 4/1/2026   | 7/20/2027 | Days            | 90        | 730       |          |
|                       | Phase                                          | Start Date | End Date  | Duration (days) | 3rd Tri   | 0<2       | Workdays |
| Demolition            | 3.2. Demolition (2026) - Mitigated             | 4/1/2026   | 4/29/2026 | 29              | 29        | 0         | 25       |
| Site Preparation      | 3.4. Site Preparation (2026) - Mitigated       | 6/1/2026   | 6/3/2026  | 3               | 3         | 0         | 3        |
| Grading               | 3.6. Grading (2026) - Mitigated                | 6/4/2026   | 6/7/2026  | 4               | 4         | 0         | 3        |
| Building Construction | 3.8. Building Construction (2027) - Mitigated  | 1/1/2027   | 7/20/2027 | 201             | 0         | 201       | 172      |
| Paving                | 3.10. Paving (2027) - Mitigated                | 2/1/2027   | 2/11/2027 | 11              | 0         | 11        | 10       |
| Architectural Coating | 3.12. Architectural Coating (2027) - Mitigated | 2/1/2027   | 2/21/2027 | 21              | 0         | 21        | 18       |
| Trenching             | 3.14. Trenching (2026) - Mitigated             | 11/1/2026  | 11/4/2026 | 4               | 0         | 4         | 3        |

|                       |                                                |      | Ris                                                            | isk Calculation      | n Part 1, R1 |    |                                     |               |           |
|-----------------------|------------------------------------------------|------|----------------------------------------------------------------|----------------------|--------------|----|-------------------------------------|---------------|-----------|
|                       | Phase                                          | Year | Equation                                                       | <b>3rd Trimester</b> | 0<2          |    | Equation                            | 3rd Trimester | 0<2       |
| Demolition            | 3.2. Demolition (2026) - Mitigated             | 2026 |                                                                | 0.003929067          | 0            |    |                                     | 4.32197E-06   | 0         |
| Site Preparation      | 3.4. Site Preparation (2026) - Mitigated       | 2026 | $DBR \cdot FAH \cdot EF \cdot ED \cdot ASF \cdot A \cdot CF_1$ | 0.000406455          | 0            | IE | E CDE CE                            | 4.47101E-07   | 0         |
| Grading               | 3.6. Grading (2026) - Mitigated                | 2026 | AT                                                             | 0.00054194           | 0            | 11 | $r \cdot \iota r r \cdot \iota r_2$ | 5.96134E-07   | 0         |
| Building Construction | 3.8. Building Construction (2027) - Mitigated  | 2027 |                                                                | 0                    | 0.082225558  |    |                                     | 0             | 9.045E-05 |
| Paving                | 3.10. Paving (2027) - Mitigated                | 2027 |                                                                | 0                    | 0.004499906  |    |                                     | 0             | 4.95E-06  |
| Architectural Coating | 3.12. Architectural Coating (2027) - Mitigated | 2027 |                                                                | 0                    | 0.00859073   |    |                                     | 0             | 9.45E-06  |
| Trenching             | 3.14. Trenching (2026) - Mitigated             | 2026 |                                                                | 0                    | 0.00163633   |    |                                     | 0             | 1.8E-06   |

Start Date

4/1/2026

7/1/2026

Offroad DPM Emissions, Ground Level Concentrations and Health Risk Calculations Residential Receptors

| Phas                  | se                   | Year | Emissions (lbs/day) | Work Hours Per Day | Emissions (g/s) |
|-----------------------|----------------------|------|---------------------|--------------------|-----------------|
| Demolition            | 3.2. Demolition (20  | 2026 | 0.100               | 10                 | 0.001259972     |
| Site Preparation      | 3.4. Site Preparatio | 2026 | 0.040               | 10                 | 0.000503989     |
| Grading               | 3.6. Grading (2026)  | 2026 | 0.0500              | 10                 | 0.000629986     |
| Building Construction | 3.8. Building Constr | 2027 | 0.040               | 10                 | 0.000503989     |
| Paving                | 3.10. Paving (2027)  | 2027 | 0.060               | 10                 | 0.000755983     |
| Architectural Coating | 3.12. Architectural  | 2027 | 0.030               | 10                 | 0.000377992     |
| Trenching             | 3.14. Trenching (20  | 2026 | 0.040               | 10                 | 0.000503989     |
|                       |                      |      |                     |                    |                 |

### Max Offroad Risk

5.9

| AERMOD Column Identifier: | 4 | 5 | 5 | 5 | 5 | 5 | 5 |
|---------------------------|---|---|---|---|---|---|---|
|---------------------------|---|---|---|---|---|---|---|

|                     |           |           |             |                  |             | Building     |             | Architectural |             |                      |             |             |             |
|---------------------|-----------|-----------|-------------|------------------|-------------|--------------|-------------|---------------|-------------|----------------------|-------------|-------------|-------------|
|                     |           |           | Demolition  | Site Preparation | Grading     | Construction | Paving      | Coating       | Trenching   |                      | Child Ri    | sk          |             |
| Unique Identifier   | X (UTM)   | Y (UTM)   | 2026        | 2026             | 2026        | 2027         | 2027        | 2027          | 2026        | <b>3rd Trimester</b> | 0<2         | Total       | per million |
| 578048.554140246.42 | 578048.55 | 4140246.4 | 0.005841093 | 0.003004983      | 0.003756229 | 0.003004983  | 0.004507475 | 0.002253738   | 0.003004983 | 2.88278E-08          | 3.20813E-07 | 3.49641E-07 | 0.3496406   |
| 578066.414140268    | 578066.41 | 4140268   | 0.002778529 | 0.001649777      | 0.002062222 | 0.001649777  | 0.002474666 | 0.001237333   | 0.001649777 | 1.39757E-08          | 1.76131E-07 | 1.90106E-07 | 0.1901064   |
| 578068.454140241.25 | 578068.45 | 4140241.3 | 0.004333259 | 0.002772902      | 0.003466127 | 0.002772902  | 0.004159352 | 0.002079676   | 0.002772902 | 2.20343E-08          | 2.96036E-07 | 3.1807E-07  | 0.31807     |
| 578054.694140253.42 | 578054.69 | 4140253.4 | 0.00444338  | 0.002458952      | 0.00307369  | 0.002458952  | 0.003688428 | 0.001844214   | 0.002458952 | 2.21359E-08          | 2.62518E-07 | 2.84654E-07 | 0.2846543   |
| 578061.934140261.73 | 578061.93 | 4140261.7 | 0.003330459 | 0.001946299      | 0.002432874 | 0.001946299  | 0.002919449 | 0.001459724   | 0.001946299 | 1.67147E-08          | 2.07787E-07 | 2.24502E-07 | 0.2245021   |
| 578046.974140254.6  | 578046.97 | 4140254.6 | 0.005001989 | 0.002565883      | 0.003207354 | 0.002565883  | 0.003848825 | 0.001924412   | 0.002565883 | 2.46777E-08          | 2.73934E-07 | 2.98612E-07 | 0.2986121   |
| 5780634140234.38    | 578063    | 4140234.4 | 0.005596809 | 0.003407131      | 0.004258914 | 0.003407131  | 0.005110697 | 0.002555348   | 0.003407131 | 2.82515E-08          | 3.63746E-07 | 3.91998E-07 | 0.3919977   |
| 578076.524140257.17 | 578076.52 | 4140257.2 | 0.002811666 | 0.00181818       | 0.002272725 | 0.00181818   | 0.00272727  | 0.001363635   | 0.00181818  | 1.43197E-08          | 1.94109E-07 | 2.08429E-07 | 0.2084291   |
| 578071.934140251.73 | 578071.93 | 4140251.7 | 0.003341862 | 0.002141116      | 0.002676395 | 0.002141116  | 0.003211674 | 0.001605837   | 0.002141116 | 1.69962E-08          | 2.28586E-07 | 2.45582E-07 | 0.2455824   |
| 578071.934140271.73 | 578071.93 | 4140271.7 | 0.00240598  | 0.001450364      | 0.001812955 | 0.001450364  | 0.002175546 | 0.001087773   | 0.001450364 | 1.21278E-08          | 1.54841E-07 | 1.66969E-07 | 0.1669691   |
| 578057.74140269.42  | 578057.7  | 4140269.4 | 0.003101787 | 0.001750888      | 0.00218861  | 0.001750888  | 0.002626331 | 0.001313166   | 0.001750888 | 1.54934E-08          | 1.86925E-07 | 2.02419E-07 | 0.2024186   |
| 578081.934140221.73 | 578081.93 | 4140221.7 | 0.004827747 | 0.003723203      | 0.004654003 | 0.003723203  | 0.005584804 | 0.002792402   | 0.003723203 | 2.53045E-08          | 3.9749E-07  | 4.22795E-07 | 0.4227946   |
| 578081.934140231.73 | 578081.93 | 4140231.7 | 0.00396633  | 0.002951828      | 0.003689785 | 0.002951828  | 0.004427741 | 0.002213871   | 0.002951828 | 2.06617E-08          | 3.15138E-07 | 3.358E-07   | 0.3357997   |
| 578081.934140251.73 | 578081.93 | 4140251.7 | 0.002795941 | 0.001899957      | 0.002374947 | 0.001899957  | 0.002849936 | 0.001424968   | 0.001899957 | 1.43492E-08          | 2.0284E-07  | 2.17189E-07 | 0.2171892   |
| 578081.934140261.73 | 578081.93 | 4140261.7 | 0.002394476 | 0.001554327      | 0.001942909 | 0.001554327  | 0.00233149  | 0.001165745   | 0.001554327 | 1.2202E-08           | 1.6594E-07  | 1.78142E-07 | 0.1781424   |
| 578066.734140278.97 | 578066.73 | 4140279   | 0.00231845  | 0.001346946      | 0.001683682 | 0.001346946  | 0.002020418 | 0.001010209   | 0.001346946 | 1.16262E-08          | 1.438E-07   | 1.55426E-07 | 0.1554265   |
| 578091.934140221.73 | 578091.93 | 4140221.7 | 0.004106501 | 0.00335206       | 0.004190075 | 0.00335206   | 0.005028091 | 0.002514045   | 0.00335206  | 2.17447E-08          | 3.57867E-07 | 3.79612E-07 | 0.3796116   |
| 578091.934140231.73 | 578091.93 | 4140231.7 | 0.003352874 | 0.002600956      | 0.003251195 | 0.002600956  | 0.003901433 | 0.001950717   | 0.002600956 | 1.75921E-08          | 2.77679E-07 | 2.95271E-07 | 0.2952708   |
| 578091.934140241.73 | 578091.93 | 4140241.7 | 0.002795639 | 0.002056653      | 0.002570816 | 0.002056653  | 0.003084979 | 0.001542489   | 0.002056653 | 1.45348E-08          | 2.19569E-07 | 2.34104E-07 | 0.2341036   |
| 578081.564140270.42 | 578081.56 | 4140270.4 | 0.002122285 | 0.001325924      | 0.001657405 | 0.001325924  | 0.001988886 | 0.000994443   | 0.001325924 | 1.07533E-08          | 1.41556E-07 | 1.52309E-07 | 0.1523093   |
| 578101.934140211.73 | 578101.93 | 4140211.7 | 0.004538823 | 0.003808699      | 0.004760874 | 0.003808699  | 0.005713049 | 0.002856525   | 0.003808699 | 2.41577E-08          | 4.06618E-07 | 4.30775E-07 | 0.4307755   |
| 578101.934140221.73 | 578101.93 | 4140221.7 | 0.003517641 | 0.002880775      | 0.003600969 | 0.002880775  | 0.004321163 | 0.002160581   | 0.002880775 | 1.86378E-08          | 3.07552E-07 | 3.2619E-07  | 0.3261902   |
| 578101.934140231.73 | 578101.93 | 4140231.7 | 0.00285511  | 0.002228347      | 0.002785433 | 0.002228347  | 0.00334252  | 0.00167126    | 0.002228347 | 1.49965E-08          | 2.37899E-07 | 2.52895E-07 | 0.2528954   |
| 578101.934140241.73 | 578101.93 | 4140241.7 | 0.002402074 | 0.001760761      | 0.002200951 | 0.001760761  | 0.002641141 | 0.001320571   | 0.001760761 | 1.2481E-08           | 1.87979E-07 | 2.0046E-07  | 0.2004603   |
| 578101.934140251.73 | 578101.93 | 4140251.7 | 0.002063595 | 0.001424761      | 0.001780952 | 0.001424761  | 0.002137142 | 0.001068571   | 0.001424761 | 1.06175E-08          | 1.52108E-07 | 1.62725E-07 | 0.1627254   |
| 578114.354140204.87 | 578114.35 | 4140204.9 | 0.004772964 | 0.003694128      | 0.00461766  | 0.003694128  | 0.005541192 | 0.002770596   | 0.003694128 | 2.5033E-08           | 3.94386E-07 | 4.19419E-07 | 0.4194191   |
| 578111.934140211.73 | 578111.93 | 4140211.7 | 0.003997249 | 0.003147642      | 0.003934553 | 0.003147642  | 0.004721464 | 0.002360732   | 0.003147642 | 2.10288E-08          | 3.36043E-07 | 3.57072E-07 | 0.357072    |
| 578111.934140221.73 | 578111.93 | 4140221.7 | 0.003095714 | 0.002381695      | 0.002977119 | 0.002381695  | 0.003572543 | 0.001786271   | 0.002381695 | 1.62192E-08          | 2.5427E-07  | 2.7049E-07  | 0.2704897   |
| 578111.934140231.73 | 578111.93 | 4140231.7 | 0.002512485 | 0.001865223      | 0.002331528 | 0.001865223  | 0.002797834 | 0.001398917   | 0.001865223 | 1.30827E-08          | 1.99132E-07 | 2.12214E-07 | 0.2122144   |
| 578111.934140241.73 | 578111.93 | 4140241.7 | 0.002111461 | 0.00148966       | 0.001862075 | 0.00148966   | 0.00223449  | 0.001117245   | 0.00148966  | 1.09018E-08          | 1.59037E-07 | 1.69938E-07 | 0.1699383   |
| 578121.934140201.73 | 578121.93 | 4140201.7 | 0.004775648 | 0.003409918      | 0.004262398 | 0.003409918  | 0.005114877 | 0.002557439   | 0.003409918 | 2.47058E-08          | 3.64044E-07 | 3.8875E-07  | 0.3887496   |
| 578121.934140211.73 | 578121.93 | 4140211.7 | 0.003588439 | 0.002546742      | 0.003183427 | 0.002546742  | 0.003820112 | 0.001910056   | 0.002546742 | 1.85455E-08          | 2.71891E-07 | 2.90436E-07 | 0.2904364   |
| 578121.934140221.73 | 578121.93 | 4140221.7 | 0.002796193 | 0.001962664      | 0.00245333  | 0.001962664  | 0.002943996 | 0.001471998   | 0.001962664 | 1.44251E-08          | 2.09535E-07 | 2.2396E-07  | 0.2239596   |

| 578121.934140231.73  | 578121.93              | 4140231.7 | 0.002260441 | 0.001558848 | 0.00194856  | 0.001558848 | 0.002338272  | 0.001169136 | 0.001558848 | 1.16281E-08  | 1.66423E-07 | 1.78051E-07 | 0.1780511  |
|----------------------|------------------------|-----------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|------------|
| 578121.934140241.73  | 578121.93              | 4140241.7 | 0.001890614 | 0.001260935 | 0.001576169 | 0.001260935 | 0.001891402  | 0.000945701 | 0.001260935 | 9.67456E-09  | 1.34618E-07 | 1.44292E-07 | 0.1442923  |
| 578133.384140194.38  | 578133.38              | 4140194.4 | 0.005037155 | 0.003169692 | 0.003962115 | 0.003169692 | 0.004754538  | 0.002377269 | 0.003169692 | 2.55496E-08  | 3.38397E-07 | 3.63947E-07 | 0.3639468  |
| 578131 934140201 73  | 578131 93              | 4140201.7 | 0.004227761 | 0.00270507  | 0.003381337 | 0.00270507  | 0.004057604  | 0.002028802 | 0.00270507  | 2 14974F-08  | 2 88794F-07 | 3 10291F-07 | 0.3102914  |
| 578131 934140211 73  | 578131 93              | 4140211 7 | 0.003255504 | 0.002079962 | 0.002599953 | 0.002079962 | 0.003119943  | 0.001559972 | 0.002079962 | 1 65501E-08  | 2 22057E-07 | 2 38607E-07 | 0 2386074  |
| 578131 93/1/0221 73  | 578131.93              | 4140211.7 | 0.003253304 | 0.001637193 | 0.002006491 | 0.001637193 | 0.0031155789 | 0.001333372 | 0.001637193 | 1 30305E-08  | 1 7/787F-07 | 1 87818F-07 | 0 1878177  |
| 578131.554140221.75  | 578131.93              | 4140221.7 | 0.002303313 | 0.001037195 | 0.002040491 | 0.001037195 | 0.002455785  | 0.001227895 | 0.001037133 | 1.0503031-08 | 1.747876-07 | 1.676181-07 | 0.1878177  |
| 576131.934140231.73  | 576151.95              | 4140251.7 | 0.002075037 | 0.001312348 | 0.001040085 | 0.001312346 | 0.001906625  | 0.000964411 | 0.001312346 | 1.05240E-08  | 1.40126E-07 | 2 519195 07 | 0.1500520  |
| 578141.934140201.75  | 576141.95              | 4140201.7 | 0.003758207 | 0.002182206 | 0.002/2//58 | 0.002182206 | 0.00327331   | 0.001030055 | 0.002182206 | 1.00447E-00  | 2.329/3E-07 | 2.51818E-07 | 0.2518178  |
| 578141.934140211.73  | 578141.93              | 4140211.7 | 0.002960998 | 0.001714041 | 0.002142551 | 0.001/14041 | 0.0025/1062  | 0.001285531 | 0.001/14041 | 1.4841E-08   | 1.82991E-07 | 1.97832E-07 | 0.1978324  |
| 5/8141.934140221./3  | 578141.93              | 4140221.7 | 0.002362725 | 0.001370482 | 0.001/13102 | 0.0013/0482 | 0.002055723  | 0.001027861 | 0.0013/0482 | 1.18456E-08  | 1.46313E-07 | 1.58159E-07 | 0.1581586  |
| 578141.934140231.73  | 578141.93              | 4140231.7 | 0.001913369 | 0.001116275 | 0.001395344 | 0.001116275 | 0.001674412  | 0.000837206 | 0.001116275 | 9.60043E-09  | 1.19174E-07 | 1.28774E-07 | 0.1287742  |
| 578151.934140221.73  | 578151.93              | 4140221.7 | 0.002159756 | 0.001163816 | 0.00145477  | 0.001163816 | 0.001745724  | 0.000872862 | 0.001163816 | 1.0722E-08   | 1.24249E-07 | 1.34971E-07 | 0.1349713  |
| 578169.174140166.31  | 578169.17              | 4140166.3 | 0.004856626 | 0.003727416 | 0.00465927  | 0.003727416 | 0.005591124  | 0.002795562 | 0.003727416 | 2.54343E-08  | 3.9794E-07  | 4.23374E-07 | 0.4233743  |
| 578175.314140159.08  | 578175.31              | 4140159.1 | 0.004810725 | 0.00395408  | 0.0049426   | 0.00395408  | 0.00593112   | 0.00296556  | 0.00395408  | 2.55062E-08  | 4.22139E-07 | 4.47645E-07 | 0.4476448  |
| 578171.934140171.73  | 578171.93              | 4140171.7 | 0.00432391  | 0.00301535  | 0.003769188 | 0.00301535  | 0.004523026  | 0.002261513 | 0.00301535  | 2.22829E-08  | 3.2192E-07  | 3.44203E-07 | 0.3442026  |
| 578171.934140181.73  | 578171.93              | 4140181.7 | 0.003735893 | 0.002259624 | 0.00282453  | 0.002259624 | 0.003389436  | 0.001694718 | 0.002259624 | 1.88405E-08  | 2.41238E-07 | 2.60079E-07 | 0.2600786  |
| 578181.934140151.73  | 578181.93              | 4140151.7 | 0.00467548  | 0.003967592 | 0.00495949  | 0.003967592 | 0.005951388  | 0.002975694 | 0.003967592 | 2.49377E-08  | 4.23581E-07 | 4.48519E-07 | 0.448519   |
| 578181.934140161.73  | 578181.93              | 4140161.7 | 0.004216711 | 0.00319593  | 0.003994912 | 0.00319593  | 0.004793894  | 0.002396947 | 0.00319593  | 2.20349E-08  | 3.41198E-07 | 3.63233E-07 | 0.3632332  |
| 5781804140184.63     | 578180                 | 4140184.6 | 0.003206365 | 0.001845471 | 0.002306839 | 0.001845471 | 0.002768207  | 0.001384103 | 0.001845471 | 1.60581E-08  | 1.97023E-07 | 2.13081E-07 | 0.2130811  |
| 578181.934140191.73  | 578181.93              | 4140191.7 | 0.002799041 | 0.001499795 | 0.001874744 | 0.001499795 | 0.002249693  | 0.001124847 | 0.001499795 | 1.38855E-08  | 1.60119E-07 | 1.74004E-07 | 0.1740041  |
| 578191.934140141.73  | 578191.93              | 4140141.7 | 0.004385598 | 0.003711243 | 0.004639054 | 0.003711243 | 0.005566865  | 0.002783432 | 0.003711243 | 2.33792E-08  | 3.96213E-07 | 4.19593E-07 | 0.4195926  |
| 578191.934140151.73  | 578191.93              | 4140151.7 | 0.004036031 | 0.003142008 | 0.00392751  | 0.003142008 | 0.004713012  | 0.002356506 | 0.003142008 | 2.11897E-08  | 3.35442E-07 | 3.56631E-07 | 0.3566314  |
| 578191 934140161 73  | 578191 93              | 4140161 7 | 0.003662046 | 0.002600895 | 0.003251119 | 0.002600895 | 0.003901343  | 0.001950671 | 0.002600895 | 1 89282F-08  | 2 77672F-07 | 2 96601F-07 | 0.2966005  |
| 578191 934140191 73  | 578191.93              | 4140191.7 | 0.002492868 | 0.001318994 | 0.001648743 | 0.001318994 | 0.001978492  | 0.000989246 | 0.001318994 | 1.03262E 08  | 1 40816F-07 | 1 53163E-07 | 0.1531629  |
| 578191 93/1/0201 73  | 578191.93              | 4140101.7 | 0.002432000 | 0.001055166 | 0.001318958 | 0.001055166 | 0.0015827/9  | 0.000303240 | 0.001055166 | 1.04813F-08  | 1 1265E-07  | 1 23131F-07 | 0.1231311  |
| 578101 03/1/0211 73  | 578101 02              | 4140201.7 | 0.001213404 | 0.000857673 | 0.001072001 | 0.001055100 | 0.001302745  | 0.000731375 | 0.001055100 | 8 85078E-00  | 0 1565/E-08 | 1.25151E 07 | 0.1201011  |
| 578191.934140211.75  | 578191.93              | 4140211.7 | 0.001813333 | 0.000857075 | 0.001072031 | 0.000857075 | 0.00128031   | 0.000043233 | 0.000837073 | 2 00155 09   | 2 1EQ4EE 07 | 2 25065 07  | 0.1004232  |
| 578201.934140141.75  | 576201.95              | 4140141.7 | 0.003614606 | 0.00293843  | 0.003098003 | 0.00293643  | 0.004437073  | 0.002210030 | 0.00293643  | 1 927265 09  | 3.13643E-07 | 3.3360E-07  | 0.55560    |
| 578201.934140151.75  | 578201.95              | 4140151.7 | 0.003525805 | 0.002552709 | 0.003190880 | 0.002552709 | 0.003829063  | 0.001914532 | 0.002552709 | 1.62/30E-08  | 2.72526E-07 | 2.90801E-07 | 0.2908015  |
| 578201.934140161.73  | 578201.93              | 4140161.7 | 0.003209741 | 0.002155903 | 0.002694879 | 0.002155903 | 0.003233855  | 0.001616927 | 0.002155903 | 1.64428E-08  | 2.30165E-07 | 2.46608E-07 | 0.2466077  |
| 578201.934140171.73  | 578201.93              | 4140171.7 | 0.002886181 | 0.001780467 | 0.002225583 | 0.001/8046/ | 0.0026707    | 0.00133535  | 0.001/8046/ | 1.45968E-08  | 1.90083E-07 | 2.0468E-07  | 0.2046799  |
| 578201.934140191.73  | 578201.93              | 4140191.7 | 0.002233061 | 0.001166749 | 0.001458437 | 0.001166749 | 0.001/50124  | 0.000875062 | 0.001166749 | 1.10423E-08  | 1.24562E-07 | 1.35605E-07 | 0.1356048  |
| 578201.934140201.73  | 578201.93              | 4140201.7 | 0.001930769 | 0.00094692  | 0.001183649 | 0.00094692  | 0.001420379  | 0.000/1019  | 0.00094692  | 9.4/3/2E-09  | 1.01093E-07 | 1.1056/E-0/ | 0.11056/1  |
| 578211.934140161.73  | 578211.93              | 4140161.7 | 0.002838188 | 0.001816799 | 0.002270999 | 0.001816799 | 0.002725199  | 0.001362599 | 0.001816799 | 1.44327E-08  | 1.93962E-07 | 2.08395E-07 | 0.2083947  |
| 578211.934140191.73  | 578211.93              | 4140191.7 | 0.002010966 | 0.001037602 | 0.001297003 | 0.001037602 | 0.001556403  | 0.000778202 | 0.001037602 | 9.92844E-09  | 1.10775E-07 | 1.20703E-07 | 0.1207031  |
| 578108.954140089.28  | 578108.95              | 4140089.3 | 0.045338614 | 0.051071785 | 0.063839731 | 0.051071785 | 0.076607677  | 0.038303838 | 0.051071785 | 2.56844E-07  | 5.45244E-06 | 5.70928E-06 | 5.7092813  |
| 578108.954140097.28  | 578108.95              | 4140097.3 | 0.044533869 | 0.053227532 | 0.066534414 | 0.053227532 | 0.079841297  | 0.039920649 | 0.053227532 | 2.55936E-07  | 5.68259E-06 | 5.93852E-06 | 5.9385216  |
| 578116.954140081.28  | 578116.95              | 4140081.3 | 0.036037801 | 0.043436998 | 0.054296248 | 0.043436998 | 0.065155497  | 0.032577749 | 0.043436998 | 2.07543E-07  | 4.63735E-06 | 4.84489E-06 | 4.8448888  |
| 578116.954140089.28  | 578116.95              | 4140089.3 | 0.035399222 | 0.046890229 | 0.058612786 | 0.046890229 | 0.070335344  | 0.035167672 | 0.046890229 | 2.089E-07    | 5.00601E-06 | 5.21491E-06 | 5.214914   |
| 578116.954140097.28  | 578116.95              | 4140097.3 | 0.034052967 | 0.049138393 | 0.061422991 | 0.049138393 | 0.073707589  | 0.036853794 | 0.049138393 | 2.05762E-07  | 5.24603E-06 | 5.45179E-06 | 5.4517905  |
| 578116.954140105.28  | 578116.95              | 4140105.3 | 0.032066293 | 0.049780832 | 0.06222604  | 0.049780832 | 0.074671248  | 0.037335624 | 0.049780832 | 1.97942E-07  | 5.31462E-06 | 5.51256E-06 | 5.5125571  |
| 578124.954140073.28  | 578124.95              | 4140073.3 | 0.029226366 | 0.035430968 | 0.04428871  | 0.035430968 | 0.053146452  | 0.026573226 | 0.035430968 | 1.68559E-07  | 3.78262E-06 | 3.95118E-06 | 3.9511787  |
| 578124.954140081.28  | 578124.95              | 4140081.3 | 0.028716355 | 0.038635526 | 0.048294408 | 0.038635526 | 0.057953289  | 0.028976645 | 0.038635526 | 1.70175E-07  | 4.12474E-06 | 4.29491E-06 | 4.2949146  |
| 578124.954140089.28  | 578124.95              | 4140089.3 | 0.027735491 | 0.041390093 | 0.051737616 | 0.041390093 | 0.062085139  | 0.031042569 | 0.041390093 | 1.6922E-07   | 4.41882E-06 | 4.58804E-06 | 4.5880378  |
| 578124.954140097.28  | 578124.95              | 4140097.3 | 0.026331177 | 0.043500879 | 0.054376098 | 0.043500879 | 0.065251318  | 0.032625659 | 0.043500879 | 1.65667E-07  | 4.64417E-06 | 4.80983E-06 | 4.8098331  |
| 578124,954140105,28  | 578124.95              | 4140105.3 | 0.024600353 | 0.044638462 | 0.055798078 | 0.044638462 | 0.066957693  | 0.033478847 | 0.044638462 | 1.59543E-07  | 4.76561E-06 | 4.92516E-06 | 4.9251576  |
| 578124,954140113,28  | 578124.95              | 4140113.3 | 0.022649626 | 0.044342066 | 0.055427583 | 0.044342066 | 0.0665131    | 0.03325655  | 0.044342066 | 1.50759E-07  | 4.73397E-06 | 4.88473E-06 | 4.8847299  |
| 578124 954140121 28  | 578124 95              | 4140121.3 | 0.020639769 | 0.042254378 | 0.052817973 | 0 042254378 | 0.063381567  | 0.031690784 | 0.042254378 | 1 39583F-07  | 4 51109F-06 | 4 65067E-06 | 4 6506721  |
| 578132 954140065 28  | 578132.95              | 4140065 3 | 0.024121274 | 0.02858064  | 0.0357258   | 0.02858064  | 0.042870961  | 0 02143548  | 0 02858064  | 1 38327F-07  | 3 05128F-06 | 3 1896E-06  | 3 1896043  |
| 578132 95/11/0073 28 | 578132.95              | 4140003.3 | 0.023694697 | 0.031030576 | 0.03878822  | 0.031030576 | 0.046545864  | 0.02143340  | 0.031030576 | 1.30/05F-07  | 3 31283E-06 | 3 45224E-06 | 3 / 52237/ |
| 578132.554140075.28  | 578132.95<br>E78132.0E | 4140073.3 | 0.023034037 | 0.031030370 | 0.03070022  | 0.031030370 | 0.040343804  | 0.023272932 | 0.031030370 | 1.394032-07  | 2 560655 06 | 2 600665 06 | 2 6006601  |
| 570132.554140001.20  | 570132.33              | 4140001.3 | 0.02230414  | 0.033331/02 | 0.041003/20 | 0.033331/02 | 0.050027073  | 0.023013037 | 0.035351762 | 1 271005 07  | 3 786705 00 | 3.033002-00 | 3 0330001  |
| 570132.334140003.20  | 5/0132.93              | 4140009.3 | 0.021333/10 | 0.033403332 | 0.04433/44  | 0.033403332 | 0.033204928  | 0.020002404 | 0.033403352 | 1 2025 07    | 3.70070E-UD | 3.32330E-UD | 3.3233000  |
| 5/6132.954140105.28  | 5/8132.95              | 4140105.3 | 0.019304526 | 0.038385910 | 0.047982394 | 0.038385916 | 0.05/5/88/3  | 0.028/8943/ | 0.038385916 | 1.292E-07    | 4.09809E-06 | 4.22/29E-06 | 4.22/2909  |
| 5/6132.954140113.28  | 578132.95              | 4140113.3 | 0.01/83342  | 0.038628914 | 0.048286142 | 0.038628914 | 0.05/9433/1  | 0.0289/1685 | 0.038628914 | 1.23132E-U/  | 4.12403E-06 | 4.24/1/E-U6 | 4.24/165   |
| 5/8132.954140121.28  | 5/8132.95              | 4140121.3 | 0.016383683 | 0.03/542/1/ | 0.046928396 | 0.03/542/17 | 0.056314075  | 0.02815/038 | 0.03/542/17 | 1.155/1E-07  | 4.00807E-06 | 4.12364E-06 | 4.1236416  |
| 5/8132.954140129.28  | 5/8132.95              | 4140129.3 | 0.015018944 | 0.034/92132 | 0.043490165 | 0.034792132 | 0.052188198  | 0.026094099 | 0.034792132 | 1.06393E-07  | 3./1442E-06 | 3.82081E-06 | 3.8208106  |
| 5/8140.954140057.28  | 578140.95              | 4140057.3 | 0.020231336 | 0.02313307  | 0.028916337 | 0.02313307  | 0.034699605  | 0.017349802 | 0.02313307  | 1.1502E-07   | 2.46969E-06 | 2.58471E-06 | 2.584713   |
| 578140.954140065.28  | 578140.95              | 4140065.3 | 0.019857742 | 0.02486158  | 0.031076975 | 0.02486158  | 0.037292371  | 0.018646185 | 0.02486158  | 1.15466E-07  | 2.65423E-06 | 2.7697E-06  | 2.7696955  |
| 578140.954140073.28  | 578140.95              | 4140073.3 | 0.019291876 | 0.026554671 | 0.033193338 | 0.026554671 | 0.039832006  | 0.019916003 | 0.026554671 | 1.15039E-07  | 2.83498E-06 | 2.95002E-06 | 2.9500232  |

| 578140.954140081.28  | 578140.95              | 4140081.3  | 0.018540705 | 0.028172137  | 0.035215172   | 0.028172137  | 0.042258206 | 0.021129103  | 0.028172137  | 1.13721E-07   | 3.00767E-06  | 3.12139E-06 | 3.1213863 |
|----------------------|------------------------|------------|-------------|--------------|---------------|--------------|-------------|--------------|--------------|---------------|--------------|-------------|-----------|
| 578118.524140112.89  | 578118.52              | 4140112.9  | 0.028116835 | 0.047899941  | 0.059874926   | 0.047899941  | 0.071849911 | 0.035924955  | 0.047899941  | 1.7863E-07    | 5.11381E-06  | 5.29244E-06 | 5.2924406 |
| 578140.954140113.28  | 578140.95              | 4140113.3  | 0.014371054 | 0.031998592  | 0.03999824    | 0.031998592  | 0.047997888 | 0.023998944  | 0.031998592  | 1.00262E-07   | 3.41618E-06  | 3.51644E-06 | 3.5164407 |
| 578140.954140121.28  | 578140.95              | 4140121.3  | 0.013311947 | 0.031296813  | 0.039121016   | 0.031296813  | 0.046945219 | 0.02347261   | 0.031296813  | 9.48481E-08   | 3.34126E-06  | 3.4361E-06  | 3,4361044 |
| 578140 954140129 28  | 578140 95              | 4140129.3  | 0.012354015 | 0.029287187  | 0.036608984   | 0.029287187  | 0.043930781 | 0.021965391  | 0.029287187  | 8 83119F-08   | 3 12671F-06  | 3 21502E-06 | 3 2150201 |
| 5781/0 95/11/0137 28 | 5781/0.95              | 4140125.5  | 0.011/08053 | 0.025608814  | 0.032011018   | 0.025608814  | 0.038/13222 | 0.019206611  | 0.025608814  | 7 98379F-08   | 2 734E-06    | 2 8138/F-06 | 2 8138/19 |
| 578148 954140137.28  | 578148.05              | 4140137.3  | 0.011400055 | 0.018901156  | 0.032611010   | 0.018001156  | 0.030413222 | 0.013200011  | 0.023000014  | 9 70166E-08   | 2.754E 00    | 2.01304E 00 | 2.0130413 |
| 578148.554140045.28  | 578148.95<br>E70140 OE | 4140049.3  | 0.017233103 | 0.010301130  | 0.023020443   | 0.010301130  | 0.020351754 | 0.014173807  | 0.018901190  | 0 700665 00   | 2.017891-00  | 2.114911-00 | 2.1149091 |
| 578148.954140057.28  | 576146.95              | 4140037.3  | 0.010918800 | 0.020107841  | 0.023134802   | 0.020107841  | 0.030101702 | 0.015060681  | 0.020107841  | 9.709002-08   | 2.14072E-00  | 2.245622-00 | 2.2456152 |
| 578148.954140065.28  | 578148.95              | 4140065.3  | 0.016448232 | 0.021256679  | 0.026570849   | 0.021256679  | 0.031885018 | 0.015942509  | 0.021256679  | 9.64325E-08   | 2.26937E-06  | 2.3658E-06  | 2.3658014 |
| 578148.954140073.28  | 578148.95              | 4140073.3  | 0.015845133 | 0.022336561  | 0.02/920/01   | 0.022336561  | 0.033504841 | 0.016/52421  | 0.022336561  | 9.51134E-08   | 2.38466E-06  | 2.4/9//E-06 | 2.4/9//08 |
| 578111.194140102.62  | 578111.19              | 4140102.6  | 0.040034446 | 0.052603881  | 0.065/54851   | 0.052603881  | 0.078905821 | 0.03945291   | 0.052603881  | 2.35/46E-0/   | 5.616E-06    | 5.851/5E-06 | 5.851/505 |
| 5/8136./44140133.62  | 5/8136./4              | 4140133.6  | 0.013058503 | 0.030389376  | 0.03/986/2    | 0.030389376  | 0.045584064 | 0.022792032  | 0.030389376  | 9.26708E-08   | 3.24438E-06  | 3.33705E-06 | 3.3370489 |
| 578148.954140121.28  | 578148.95              | 4140121.3  | 0.011033073 | 0.024480535  | 0.030600668   | 0.024480535  | 0.036720802 | 0.018360401  | 0.024480535  | 7.6872E-08    | 2.61355E-06  | 2.69042E-06 | 2.6904206 |
| 578148.954140129.28  | 578148.95              | 4140129.3  | 0.01033593  | 0.022622605  | 0.028278256   | 0.022622605  | 0.033933907 | 0.016966954  | 0.022622605  | 7.16438E-08   | 2.4152E-06   | 2.48684E-06 | 2.4868393 |
| 578148.954140137.28  | 578148.95              | 4140137.3  | 0.009638611 | 0.019360355  | 0.024200444   | 0.019360355  | 0.029040533 | 0.014520266  | 0.019360355  | 6.47406E-08   | 2.06692E-06  | 2.13166E-06 | 2.1316574 |
| 578156.954140041.28  | 578156.95              | 4140041.3  | 0.014817903 | 0.015550648  | 0.01943831    | 0.015550648  | 0.023325972 | 0.011662986  | 0.015550648  | 8.25831E-08   | 1.66019E-06  | 1.74277E-06 | 1.7427746 |
| 578156.954140049.28  | 578156.95              | 4140049.3  | 0.014587026 | 0.0164177    | 0.020522125   | 0.0164177    | 0.02462655  | 0.012313275  | 0.0164177    | 8.26191E-08   | 1.75276E-06  | 1.83538E-06 | 1.8353772 |
| 578156.954140057.28  | 578156.95              | 4140057.3  | 0.014215662 | 0.017208166  | 0.021510208   | 0.017208166  | 0.02581225  | 0.012906125  | 0.017208166  | 8.19565E-08   | 1.83715E-06  | 1.91911E-06 | 1.919105  |
| 578156.954140065.28  | 578156.95              | 4140065.3  | 0.013741232 | 0.017928855  | 0.022411069   | 0.017928855  | 0.026893283 | 0.013446642  | 0.017928855  | 8.07653E-08   | 1.91409E-06  | 1.99485E-06 | 1.9948548 |
| 578156.954140073.28  | 578156.95              | 4140073.3  | 0.013169986 | 0.018548999  | 0.023186248   | 0.018548999  | 0.027823498 | 0.013911749  | 0.018548999  | 7.90357E-08   | 1.9803E-06   | 2.05933E-06 | 2.0593319 |
| 578156.954140113.28  | 578156.95              | 4140113.3  | 0.009897485 | 0.019204245  | 0.024005306   | 0.019204245  | 0.028806367 | 0.014403183  | 0.019204245  | 6.56733E-08   | 2.05025E-06  | 2.11592E-06 | 2.1159237 |
| 578156.954140121.28  | 578156.95              | 4140121.3  | 0.009295256 | 0.018164682  | 0.022705852   | 0.018164682  | 0.027247023 | 0.013623511  | 0.018164682  | 6.1831E-08    | 1.93927E-06  | 2.0011E-06  | 2.0010974 |
| 578156.954140129.28  | 578156.95              | 4140129.3  | 0.008766068 | 0.016350513  | 0.020438142   | 0.016350513  | 0.02452577  | 0.012262885  | 0.016350513  | 5.73809E-08   | 1.74559E-06  | 1.80297E-06 | 1.8029662 |
| 578164.954140041.28  | 578164.95              | 4140041.3  | 0.012651797 | 0.013493622  | 0.016867028   | 0.013493622  | 0.020240433 | 0.010120217  | 0.013493622  | 7.07688E-08   | 1.44058E-06  | 1.51135E-06 | 1.5113516 |
| 578164.954140049.28  | 578164.95              | 4140049.3  | 0.012377652 | 0.014051674  | 0.017564592   | 0.014051674  | 0.021077511 | 0.010538755  | 0.014051674  | 7.02493E-08   | 1.50016E-06  | 1.57041E-06 | 1.5704098 |
| 578164 954140057 28  | 578164 95              | 4140057.3  | 0.012016922 | 0.014541632  | 0.01817704    | 0.014541632  | 0 021812448 | 0.010906224  | 0.014541632  | 6 92744F-08   | 1 55247F-06  | 1.62174F-06 | 1 6217429 |
| 578164 954140065 28  | 578164 95              | 4140065 3  | 0.011579359 | 0.0149463    | 0.018682874   | 0.0149463    | 0 022419449 | 0.011209725  | 0.0149463    | 6 78657E-08   | 1 59567E-06  | 1 66354E-06 | 1 6635367 |
| 578164 954140073 28  | 578164.95              | 4140073 3  | 0.011074564 | 0.015236597  | 0.019045746   | 0.015236597  | 0.022413445 | 0.011203723  | 0.015236597  | 6 60301E-08   | 1.535507E 00 | 1.69269E-06 | 1 6926934 |
| 578164 954140081 28  | 578164.95              | 4140073.3  | 0.011074304 | 0.015389185  | 0.019236/81   | 0.015389185  | 0.022034050 | 0.0115/1889  | 0.015389185  | 6 383E-08     | 1.02000E 00  | 1.05205E 00 | 1 7067836 |
| 578164 954140105 28  | 578164.05              | 4140001.3  | 0.010323427 | 0.01/1823311 | 0.019200401   | 0.01/1882211 | 0.023003777 | 0.011162/82  | 0.013303103  | 5 61707E-08   | 1.588055-06  | 1.645135-06 | 1 6451261 |
| 578104.554140105.28  | 578104.95              | 4140105.5  | 0.008892884 | 0.014330466  | 0.018004133   | 0.0148855511 | 0.022324300 | 0.011102403  | 0.0148833311 | E 2202E 00    | 1.588951-00  | 1 572425 06 | 1.0431201 |
| 576104.954140115.26  | 578164.95              | 4140115.5  | 0.006405052 | 0.014229400  | 0.017760655   | 0.014229400  | 0.021344199 | 0.0100721    | 0.014229400  | J.JZ0JE-00    | 1.31914E-00  | 1.37242E-00 | 1.3724247 |
| 578164.954140121.28  | 578164.95              | 4140121.3  | 0.007936062 | 0.013112244  | 0.010390505   | 0.013112244  | 0.013006505 | 0.009654165  | 0.013112244  | 4.994412-00   | 1.399676-00  | 1.449612-00 | 1.4496106 |
| 578164.954140129.28  | 578104.95              | 4140129.3  | 0.00751045  | 0.011459755  | 0.014324008   | 0.011459735  | 0.017189602 | 0.008594801  | 0.011459755  | 4.0123E-08    | 1.22344E-00  | 1.20957E-00 | 1.2095074 |
| 578172.954140049.28  | 5/81/2.95              | 4140049.3  | 0.010546345 | 0.01188805   | 0.014860062   | 0.01188805   | 0.01/8320/4 | 0.008916037  | 0.01188805   | 5.97548E-08   | 1.26917E-06  | 1.32893E-06 | 1.3289262 |
| 5/81/2.954140057.28  | 5/81/2.95              | 4140057.3  | 0.01022383  | 0.012163984  | 0.015204979   | 0.012163984  | 0.018245975 | 0.009122988  | 0.012163984  | 5.86899E-08   | 1.29863E-06  | 1.35/32E-06 | 1.35/3201 |
| 578172.954140065.28  | 5/81/2.95              | 4140065.3  | 0.009844327 | 0.012350868  | 0.015438585   | 0.012350868  | 0.018526301 | 0.009263151  | 0.012350868  | 5./2/25E-08   | 1.31858E-06  | 1.3/585E-06 | 1.3758545 |
| 578172.954140073.28  | 578172.95              | 4140073.3  | 0.00941266  | 0.012415701  | 0.015519626   | 0.012415701  | 0.018623551 | 0.009311776  | 0.012415701  | 5.54841E-08   | 1.3255E-06   | 1.38099E-06 | 1.3809877 |
| 578172.954140081.28  | 578172.95              | 4140081.3  | 0.00894957  | 0.012339654  | 0.015424567   | 0.012339654  | 0.018509481 | 0.00925474   | 0.012339654  | 5.3392E-08    | 1.31738E-06  | 1.37078E-06 | 1.3707768 |
| 578172.954140089.28  | 578172.95              | 4140089.3  | 0.008487992 | 0.012131668  | 0.015164585   | 0.012131668  | 0.018197502 | 0.009098751  | 0.012131668  | 5.11491E-08   | 1.29518E-06  | 1.34633E-06 | 1.3463293 |
| 578172.954140097.28  | 578172.95              | 4140097.3  | 0.008040248 | 0.011766024  | 0.01470753    | 0.011766024  | 0.017649036 | 0.008824518  | 0.011766024  | 4.8778E-08    | 1.25614E-06  | 1.30492E-06 | 1.3049219 |
| 578172.954140105.28  | 578172.95              | 4140105.3  | 0.007616633 | 0.01122227   | 0.014027838   | 0.01122227   | 0.016833405 | 0.008416703  | 0.01122227   | 4.62989E-08   | 1.19809E-06  | 1.24439E-06 | 1.2443915 |
| 578172.954140113.28  | 578172.95              | 4140113.3  | 0.007222766 | 0.01049199   | 0.013114988   | 0.01049199   | 0.015737985 | 0.007868993  | 0.01049199   | 4.37259E-08   | 1.12013E-06  | 1.16385E-06 | 1.1638536 |
| 578172.954140121.28  | 578172.95              | 4140121.3  | 0.006854564 | 0.009512498  | 0.011890622   | 0.009512498  | 0.014268747 | 0.007134373  | 0.009512498  | 4.09667E-08   | 1.01556E-06  | 1.05652E-06 | 1.0565236 |
| 578180.954140065.28  | 578180.95              | 4140065.3  | 0.00843685  | 0.010131658  | 0.012664573   | 0.010131658  | 0.015197488 | 0.007598744  | 0.010131658  | 4.85435E-08   | 1.08166E-06  | 1.1302E-06  | 1.1302021 |
| 578180.954140073.28  | 578180.95              | 4140073.3  | 0.008082873 | 0.010032917  | 0.012541146   | 0.010032917  | 0.015049375 | 0.007524688  | 0.010032917  | 4.68959E-08   | 1.07112E-06  | 1.11801E-06 | 1.1180129 |
| 578180.954140081.28  | 578180.95              | 4140081.3  | 0.007696755 | 0.009835197  | 0.012293996   | 0.009835197  | 0.014752796 | 0.007376398  | 0.009835197  | 4.49914E-08   | 1.05001E-06  | 1.095E-06   | 1.0949997 |
| 578180.954140089.28  | 578180.95              | 4140089.3  | 0.00731778  | 0.009529039  | 0.011911299   | 0.009529039  | 0.014293558 | 0.007146779  | 0.009529039  | 4.29884E-08   | 1.01732E-06  | 1.06031E-06 | 1.0603112 |
| 578180.954140097.28  | 578180.95              | 4140097.3  | 0.006954618 | 0.009103062  | 0.011378828   | 0.009103062  | 0.013654594 | 0.006827297  | 0.009103062  | 4.0911E-08    | 9.71845E-07  | 1.01276E-06 | 1.0127564 |
| 578180.954140105.28  | 578180.95              | 4140105.3  | 0.006609663 | 0.008549234  | 0.010686543   | 0.008549234  | 0.012823851 | 0.006411926  | 0.008549234  | 3.87598E-08   | 9.12719E-07  | 9.51478E-07 | 0.9514783 |
| 578180.954140113.28  | 578180.95              | 4140113.3  | 0.006284225 | 0.00786955   | 0.009836937   | 0.00786955   | 0.011804324 | 0.005902162  | 0.00786955   | 3.65429E-08   | 8.40155E-07  | 8.76698E-07 | 0.8766981 |
| 578188.954140073.28  | 578188.95              | 4140073.3  | 0.006988449 | 0.0080996    | 0.0101245     | 0.0080996    | 0.012149401 | 0.0060747    | 0.0080996    | 3.98608E-08   | 8.64716E-07  | 9.04576E-07 | 0.9045764 |
| 578188.954140081.28  | 578188.95              | 4140081.3  | 0.006683523 | 0.007842722  | 0.009803403   | 0.007842722  | 0.011764083 | 0.005882042  | 0.007842722  | 3.82366E-08   | 8.37291E-07  | 8.75528E-07 | 0.8755278 |
| 578188.954140089.28  | 578188.95              | 4140089.3  | 0.006370407 | 0.007506496  | 0.00938312    | 0.007506496  | 0.011259744 | 0.005629872  | 0.007506496  | 3.64825E-08   | 8.01396E-07  | 8.37878E-07 | 0.8378781 |
| 578188.954140097.28  | 578188 95              | 4140097 3  | 0.006070912 | 0.007090831  | 0.008863539   | 0.007090831  | 0.010636247 | 0.005318124  | 0.007090831  | 3.46925F-08   | 7.57019F-07  | 7.91712F-07 | 0.7917116 |
| 578188 954140105 28  | 578188 95              | 4140105 3  | 0 005786435 | 0.006600359  | 0.008250449   | 0.006600359  | 0 009900539 | 0 00495027   | 0.006600359  | 3.28782F-08   | 7 04656F-07  | 7.37534F-07 | 0 7375344 |
| 578188 954140113 28  | 578188 95              | 4140113 3  | 0.005516738 | 0.006048693  | 0.007560867   | 0.006048693  | 0.00907304  | 0.00453652   | 0.006048693  | 3 10549F-08   | 6 4576F-07   | 6 76815E-07 | 0 676815  |
| 578196 9541/0081 28  | 578196 95              | 4140081 3  | 0 005829967 | 0.006300667  | 0 007875834   | 0.006300667  | 0 009/51001 | 0 004725501  | 0.006300667  | 3 27001 F-02  | 6 72661F-07  | 7 05375-07  | 0 70537   |
| 578106 05/1/0001.20  | 578106 05              | 11/10/00 2 | 0.00557/650 | 0.00000000   | 0.007/76612   | 0.000300007  | 0.000401001 | 0.004725501  | 0 00508120   | 3 177/0510-00 | 6 3856/E_07  | 6 60780E-07 | 0.70337   |
| 5, 5150.557140005.20 | 210120.20              | 4140003.3  | 5.005574055 | 0.00330123   | 5.007 47 0012 | 0.00330123   | 0.000371333 | 0.00-++03307 | 0.00330123   | J.12240L-00   | J.JUJU4L-07  | 0.00/09L-0/ | 0.009/09  |

| 578196.954140097.28 | 578196.95 | 4140097.3 | 0.005330879   | 0.005615328  | 0.00701916  | 0.005615328                             | 0.008422992 | 0.004211496 | 0.005615328 | 2.97349E-08 | 5.99494E-07 | 6.29229E-07   | 0.6292289 |
|---------------------|-----------|-----------|---------------|--------------|-------------|-----------------------------------------|-------------|-------------|-------------|-------------|-------------|---------------|-----------|
| 578196.954140105.28 | 578196.95 | 4140105.3 | 0.005100582   | 0.00521192   | 0.006514901 | 0.00521192                              | 0.007817881 | 0.00390894  | 0.00521192  | 2.82586E-08 | 5.56426E-07 | 5.84685E-07   | 0.5846846 |
| 578204.954140097.28 | 578204.95 | 4140097.3 | 0.004725387   | 0.0045346    | 0.00566825  | 0.0045346                               | 0.0068019   | 0.00340095  | 0.0045346   | 2.58295E-08 | 4.84115E-07 | 5.09945E-07   | 0.5099446 |
| 578001 424140037 45 | 578001 42 | 4140037.5 | 0.01291343    | 0.002267149  | 0.002833936 | 0.002267149                             | 0.003400723 | 0.001700361 | 0.002267149 | 5 85146F-08 | 2 42041F-07 | 3 00556E-07   | 0 300556  |
| 578001 424140045 45 | 578001 42 | 4140045 5 | 0.01380486    | 0.002328272  | 0.002910341 | 0.002328272                             | 0.003492409 | 0.001746204 | 0.002328272 | 6 24402F-08 | 2 48567E-07 | 3 11007F-07   | 0 3110072 |
| 578009 424140029 45 | 578009.42 | 4140049.5 | 0.01/592696   | 0.002682335  | 0.002310341 | 0.002682335                             | 0.003432403 | 0.001740204 | 0.002682335 | 6 62673E-08 | 2.46367E-07 | 3 5263/F-07   | 0.35263/1 |
| 578009.424140029.45 | 578009.42 | 4140023.3 | 0.014332030   | 0.002082333  | 0.003332318 | 0.002082333                             | 0.004023302 | 0.002011/31 | 0.002082333 | 7 120125 00 | 2.803071-07 | 2.52034L-07   | 0.3520541 |
| 578009.424140037.45 | 576009.42 | 4140037.5 | 0.013746279   | 0.002782555  | 0.003478100 | 0.002782555                             | 0.004175799 | 0.0020809   | 0.002782555 | 7.13012E-00 | 2.97004E-07 | 3.06443E-07   | 0.3064431 |
| 578009.424140045.45 | 578009.42 | 4140045.5 | 0.017037540   | 0.002885765  | 0.003607206 | 0.002885765                             | 0.004328647 | 0.002104324 | 0.002885765 | 7.70704E-08 | 3.08085E-07 | 5.85101E-07   | 0.3851015 |
| 578017.424140029.45 | 578017.42 | 4140029.5 | 0.01/54/041   | 0.003271669  | 0.004089586 | 0.003271669                             | 0.004907504 | 0.002453752 | 0.0032/1669 | 7.97386E-08 | 3.49284E-07 | 4.29023E-07   | 0.4290229 |
| 578017.424140037.45 | 578017.42 | 4140037.5 | 0.01913/34    | 0.003426631  | 0.004283288 | 0.003426631                             | 0.005139946 | 0.002569973 | 0.003426631 | 8.67966E-08 | 3.65828E-07 | 4.52625E-07   | 0.4526246 |
| 578025.424140021.45 | 578025.42 | 4140021.5 | 0.019082431   | 0.003777054  | 0.004721318 | 0.003777054                             | 0.005665581 | 0.002832791 | 0.003777054 | 8.6977E-08  | 4.03239E-07 | 4.90216E-07   | 0.4902164 |
| 578025.424140029.45 | 578025.42 | 4140029.5 | 0.020954182   | 0.003996526  | 0.004995658 | 0.003996526                             | 0.005994789 | 0.002997395 | 0.003996526 | 9.53284E-08 | 4.2667E-07  | 5.21999E-07   | 0.5219986 |
| 578033.424140013.45 | 578033.42 | 4140013.5 | 0.020248207   | 0.00427689   | 0.005346113 | 0.00427689                              | 0.006415335 | 0.003207668 | 0.00427689  | 9.26114E-08 | 4.56602E-07 | 5.49213E-07   | 0.5492134 |
| 578033.424140021.45 | 578033.42 | 4140021.5 | 0.022324692   | 0.004564476  | 0.005705595 | 0.004564476                             | 0.006846714 | 0.003423357 | 0.004564476 | 1.01929E-07 | 4.87305E-07 | 5.89234E-07   | 0.5892335 |
| 578041.424140013.45 | 578041.42 | 4140013.5 | 0.023181687   | 0.00510823   | 0.006385287 | 0.00510823                              | 0.007662345 | 0.003831172 | 0.00510823  | 1.06281E-07 | 5.45356E-07 | 6.51637E-07   | 0.651637  |
| 578041.424140021.45 | 578041.42 | 4140021.5 | 0.025726566   | 0.005501623  | 0.006877029 | 0.005501623                             | 0.008252435 | 0.004126218 | 0.005501623 | 1.17749E-07 | 5.87355E-07 | 7.05104E-07   | 0.7051038 |
| 578049.424140005.45 | 578049.42 | 4140005.5 | 0.023492938   | 0.005600491  | 0.007000614 | 0.005600491                             | 0.008400736 | 0.004200368 | 0.005600491 | 1.08213E-07 | 5.9791E-07  | 7.06123E-07   | 0.7061231 |
| 578049.424140013.45 | 578049.42 | 4140013.5 | 0.026063659   | 0.006070334  | 0.007587918 | 0.006070334                             | 0.009105502 | 0.004552751 | 0.006070334 | 1.19884E-07 | 6.48071E-07 | 7.67955E-07   | 0.7679545 |
| 578049.424140021.45 | 578049.42 | 4140021.5 | 0.029056534   | 0.006594589  | 0.008243236 | 0.006594589                             | 0.009891883 | 0.004945942 | 0.006594589 | 1.33444E-07 | 7.0404E-07  | 8.37484E-07   | 0.8374842 |
| 578049.424140029.45 | 578049.42 | 4140029.5 | 0.032577111   | 0.007184271  | 0.008980339 | 0.007184271                             | 0.010776406 | 0.005388203 | 0.007184271 | 1.49363E-07 | 7.66995E-07 | 9.16358E-07   | 0.9163577 |
| 578057.424139997.45 | 578057.42 | 4139997.5 | 0.023310607   | 0.006025197  | 0.007531497 | 0.006025197                             | 0.009037796 | 0.004518898 | 0.006025197 | 1.07931E-07 | 6.43252E-07 | 7.51183E-07   | 0.7511832 |
| 578057.424140005.45 | 578057.42 | 4140005.5 | 0.025790875   | 0.006557112  | 0.00819639  | 0.006557112                             | 0.009835668 | 0.004917834 | 0.006557112 | 1.19285E-07 | 7.00039E-07 | 8.19324E-07   | 0.8193244 |
| 578057 424140013 45 | 578057 42 | 4140013.5 | 0.028671978   | 0.007159243  | 0.008949054 | 0.007159243                             | 0.010738864 | 0.005369432 | 0.007159243 | 1 32455E-07 | 7.64323E-07 | 8 96778F-07   | 0.896778  |
| 578057 424140021 45 | 578057.42 | 4140021 5 | 0 032037074   | 0.007841664  | 0.00980208  | 0.007841664                             | 0.011762496 | 0.005881248 | 0.007841664 | 1 47813F-07 | 8 37178F-07 | 9 84991F-07   | 0 984991  |
| 578057 424140029 45 | 578057.42 | 4140021.5 | 0.035995554   | 0.007041004  | 0.00000200  | 0.007641004                             | 0.012926317 | 0.005061240 | 0.007641004 | 1.47815E 07 | 9 20011E-07 | 1 08586E-06   | 1 0858577 |
| 578057.424140025.45 | 578057.42 | 4140023.3 | 0.03333333334 | 0.000506084  | 0.010771931 | 0.0005017343                            | 0.012920317 | 0.000403133 | 0.008017343 | 1.030401-07 | 1.01407E.06 | 1.00000000000 | 1.0030377 |
| 578057.424140037.45 | 576057.42 | 4140037.5 | 0.040701070   | 0.009300984  | 0.01166575  | 0.009500964                             | 0.014200470 | 0.007130238 | 0.009500984 | 1.07240E-07 | 1.01497E-00 | 1.20221E-00   | 1.2022147 |
| 578057.424140045.45 | 578057.42 | 4140045.5 | 0.040352027   | 0.010532904  | 0.01310013  | 0.010532904                             | 0.015/99550 | 0.007899078 | 0.010532904 | 2.12693E-07 | 1.1245E-00  | 1.33/39E-00   | 1.33/3880 |
| 578065.424140005.45 | 578005.42 | 4140005.5 | 0.02/099/90   | 0.007610696  | 0.00951557  | 0.007610696                             | 0.011416044 | 0.005708022 | 0.007610696 | 1.28/92E-07 | 0.1252E-07  | 9.41312E-07   | 0.9413118 |
| 578065.424140021.45 | 578065.42 | 4140021.5 | 0.034389455   | 0.009231358  | 0.011539197 | 0.009231358                             | 0.013847037 | 0.006923518 | 0.009231358 | 1.59637E-07 | 9.85542E-07 | 1.14518E-06   | 1.1451789 |
| 578065.424140029.45 | 578065.42 | 4140029.5 | 0.038612403   | 0.010229558  | 0.012786948 | 0.010229558                             | 0.015344337 | 0.00/6/2169 | 0.010229558 | 1.79078E-07 | 1.09211E-06 | 1.2/119E-06   | 1.2/11886 |
| 578065.424140037.45 | 578065.42 | 4140037.5 | 0.043588336   | 0.0113/98/8  | 0.014224847 | 0.0113/98/8                             | 0.01/069816 | 0.008534908 | 0.0113/98/8 | 2.01956E-07 | 1.21492E-06 | 1.4168/E-06   | 1.4168/44 |
| 578065.424140045.45 | 578065.42 | 4140045.5 | 0.049519705   | 0.012721738  | 0.015902172 | 0.012721738                             | 0.019082607 | 0.009541303 | 0.012721738 | 2.29191E-07 | 1.35818E-06 | 1.58737E-06   | 1.5873668 |
| 578065.424140053.45 | 578065.42 | 4140053.5 | 0.056687612   | 0.014311571  | 0.017889464 | 0.014311571                             | 0.021467356 | 0.010733678 | 0.014311571 | 2.62066E-07 | 1.52791E-06 | 1.78997E-06   | 1.7899729 |
| 578073.424139989.45 | 578073.42 | 4139989.5 | 0.023901673   | 0.007230789  | 0.009038486 | 0.007230789                             | 0.010846184 | 0.005423092 | 0.007230789 | 1.11923E-07 | 7.71961E-07 | 8.83884E-07   | 0.8838845 |
| 578073.424140029.45 | 578073.42 | 4140029.5 | 0.040128238   | 0.011983742  | 0.014979677 | 0.011983742                             | 0.017975613 | 0.008987806 | 0.011983742 | 1.87721E-07 | 1.27939E-06 | 1.46711E-06   | 1.4671086 |
| 578073.424140037.45 | 578073.42 | 4140037.5 | 0.045089656   | 0.01344539   | 0.016806738 | 0.01344539                              | 0.020168086 | 0.010084043 | 0.01344539  | 2.10907E-07 | 1.43543E-06 | 1.64634E-06   | 1.6463404 |
| 578073.424140045.45 | 578073.42 | 4140045.5 | 0.050914268   | 0.01516752   | 0.018959401 | 0.01516752                              | 0.022751281 | 0.01137564  | 0.01516752  | 2.38134E-07 | 1.61929E-06 | 1.85742E-06   | 1.8574225 |
| 578081.424139981.45 | 578081.42 | 4139981.5 | 0.022533469   | 0.007398144  | 0.00924768  | 0.007398144                             | 0.011097215 | 0.005548608 | 0.007398144 | 1.0621E-07  | 7.89828E-07 | 8.96037E-07   | 0.8960375 |
| 578081.424139989.45 | 578081.42 | 4139989.5 | 0.024650727   | 0.008122078  | 0.010152598 | 0.008122078                             | 0.012183117 | 0.006091559 | 0.008122078 | 1.16224E-07 | 8.67115E-07 | 9.83339E-07   | 0.9833388 |
| 578081.424139997.45 | 578081.42 | 4139997.5 | 0.027044434   | 0.008951397  | 0.011189246 | 0.008951397                             | 0.013427096 | 0.006713548 | 0.008951397 | 1.27558E-07 | 9.55654E-07 | 1.08321E-06   | 1.0832114 |
| 578081.424140005.45 | 578081.42 | 4140005.5 | 0.029755605   | 0.009904707  | 0.012380884 | 0.009904707                             | 0.014857061 | 0.00742853  | 0.009904707 | 1.40412E-07 | 1.05743E-06 | 1.19784E-06   | 1.1978413 |
| 578081.424140021.45 | 578081.42 | 4140021.5 | 0.036366251   | 0.012303473  | 0.015379341 | 0.012303473                             | 0.018455209 | 0.009227604 | 0.012303473 | 1.71843E-07 | 1.31352E-06 | 1.48537E-06   | 1.4853651 |
| 578081.424140029.45 | 578081.42 | 4140029.5 | 0.040406818   | 0.013827343  | 0.017284179 | 0.013827343                             | 0.020741015 | 0.010370508 | 0.013827343 | 1.91123E-07 | 1.47621E-06 | 1.66733E-06   | 1.6673341 |
| 578081.424140037.45 | 578081.42 | 4140037.5 | 0.045041197   | 0.015631165  | 0.019538956 | 0.015631165                             | 0.023446747 | 0.011723374 | 0.015631165 | 2.13303E-07 | 1.66879E-06 | 1.88209E-06   | 1.8820909 |
| 578089 424139981 45 | 578089 42 | 4139981.5 | 0.022851058   | 0.008166676  | 0.010208345 | 0.008166676                             | 0.012250014 | 0.006125007 | 0.008166676 | 1 08499F-07 | 8 71877F-07 | 9 80375F-07   | 0 9803751 |
| 578089 424139989 45 | 578089 42 | 4139989 5 | 0 024905443   | 0.009000934  | 0.011251168 | 0.009000934                             | 0.013501401 | 0.006750701 | 0.009000934 | 1 18372F-07 | 9 60942F-07 | 1 07931E-06   | 1 0793144 |
| 578089 424139997 45 | 578089.42 | /139997 5 | 0.027189961   | 0.009952762  | 0.012440953 | 0.009952762                             | 0.01/0201// | 0.007/6/572 | 0.009000354 | 1 29381F-07 | 1.06256E-06 | 1 1919/F-06   | 1 1010/03 |
| 578089 424140005 45 | 578080 42 | 4130005 5 | 0.027105501   | 0.011052925  | 0.012440555 | 0.0000000000000000000000000000000000000 | 0.016570287 | 0.009780604 | 0.005552702 | 1.25501E 07 | 1.00250E 00 | 1.13134E 00   | 1 2217472 |
| 578089.424140005.45 | 578085.42 | 4140003.3 | 0.023744713   | 0.011032925  | 0.015810150 | 0.011032323                             | 0.010575587 | 0.003263034 | 0.011032323 | 1.417341-07 | 1.130011-00 | 1.321751-00   | 1.321/4/2 |
| 578089.424140013.45 | 576065.42 | 4140013.5 | 0.032013606   | 0.0129540803 | 0.013420079 | 0.012340603                             | 0.010511295 | 0.009233046 | 0.012340603 | 1.33079E-07 | 1.31731E-00 | 1.47319E-00   | 1.4751925 |
| 570003.424140021.45 | 570009.42 | 4140021.5 | 0.033830004   | 0.015640522  | 0.01/516054 | 0.01563054443                           | 0.020/81004 | 0.010390832 | 0.015634443 | 1./14E-U/   | 1.4/910-00  | 1.03036-00    | 1.0505040 |
| 5/6089.424140029.45 | 578089.42 | 4140029.5 | 0.039447992   | 0.015048522  | 0.019560653 | 0.015048522                             | 0.0234/2/84 | 0.011/36392 | 0.015048522 | 1.8915E-0/  | 1.0/064E-06 | 1.859/9E-06   | 1.859/91  |
| 5/809/.424139989.45 | 5/809/.42 | 4139989.5 | 0.024639979   | 0.009804927  | 0.012256159 | 0.009804927                             | 0.014/0/391 | 0.00/353696 | 0.009804927 | 1.18183E-07 | 1.046/8E-06 | 1.16496E-06   | 1.1649602 |
| 5/809/.424139997.45 | 5/8097.42 | 4139997.5 | 0.026/49765   | 0.010877804  | 0.013597255 | 0.010877804                             | 0.016316706 | 0.008158353 | 0.010877804 | 1.28581E-07 | 1.16132E-06 | 1.2899E-06    | 1.2898984 |
| 578097.424140005.45 | 578097.42 | 4140005.5 | 0.029057769   | 0.012112803  | 0.015141004 | 0.012112803                             | 0.018169205 | 0.009084603 | 0.012112803 | 1.40029E-07 | 1.29317E-06 | 1.43319E-06   | 1.4331949 |
| 578097.424140013.45 | 578097.42 | 4140013.5 | 0.031601074   | 0.013561469  | 0.016951836 | 0.013561469                             | 0.020342204 | 0.010171102 | 0.013561469 | 1.52748E-07 | 1.44783E-06 | 1.60057E-06   | 1.6005741 |
| 578097.424140021.45 | 578097.42 | 4140021.5 | 0.034391509   | 0.01527106   | 0.019088825 | 0.01527106                              | 0.02290659  | 0.011453295 | 0.01527106  | 1.66846E-07 | 1.63034E-06 | 1.79719E-06   | 1.797189  |
| 578105.424140005.45 | 578105.42 | 4140005.5 | 0.027773165   | 0.012990661  | 0.016238327 | 0.012990661                             | 0.019485992 | 0.009742996 | 0.012990661 | 1.35523E-07 | 1.38689E-06 | 1.52241E-06   | 1.5224098 |
| 578105.424140013.45 | 578105.42 | 4140013.5 | 0.02992594    | 0.014559271  | 0.018199089 | 0.014559271                             | 0.021838907 | 0.010919454 | 0.014559271 | 1.46698E-07 | 1.55435E-06 | 1.70105E-06   | 1.7010495 |

| 578172.954140089.28 | 578172.95 | 4140089.3 | 0.008487992 | 0.012131668 | 0.015164585 | 0.012131668 | 0.018197502 | 0.009098751 | 0.012131668 | 5.11491E-08 | 1.29518E-06 | 1.34633E-06 | 1.3463293 |
|---------------------|-----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|
| 578172.954140097.28 | 578172.95 | 4140097.3 | 0.008040248 | 0.011766024 | 0.01470753  | 0.011766024 | 0.017649036 | 0.008824518 | 0.011766024 | 4.8778E-08  | 1.25614E-06 | 1.30492E-06 | 1.3049219 |
| 578172.954140105.28 | 578172.95 | 4140105.3 | 0.007616633 | 0.01122227  | 0.014027838 | 0.01122227  | 0.016833405 | 0.008416703 | 0.01122227  | 4.62989E-08 | 1.19809E-06 | 1.24439E-06 | 1.2443915 |
| 578172.954140113.28 | 578172.95 | 4140113.3 | 0.007222766 | 0.01049199  | 0.013114988 | 0.01049199  | 0.015737985 | 0.007868993 | 0.01049199  | 4.37259E-08 | 1.12013E-06 | 1.16385E-06 | 1.1638536 |
| 578172.954140121.28 | 578172.95 | 4140121.3 | 0.006854564 | 0.009512498 | 0.011890622 | 0.009512498 | 0.014268747 | 0.007134373 | 0.009512498 | 4.09667E-08 | 1.01556E-06 | 1.05652E-06 | 1.0565236 |
| 578180.954140065.28 | 578180.95 | 4140065.3 | 0.00843685  | 0.010131658 | 0.012664573 | 0.010131658 | 0.015197488 | 0.007598744 | 0.010131658 | 4.85435E-08 | 1.08166E-06 | 1.1302E-06  | 1.1302021 |
| 578180.954140073.28 | 578180.95 | 4140073.3 | 0.008082873 | 0.010032917 | 0.012541146 | 0.010032917 | 0.015049375 | 0.007524688 | 0.010032917 | 4.68959E-08 | 1.07112E-06 | 1.11801E-06 | 1.1180129 |
| 578180.954140081.28 | 578180.95 | 4140081.3 | 0.007696755 | 0.009835197 | 0.012293996 | 0.009835197 | 0.014752796 | 0.007376398 | 0.009835197 | 4.49914E-08 | 1.05001E-06 | 1.095E-06   | 1.0949997 |
| 578180.954140089.28 | 578180.95 | 4140089.3 | 0.00731778  | 0.009529039 | 0.011911299 | 0.009529039 | 0.014293558 | 0.007146779 | 0.009529039 | 4.29884E-08 | 1.01732E-06 | 1.06031E-06 | 1.0603112 |
| 578180.954140097.28 | 578180.95 | 4140097.3 | 0.006954618 | 0.009103062 | 0.011378828 | 0.009103062 | 0.013654594 | 0.006827297 | 0.009103062 | 4.0911E-08  | 9.71845E-07 | 1.01276E-06 | 1.0127564 |
| 578180.954140105.28 | 578180.95 | 4140105.3 | 0.006609663 | 0.008549234 | 0.010686543 | 0.008549234 | 0.012823851 | 0.006411926 | 0.008549234 | 3.87598E-08 | 9.12719E-07 | 9.51478E-07 | 0.9514783 |
| 578180.954140113.28 | 578180.95 | 4140113.3 | 0.006284225 | 0.00786955  | 0.009836937 | 0.00786955  | 0.011804324 | 0.005902162 | 0.00786955  | 3.65429E-08 | 8.40155E-07 | 8.76698E-07 | 0.8766981 |
| 578188.954140073.28 | 578188.95 | 4140073.3 | 0.006988449 | 0.0080996   | 0.0101245   | 0.0080996   | 0.012149401 | 0.0060747   | 0.0080996   | 3.98608E-08 | 8.64716E-07 | 9.04576E-07 | 0.9045764 |
| 578188.954140081.28 | 578188.95 | 4140081.3 | 0.006683523 | 0.007842722 | 0.009803403 | 0.007842722 | 0.011764083 | 0.005882042 | 0.007842722 | 3.82366E-08 | 8.37291E-07 | 8.75528E-07 | 0.8755278 |
| 578188.954140089.28 | 578188.95 | 4140089.3 | 0.006370407 | 0.007506496 | 0.00938312  | 0.007506496 | 0.011259744 | 0.005629872 | 0.007506496 | 3.64825E-08 | 8.01396E-07 | 8.37878E-07 | 0.8378781 |
| 578188.954140097.28 | 578188.95 | 4140097.3 | 0.006070912 | 0.007090831 | 0.008863539 | 0.007090831 | 0.010636247 | 0.005318124 | 0.007090831 | 3.46925E-08 | 7.57019E-07 | 7.91712E-07 | 0.7917116 |
| 578188.954140105.28 | 578188.95 | 4140105.3 | 0.005786435 | 0.006600359 | 0.008250449 | 0.006600359 | 0.009900539 | 0.00495027  | 0.006600359 | 3.28782E-08 | 7.04656E-07 | 7.37534E-07 | 0.7375344 |
| 578188.954140113.28 | 578188.95 | 4140113.3 | 0.005516738 | 0.006048693 | 0.007560867 | 0.006048693 | 0.00907304  | 0.00453652  | 0.006048693 | 3.10549E-08 | 6.4576E-07  | 6.76815E-07 | 0.676815  |
| 578196.954140081.28 | 578196.95 | 4140081.3 | 0.005829967 | 0.006300667 | 0.007875834 | 0.006300667 | 0.009451001 | 0.004725501 | 0.006300667 | 3.27091E-08 | 6.72661E-07 | 7.0537E-07  | 0.70537   |
| 578196.954140089.28 | 578196.95 | 4140089.3 | 0.005574659 | 0.00598129  | 0.007476612 | 0.00598129  | 0.008971935 | 0.004485967 | 0.00598129  | 3.12248E-08 | 6.38564E-07 | 6.69789E-07 | 0.669789  |
| 578196.954140097.28 | 578196.95 | 4140097.3 | 0.005330879 | 0.005615328 | 0.00701916  | 0.005615328 | 0.008422992 | 0.004211496 | 0.005615328 | 2.97349E-08 | 5.99494E-07 | 6.29229E-07 | 0.6292289 |
| 578196.954140105.28 | 578196.95 | 4140105.3 | 0.005100582 | 0.00521192  | 0.006514901 | 0.00521192  | 0.007817881 | 0.00390894  | 0.00521192  | 2.82586E-08 | 5.56426E-07 | 5.84685E-07 | 0.5846846 |
| 578204.954140097.28 | 578204.95 | 4140097.3 | 0.004725387 | 0.0045346   | 0.00566825  | 0.0045346   | 0.0068019   | 0.00340095  | 0.0045346   | 2.58295E-08 | 4.84115E-07 | 5.09945E-07 | 0.5099446 |
| 578001.424140037.45 | 578001.42 | 4140037.5 | 0.01291343  | 0.002267149 | 0.002833936 | 0.002267149 | 0.003400723 | 0.001700361 | 0.002267149 | 5.85146E-08 | 2.42041E-07 | 3.00556E-07 | 0.300556  |
| 578001.424140045.45 | 578001.42 | 4140045.5 | 0.01380486  | 0.002328272 | 0.002910341 | 0.002328272 | 0.003492409 | 0.001746204 | 0.002328272 | 6.24402E-08 | 2.48567E-07 | 3.11007E-07 | 0.3110072 |
| 578009.424140029.45 | 578009.42 | 4140029.5 | 0.014592696 | 0.002682335 | 0.003352918 | 0.002682335 | 0.004023502 | 0.002011751 | 0.002682335 | 6.62673E-08 | 2.86367E-07 | 3.52634E-07 | 0.3526341 |
| 578009.424140037.45 | 578009.42 | 4140037.5 | 0.015748279 | 0.002782533 | 0.003478166 | 0.002782533 | 0.004173799 | 0.0020869   | 0.002782533 | 7.13812E-08 | 2.97064E-07 | 3.68445E-07 | 0.3684451 |
| 578009.424140045.45 | 578009.42 | 4140045.5 | 0.017037546 | 0.002885765 | 0.003607206 | 0.002885765 | 0.004328647 | 0.002164324 | 0.002885765 | 7.70764E-08 | 3.08085E-07 | 3.85161E-07 | 0.3851615 |
| 578017.424140029.45 | 578017.42 | 4140029.5 | 0.017547041 | 0.003271669 | 0.004089586 | 0.003271669 | 0.004907504 | 0.002453752 | 0.003271669 | 7.97386E-08 | 3.49284E-07 | 4.29023E-07 | 0.4290229 |
| 578017.424140037.45 | 578017.42 | 4140037.5 | 0.01913734  | 0.003426631 | 0.004283288 | 0.003426631 | 0.005139946 | 0.002569973 | 0.003426631 | 8.67966E-08 | 3.65828E-07 | 4.52625E-07 | 0.4526246 |
| 578025.424140021.45 | 578025.42 | 4140021.5 | 0.019082431 | 0.003777054 | 0.004721318 | 0.003777054 | 0.005665581 | 0.002832791 | 0.003777054 | 8.6977E-08  | 4.03239E-07 | 4.90216E-07 | 0.4902164 |
| 578025.424140029.45 | 578025.42 | 4140029.5 | 0.020954182 | 0.003996526 | 0.004995658 | 0.003996526 | 0.005994789 | 0.002997395 | 0.003996526 | 9.53284E-08 | 4.2667E-07  | 5.21999E-07 | 0.5219986 |
| 578033.424140013.45 | 578033.42 | 4140013.5 | 0.020248207 | 0.00427689  | 0.005346113 | 0.00427689  | 0.006415335 | 0.003207668 | 0.00427689  | 9.26114E-08 | 4.56602E-07 | 5.49213E-07 | 0.5492134 |
| 578033.424140021.45 | 578033.42 | 4140021.5 | 0.022324692 | 0.004564476 | 0.005705595 | 0.004564476 | 0.006846714 | 0.003423357 | 0.004564476 | 1.01929E-07 | 4.87305E-07 | 5.89234E-07 | 0.5892335 |
| 578041.424140013.45 | 578041.42 | 4140013.5 | 0.023181687 | 0.00510823  | 0.006385287 | 0.00510823  | 0.007662345 | 0.003831172 | 0.00510823  | 1.06281E-07 | 5.45356E-07 | 6.51637E-07 | 0.651637  |
| 578041.424140021.45 | 578041.42 | 4140021.5 | 0.025726566 | 0.005501623 | 0.006877029 | 0.005501623 | 0.008252435 | 0.004126218 | 0.005501623 | 1.17749E-07 | 5.87355E-07 | 7.05104E-07 | 0.7051038 |
| 578049.424140005.45 | 578049.42 | 4140005.5 | 0.023492938 | 0.005600491 | 0.007000614 | 0.005600491 | 0.008400736 | 0.004200368 | 0.005600491 | 1.08213E-07 | 5.9791E-07  | 7.06123E-07 | 0.7061231 |
| 578049.424140013.45 | 578049.42 | 4140013.5 | 0.026063659 | 0.006070334 | 0.007587918 | 0.006070334 | 0.009105502 | 0.004552751 | 0.006070334 | 1.19884E-07 | 6.48071E-07 | 7.67955E-07 | 0.7679545 |
| 578049.424140021.45 | 578049.42 | 4140021.5 | 0.029056534 | 0.006594589 | 0.008243236 | 0.006594589 | 0.009891883 | 0.004945942 | 0.006594589 | 1.33444E-07 | 7.0404E-07  | 8.37484E-07 | 0.8374842 |
| 578049.424140029.45 | 578049.42 | 4140029.5 | 0.032577111 | 0.007184271 | 0.008980339 | 0.007184271 | 0.010776406 | 0.005388203 | 0.007184271 | 1.49363E-07 | 7.66995E-07 | 9.16358E-07 | 0.9163577 |

Offroad DPM Emissions, Ground Level Concentrations and Health Risk Calculations **Residential Receptors** 

| Phas                         | ie in the second se | Year | Emissions (lbs/day) | Work Hours Per Day | Emissions (g/s) |
|------------------------------|----------------------------------------------------------------------------------------------------------------|------|---------------------|--------------------|-----------------|
| Demolition                   | 3.2. Demolition (20                                                                                            | 2026 | 0.005               | 10                 | 6.29986E-05     |
| Site Preparation             | 3.4. Site Preparatio                                                                                           | 2026 | 0.000               | 10                 | 0               |
| Grading                      | 3.6. Grading (2026)                                                                                            | 2026 | 0.005               | 10                 | 6.29986E-05     |
| <b>Building Construction</b> | 3.8. Building Const                                                                                            | 2027 | 0.005               | 10                 | 6.29986E-05     |
| Paving                       | 3.10. Paving (2027)                                                                                            | 2027 | 0.005               | 10                 | 6.29986E-05     |
| Architectural Coating        | 3.12. Architectural                                                                                            | 2027 | 0.000               | 10                 | 0               |
| Trenching                    | 3.14. Trenching (20                                                                                            | 2026 | 0.000               | 10                 | 0               |
|                              |                                                                                                                |      |                     |                    |                 |
|                              |                                                                                                                |      |                     |                    |                 |

#### Max Haul Cancer Risk 0.08

|                                        | AERMOD Colu           | mn Identifier: | 6           | 6                | 6           | 6            | 6           | 6             | 6         |               |             |           |             |
|----------------------------------------|-----------------------|----------------|-------------|------------------|-------------|--------------|-------------|---------------|-----------|---------------|-------------|-----------|-------------|
|                                        |                       | _              |             |                  |             |              |             |               |           |               |             | MAX:      | 0.076765    |
|                                        |                       |                |             |                  | - "         | Building     |             | Architectural |           |               |             |           |             |
| 11.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | ) (   1 <b>7</b> 8 4) |                | Demolition  | Site Preparation | Grading     | Construction | Paving      | Coating       | Trenching | <b>a.</b>     | Child Ris   | K         |             |
| Unique Identifier                      | X (UTM)               | Y (UTM)        | 2026        | 2026             | 2026        | 2027         | 2027        | 2027          | 2026      | 3rd Trimester | 0<2         | Total     | per million |
| 578048.554140246.42                    | 578048.55             | 4140246.4      | 4.11242E-05 | 0                | 4.11242E-05 | 4.11242E-05  | 4.11242E-05 | 0             | 0         | 2.02253E-10   | 3.92317E-09 | 4.125E-09 | 0.0041254   |
| 578066.414140268                       | 578066.41             | 4140268        | 3.11295E-05 | 0                | 3.11295E-05 | 3.11295E-05  | 3.11295E-05 | 0             | 0         | 1.53098E-10   | 2.96969E-09 | 3.123E-09 | 0.0031228   |
| 578068.454140241.25                    | 578068.45             | 4140241.3      | 4.08729E-05 | 0                | 4.08729E-05 | 4.08729E-05  | 4.08729E-05 | 0             | 0         | 2.01017E-10   | 3.89919E-09 | 4.1E-09   | 0.0041002   |
| 578054.694140253.42                    | 578054.69             | 4140253.4      | 3.7178E-05  | 0                | 3.7178E-05  | 3.7178E-05   | 3.7178E-05  | 0             | 0         | 1.82845E-10   | 3.54671E-09 | 3.73E-09  | 0.0037296   |
| 578061.934140261.73                    | 578061.93             | 4140261.7      | 3.34038E-05 | 0                | 3.34038E-05 | 3.34038E-05  | 3.34038E-05 | 0             | 0         | 1.64283E-10   | 3.18665E-09 | 3.351E-09 | 0.0033509   |
| 578046.974140254.6                     | 578046.97             | 4140254.6      | 3.75396E-05 | 0                | 3.75396E-05 | 3.75396E-05  | 3.75396E-05 | 0             | 0         | 1.84624E-10   | 3.5812E-09  | 3.766E-09 | 0.0037658   |
| 5780634140234.38                       | 578063                | 4140234.4      | 4.54888E-05 | 0                | 4.54888E-05 | 4.54888E-05  | 4.54888E-05 | 0             | 0         | 2.23719E-10   | 4.33954E-09 | 4.563E-09 | 0.0045633   |
| 578076.524140257.17                    | 578076.52             | 4140257.2      | 3.356E-05   | 0                | 3.356E-05   | 3.356E-05    | 3.356E-05   | 0             | 0         | 1.65052E-10   | 3.20156E-09 | 3.367E-09 | 0.0033666   |
| 578071.934140251.73                    | 578071.93             | 4140251.7      | 3.59413E-05 | 0                | 3.59413E-05 | 3.59413E-05  | 3.59413E-05 | 0             | 0         | 1.76763E-10   | 3.42873E-09 | 3.605E-09 | 0.0036055   |
| 578071.934140271.73                    | 578071.93             | 4140271.7      | 2.97379E-05 | 0                | 2.97379E-05 | 2.97379E-05  | 2.97379E-05 | 0             | 0         | 1.46254E-10   | 2.83693E-09 | 2.983E-09 | 0.0029832   |
| 578057.74140269.42                     | 578057.7              | 4140269.4      | 3.13563E-05 | 0                | 3.13563E-05 | 3.13563E-05  | 3.13563E-05 | 0             | 0         | 1.54214E-10   | 2.99133E-09 | 3.146E-09 | 0.0031455   |
| 578081.934140221.73                    | 578081.93             | 4140221.7      | 4.94766E-05 | 0                | 4.94766E-05 | 4.94766E-05  | 4.94766E-05 | 0             | 0         | 2.43331E-10   | 4.71997E-09 | 4.963E-09 | 0.0049633   |
| 578081.934140231.73                    | 578081.93             | 4140231.7      | 4.34898E-05 | 0                | 4.34898E-05 | 4.34898E-05  | 4.34898E-05 | 0             | 0         | 2.13888E-10   | 4.14884E-09 | 4.363E-09 | 0.0043627   |
| 578081.934140251.73                    | 578081.93             | 4140251.7      | 3.48137E-05 | 0                | 3.48137E-05 | 3.48137E-05  | 3.48137E-05 | 0             | 0         | 1.71217E-10   | 3.32115E-09 | 3.492E-09 | 0.0034924   |
| 578081.934140261.73                    | 578081.93             | 4140261.7      | 3.1665E-05  | 0                | 3.1665E-05  | 3.1665E-05   | 3.1665E-05  | 0             | 0         | 1.55732E-10   | 3.02078E-09 | 3.177E-09 | 0.0031765   |
| 578066.734140278.97                    | 578066.73             | 4140279        | 2.82776E-05 | 0                | 2.82776E-05 | 2.82776E-05  | 2.82776E-05 | 0             | 0         | 1.39072E-10   | 2.69762E-09 | 2.837E-09 | 0.0028367   |
| 578091.934140221.73                    | 578091.93             | 4140221.7      | 4.69636E-05 | 0                | 4.69636E-05 | 4.69636E-05  | 4.69636E-05 | 0             | 0         | 2.30972E-10   | 4.48023E-09 | 4.711E-09 | 0.0047112   |
| 578091.934140231.73                    | 578091.93             | 4140231.7      | 4.16263E-05 | 0                | 4.16263E-05 | 4.16263E-05  | 4.16263E-05 | 0             | 0         | 2.04723E-10   | 3.97107E-09 | 4.176E-09 | 0.0041758   |
| 578091.934140241.73                    | 578091.93             | 4140241.7      | 3.72775E-05 | 0                | 3.72775E-05 | 3.72775E-05  | 3.72775E-05 | 0             | 0         | 1.83335E-10   | 3.5562E-09  | 3.74E-09  | 0.0037395   |
| 578081.564140270.42                    | 578081.56             | 4140270.4      | 2.94008E-05 | 0                | 2.94008E-05 | 2.94008E-05  | 2.94008E-05 | 0             | 0         | 1.44596E-10   | 2.80478E-09 | 2.949E-09 | 0.0029494   |
| 578101.934140211.73                    | 578101.93             | 4140211.7      | 4.9653E-05  | 0                | 4.9653E-05  | 4.9653E-05   | 4.9653E-05  | 0             | 0         | 2.44199E-10   | 4.7368E-09  | 4.981E-09 | 0.004981    |
| 578101.934140221.73                    | 578101.93             | 4140221.7      | 4.41066E-05 | 0                | 4.41066E-05 | 4.41066E-05  | 4.41066E-05 | 0             | 0         | 2.16921E-10   | 4.20768E-09 | 4.425E-09 | 0.0044246   |
| 578101.934140231.73                    | 578101.93             | 4140231.7      | 3.95512E-05 | 0                | 3.95512E-05 | 3.95512E-05  | 3.95512E-05 | 0             | 0         | 1.94517E-10   | 3.7731E-09  | 3.968E-09 | 0.0039676   |
| 578101.934140241.73                    | 578101.93             | 4140241.7      | 3.58248E-05 | 0                | 3.58248E-05 | 3.58248E-05  | 3.58248E-05 | 0             | 0         | 1.7619E-10    | 3.41761E-09 | 3.594E-09 | 0.0035938   |
| 578101.934140251.73                    | 578101.93             | 4140251.7      | 3.26755E-05 | 0                | 3.26755E-05 | 3.26755E-05  | 3.26755E-05 | 0             | 0         | 1.60702E-10   | 3.11718E-09 | 3.278E-09 | 0.0032779   |
| 578114.354140204.87                    | 578114.35             | 4140204.9      | 4.93544E-05 | 0                | 4.93544E-05 | 4.93544E-05  | 4.93544E-05 | 0             | 0         | 2.4273E-10    | 4.70831E-09 | 4.951E-09 | 0.004951    |

| 578111.934140211.73 | 578111.93 | 4140211.7 | 4.60854E-05  | 0      | 4.60854E-05  | 4.60854E-05  | 4.60854E-05  | 0 | 0 | 2.26653E-10  | 4.39645E-09 | 4.623E-09 | 0.0046231 |
|---------------------|-----------|-----------|--------------|--------|--------------|--------------|--------------|---|---|--------------|-------------|-----------|-----------|
| 578111.934140221.73 | 578111.93 | 4140221.7 | 4.14537E-05  | 0      | 4.14537E-05  | 4.14537E-05  | 4.14537E-05  | 0 | 0 | 2.03874E-10  | 3.9546E-09  | 4.158E-09 | 0.0041585 |
| 578111.934140231.73 | 578111.93 | 4140231.7 | 3.76839E-05  | 0      | 3.76839E-05  | 3.76839E-05  | 3.76839E-05  | 0 | 0 | 1.85333E-10  | 3.59497E-09 | 3.78E-09  | 0.0037803 |
| 578111.934140241.73 | 578111.93 | 4140241.7 | 3.44325E-05  | 0      | 3.44325E-05  | 3.44325E-05  | 3.44325E-05  | 0 | 0 | 1.69343E-10  | 3.28479E-09 | 3.454E-09 | 0.0034541 |
| 578121.934140201.73 | 578121.93 | 4140201.7 | 4.86078E-05  | 0      | 4.86078E-05  | 4.86078E-05  | 4.86078E-05  | 0 | 0 | 2.39059E-10  | 4.63709E-09 | 4.876E-09 | 0.0048761 |
| 578121.934140211.73 | 578121.93 | 4140211.7 | 4.33632E-05  | 0      | 4.33632E-05  | 4.33632E-05  | 4.33632E-05  | 0 | 0 | 2.13265E-10  | 4.13676E-09 | 4.35E-09  | 0.00435   |
| 578121.934140221.73 | 578121.93 | 4140221.7 | 3.93672E-05  | 0      | 3.93672E-05  | 3.93672E-05  | 3.93672E-05  | 0 | 0 | 1.93612E-10  | 3.75555E-09 | 3.949E-09 | 0.0039492 |
| 578121.934140231.73 | 578121.93 | 4140231.7 | 3.60087E-05  | 0      | 3.60087E-05  | 3.60087E-05  | 3.60087E-05  | 0 | 0 | 1.77095E-10  | 3.43516E-09 | 3.612E-09 | 0.0036123 |
| 578121.934140241.73 | 578121.93 | 4140241.7 | 3.3124E-05   | 0      | 3.3124E-05   | 3.3124E-05   | 3.3124E-05   | 0 | 0 | 1.62908E-10  | 3.15997E-09 | 3.323E-09 | 0.0033229 |
| 578133.384140194.38 | 578133.38 | 4140194.4 | 4.88019E-05  | 0      | 4.88019E-05  | 4.88019E-05  | 4.88019E-05  | 0 | 0 | 2.40013E-10  | 4.6556E-09  | 4.896E-09 | 0.0048956 |
| 578131.934140201.73 | 578131.93 | 4140201.7 | 4.55329E-05  | 0      | 4.55329E-05  | 4.55329E-05  | 4.55329E-05  | 0 | 0 | 2.23936E-10  | 4.34375E-09 | 4.568E-09 | 0.0045677 |
| 578131.934140211.73 | 578131.93 | 4140211.7 | 4.11765E-05  | 0      | 4.11765E-05  | 4.11765E-05  | 4.11765E-05  | 0 | 0 | 2.02511E-10  | 3.92816E-09 | 4.131E-09 | 0.0041307 |
| 578131.934140221.73 | 578131.93 | 4140221.7 | 3.76032E-05  | 0      | 3.76032E-05  | 3.76032E-05  | 3.76032E-05  | 0 | 0 | 1.84937E-10  | 3.58727E-09 | 3.772E-09 | 0.0037722 |
| 578131.934140231.73 | 578131.93 | 4140231.7 | 3.45749E-05  | 0      | 3.45749E-05  | 3.45749E-05  | 3.45749E-05  | 0 | 0 | 1.70043E-10  | 3.29838E-09 | 3.468E-09 | 0.0034684 |
| 578141.934140201.73 | 578141.93 | 4140201.7 | 4.29027E-05  | 0      | 4.29027E-05  | 4.29027E-05  | 4.29027E-05  | 0 | 0 | 2.11E-10     | 4.09283E-09 | 4.304E-09 | 0.0043038 |
| 578141.934140211.73 | 578141.93 | 4140211.7 | 3.91631E-05  | 0      | 3.91631E-05  | 3.91631E-05  | 3.91631E-05  | 0 | 0 | 1.92608E-10  | 3.73608E-09 | 3.929E-09 | 0.0039287 |
| 578141.934140221.73 | 578141.93 | 4140221.7 | 3.59829E-05  | 0      | 3.59829E-05  | 3.59829E-05  | 3.59829E-05  | 0 | 0 | 1.76968E-10  | 3.4327E-09  | 3.61E-09  | 0.0036097 |
| 578141.934140231.73 | 578141.93 | 4140231.7 | 3.32374E-05  | 0      | 3.32374E-05  | 3.32374E-05  | 3.32374E-05  | 0 | 0 | 1.63465E-10  | 3.17079E-09 | 3.334E-09 | 0.0033343 |
| 578151.934140221.73 | 578151.93 | 4140221.7 | 3.44785E-05  | 0      | 3.44785E-05  | 3.44785E-05  | 3.44785E-05  | 0 | 0 | 1.69569E-10  | 3.28918E-09 | 3.459E-09 | 0.0034588 |
| 578169.174140166.31 | 578169.17 | 4140166.3 | 4.97166E-05  | 0      | 4.97166E-05  | 4.97166E-05  | 4.97166E-05  | 0 | 0 | 2.44512E-10  | 4.74287E-09 | 4.987E-09 | 0.0049874 |
| 578175.314140159.08 | 578175.31 | 4140159.1 | 5.07674E-05  | 0      | 5.07674E-05  | 5.07674E-05  | 5.07674E-05  | 0 | 0 | 2.4968E-10   | 4.84311E-09 | 5.093E-09 | 0.0050928 |
| 578171.934140171.73 | 578171.93 | 4140171.7 | 4.66341E-05  | 0      | 4.66341E-05  | 4.66341E-05  | 4.66341E-05  | 0 | 0 | 2.29352E-10  | 4.4488E-09  | 4.678E-09 | 0.0046782 |
| 578171.934140181.73 | 578171.93 | 4140181.7 | 4.29846E-05  | 0      | 4.29846E-05  | 4.29846E-05  | 4.29846E-05  | 0 | 0 | 2.11403E-10  | 4.10064E-09 | 4.312E-09 | 0.004312  |
| 578181.934140151.73 | 578181.93 | 4140151.7 | 5.16349E-05  | 0      | 5.16349E-05  | 5.16349E-05  | 5.16349E-05  | 0 | 0 | 2.53946E-10  | 4.92587E-09 | 5.18E-09  | 0.0051798 |
| 578181.934140161.73 | 578181.93 | 4140161.7 | 4.75923E-05  | 0      | 4.75923E-05  | 4.75923E-05  | 4.75923E-05  | 0 | 0 | 2.34064E-10  | 4.54021E-09 | 4.774E-09 | 0.0047743 |
| 5781804140184 63    | 578180    | 4140184.6 | 4 03103E-05  | 0      | 4.03103E-05  | 4 03103E-05  | 4.03103E-05  | 0 | 0 | 1.9825F-10   | 3 84552F-09 | 4.044F-09 | 0.0040438 |
| 578181 934140191 73 | 578181.93 | 4140191.7 | 3,79189F-05  | 0      | 3.79189F-05  | 3.79189F-05  | 3,79189F-05  | 0 | 0 | 1.86489F-10  | 3 61738F-09 | 3.804F-09 | 0.0038039 |
| 578191.934140141.73 | 578191.93 | 4140141.7 | 5.24678E-05  | 0      | 5.24678E-05  | 5.24678E-05  | 5.24678E-05  | 0 | 0 | 2.58042E-10  | 5.00532E-09 | 5.263E-09 | 0.0052634 |
| 578191.934140151.73 | 578191.93 | 4140151.7 | 4.85165E-05  | 0      | 4.85165E-05  | 4.85165E-05  | 4.85165E-05  | 0 | 0 | 2.38609E-10  | 4.62838E-09 | 4.867E-09 | 0.004867  |
| 578191 934140161 73 | 578191.93 | 4140161.7 | 4 49823E-05  | 0      | 4 49823E-05  | 4 49823F-05  | 4.49823F-05  | 0 | 0 | 2.21228F-10  | 4 29122F-09 | 4.512F-09 | 0.0045124 |
| 578191 934140191 73 | 578191.93 | 4140191.7 | 3 63785F-05  | 0      | 3.63785E-05  | 3 63785E-05  | 3.63785F-05  | 0 | 0 | 1.78914F-10  | 3 47044F-09 | 3.649F-09 | 0.0036494 |
| 578191 934140201 73 | 578191.93 | 4140201.7 | 3 40759E-05  | 0      | 3.40759E-05  | 3 40759E-05  | 3.40759E-05  | 0 | 0 | 1.67589E-10  | 3 25078F-09 | 3 418F-09 | 0.0034184 |
| 578191 934140201.73 | 578191.93 | 4140201.7 | 3.40735E 05  | 0      | 3 19976E-05  | 3.19976E-05  | 3.19976E-05  | 0 | 0 | 1.57368E-10  | 3.05251E-09 | 3 21F-09  | 0.0032099 |
| 578201 934140141 73 | 578201 93 | 4140141 7 | 4 94193F-05  | ů<br>O | 4 94193E-05  | 4 94193F-05  | 4 94193F-05  | 0 | 0 | 2 43049F-10  | 4 7145E-09  | 4 958F-09 | 0.0032035 |
| 578201 934140151 73 | 578201 93 | 4140151 7 | 4 59304F-05  | 0      | 4 59304F-05  | 4 59304F-05  | 4 59304F-05  | 0 | 0 | 2.158 ISE 10 | 4 38167E-09 | 4 608E-09 | 0.0046076 |
| 578201 934140161 73 | 578201.93 | 4140161.7 | 4.27735E-05  | 0      | 4.27735E-05  | 4.27735E-05  | 4.27735E-05  | 0 | 0 | 2.10365E-10  | 4 08051F-09 | 4.291F-09 | 0.0042909 |
| 578201 934140171 73 | 578201.93 | 4140171 7 | 3 99468F-05  | 0      | 3 99468E-05  | 3 99468F-05  | 3 99468F-05  | 0 | 0 | 1 96463E-10  | 3 81084F-09 | 4.007E-09 | 0.0040073 |
| 578201 93/1/0191 73 | 578201.93 | 4140191 7 | 3.50726E-05  | 0      | 3 50726E-05  | 3.50726E-05  | 3.50726E-05  | 0 | 0 | 1.30403E 10  | 3 34586E-09 | 3 518F_09 | 0.0035183 |
| 578201.934140191.73 | 578201.93 | 4140101.7 | 3.297/1E-05  | 0      | 3 297/1E-05  | 3.297/1E-05  | 3.297/1E-05  | 0 | 0 | 1.72451E 10  | 3 14566E-09 | 3 308F-09 | 0.0033103 |
| 578211 93/1/0161 73 | 578211 93 | 4140201.7 | 4.0905E-05   | 0      | 4.0905E-05   | 4.0905E-05   | 4 0905E-05   | 0 | 0 | 2 01175E-10  | 3 90226E-09 | 1 103E-09 | 0.0033070 |
| 578211.934140101.73 | 578211.55 | 4140101.7 | 3 30556E-05  | 0      | 3 30556F-05  | 3 30556F-05  | 3 30556E-05  | 0 | 0 | 1 66007E-10  | 3 2303E-00  | 3 406E-00 | 0.0034063 |
| 578108 05/1/0080 28 | 578108 95 | 4140191.7 | 0.0003002-05 | 0      | 0.0003002-05 | 0.0003002-05 | 0.000300320  | 0 | 0 | 1.521325-00  | 2 95094E-08 | 3.400L-03 | 0.0034003 |
| 578108 05/1/0007.20 | 578108 05 | 4140003.3 | 0.000303323  | 0      | 0.000303323  | 0.000303323  | 0.000303323  | 0 | 0 | 1 225025 00  | 2.55054E-00 | 2 705E-00 | 0.0310307 |
| 578116 05/1/0001 20 | 578116 05 | 4140097.3 | 0.000203002  | 0      | 0.000205002  | 0.000205002  | 0.000205002  | 0 | 0 | 1 452005 00  | 2.371335-00 | 2.7035-00 | 0.0270434 |
| 570116.054140001.28 | 576116.95 | 4140001.3 | 0.000255251  | 0      | 0.000295251  | 0.000255251  | 0.000295251  | 0 | 0 | 1.452065-09  | 2.01004E-08 | 2.9020-08 | 0.0256360 |
| 576116.054140089.28 | 5/6110.95 | 4140089.3 | 0.000222444  | 0      | 0.0002222444 | 0.000222444  | 0.0002223444 | 0 | U | 1.200885-09  | 2.436UIE-U8 | 2.304E-U8 | 0.0250309 |
| 5/6110.95414009/.28 | 578116.95 | 4140097.3 | 0.000106054  | 0      | 0.000223144  | 0.000106054  | 0.000223144  | 0 | U | 1.09/44E-09  | 2.128/5E-U8 | 2.238E-U8 | 0.0223849 |
| 5/6110.954140105.28 | 578116.95 | 4140105.3 | 0.000196054  | U      | 0.000196054  | 0.000196054  | 0.000196054  | 0 | U | 9.04216E-10  | 1.8/032E-08 | 1.90/E-U8 | 0.01966/4 |
| 578124.954140073.28 | 578124.95 | 41400/3.3 | 0.00028581   | U      | 0.00028581   | 0.00028581   | 0.00028581   | U | U | 1.40565E-09  | 2./265/E-08 | 2.86/E-08 | 0.0286/14 |

| 578124.954140081.28  | 578124.95 | 4140081.3 | 0.000246439 | 0 | 0.000246439 | 0.000246439                | 0.000246439 | 0 | 0 | 1.21201E-09 | 2.35098E-08 | 2.472E-08 | 0.0247218 |
|----------------------|-----------|-----------|-------------|---|-------------|----------------------------|-------------|---|---|-------------|-------------|-----------|-----------|
| 578124.954140089.28  | 578124.95 | 4140089.3 | 0.000214523 | 0 | 0.000214523 | 0.000214523                | 0.000214523 | 0 | 0 | 1.05505E-09 | 2.04651E-08 | 2.152E-08 | 0.0215201 |
| 578124.954140097.28  | 578124.95 | 4140097.3 | 0.000188173 | 0 | 0.000188173 | 0.000188173                | 0.000188173 | 0 | 0 | 9.25456E-10 | 1.79513E-08 | 1.888E-08 | 0.0188768 |
| 578124.954140105.28  | 578124.95 | 4140105.3 | 0.000166143 | 0 | 0.000166143 | 0.000166143                | 0.000166143 | 0 | 0 | 8.1711E-10  | 1.58497E-08 | 1.667E-08 | 0.0166668 |
| 578124.954140113.28  | 578124.95 | 4140113.3 | 0.000147351 | 0 | 0.000147351 | 0.000147351                | 0.000147351 | 0 | 0 | 7.24686E-10 | 1.4057E-08  | 1.478E-08 | 0.0147816 |
| 578124.954140121.28  | 578124.95 | 4140121.3 | 0.000131311 | 0 | 0.000131311 | 0.000131311                | 0.000131311 | 0 | 0 | 6.45803E-10 | 1.25268E-08 | 1.317E-08 | 0.0131726 |
| 578132.954140065.28  | 578132.95 | 4140065.3 | 0.00027927  | 0 | 0.00027927  | 0.00027927                 | 0.00027927  | 0 | 0 | 1.37348E-09 | 2.66418E-08 | 2.802E-08 | 0.0280153 |
| 578132.954140073.28  | 578132.95 | 4140073.3 | 0.000240031 | 0 | 0.000240031 | 0.000240031                | 0.000240031 | 0 | 0 | 1.1805E-09  | 2.28985E-08 | 2.408E-08 | 0.024079  |
| 578132.954140081.28  | 578132.95 | 4140081.3 | 0.000208704 | 0 | 0.000208704 | 0.000208704                | 0.000208704 | 0 | 0 | 1.02643E-09 | 1.991E-08   | 2.094E-08 | 0.0209364 |
| 578132.954140089.28  | 578132.95 | 4140089.3 | 0.000183184 | 0 | 0.000183184 | 0.000183184                | 0.000183184 | 0 | 0 | 9.0092E-10  | 1.74754E-08 | 1.838E-08 | 0.0183763 |
| 578132.954140105.28  | 578132.95 | 4140105.3 | 0.000143822 | 0 | 0.000143822 | 0.000143822                | 0.000143822 | 0 | 0 | 7.07332E-10 | 1.37203E-08 | 1.443E-08 | 0.0144277 |
| 578132.954140113.28  | 578132.95 | 4140113.3 | 0.000128544 | 0 | 0.000128544 | 0.000128544                | 0.000128544 | 0 | 0 | 6.32195E-10 | 1.22629E-08 | 1.29E-08  | 0.0128951 |
| 578132.954140121.28  | 578132.95 | 4140121.3 | 0.000115506 | 0 | 0.000115506 | 0.000115506                | 0.000115506 | 0 | 0 | 5.68071E-10 | 1.1019E-08  | 1.159E-08 | 0.0115871 |
| 578132,954140129,28  | 578132.95 | 4140129.3 | 0.000104315 | 0 | 0.000104315 | 0.000104315                | 0.000104315 | 0 | 0 | 5.13032E-10 | 9.95144E-09 | 1.046E-08 | 0.0104645 |
| 578140.954140057.28  | 578140.95 | 4140057.3 | 0.000275031 | 0 | 0.000275031 | 0.000275031                | 0.000275031 | 0 | 0 | 1.35263E-09 | 2.62374E-08 | 2.759E-08 | 0.02759   |
| 578140 954140065 28  | 578140 95 | 4140065.3 | 0.000235559 | 0 | 0.000235559 | 0.000235559                | 0.000235559 | 0 | 0 | 1.15851F-09 | 2.24719F-08 | 2.363E-08 | 0.0236304 |
| 578140 954140073 28  | 578140 95 | 4140073 3 | 0.000204614 | 0 | 0.000204614 | 0.000204614                | 0.000204614 | 0 | 0 | 1.00632E-09 | 1 95198F-08 | 2.053E-08 | 0.0205261 |
| 578140.954140093.20  | 578140.95 | 4140081 3 | 0.0001796   | 0 | 0.0001796   | 0.0001796                  | 0.0001796   | 0 | 0 | 8 8329F-10  | 1 71334E-08 | 1 802F-08 | 0.0180167 |
| 578118 52/1/0112 80  | 578118 52 | 4140001.5 | 0.0001750   | 0 | 0.0001750   | 0.0001750                  | 0.0001750   | 0 | 0 | 8 26007E-10 | 1.71334E 08 | 1.602E 00 | 0.0168685 |
| 5781/0 05/11/0113 28 | 578140.05 | 4140112.3 | 0.000113946 | 0 | 0.000103135 | 0.000108135                | 0.000108135 | 0 | 0 | 5.20337E 10 | 1.00713E-08 | 1.007E 00 | 0.011/306 |
| 578140.954140115.28  | 578140.95 | 4140113.3 | 0.000113940 | 0 | 0.000113940 | 0.000113940                | 0.000113940 | 0 | 0 | 5.06984E-10 | 0.83/13E-00 | 1.143L-00 | 0.0114300 |
| 578140.954140121.28  | 578140.95 | 4140121.3 | 0.000103085 | 0 | 0.000103085 | 0.000103085                | 0.000103085 | 0 | 0 | 1.61200E-10 | 9.83413E-09 | 0.400E-00 | 0.0103411 |
| 578140.954140123.28  | 578140.95 | 4140129.5 | 9.57901E-05 | 0 | 8 550/3E-05 | 9.57901E-05<br>8 550/3E-05 | 9.57901E-05 | 0 | 0 | 4.012991-10 | 8.54750E-05 | 9.409L-09 | 0.0094095 |
| 578140.554140157.28  | 578140.95 | 4140137.3 | 0.000272249 | 0 | 0.000272249 | 0.000272249                | 0.000272249 | 0 | 0 | 4.209022-10 | 2 60672E 09 | 0.300E-09 | 0.0065605 |
| 578148.954140049.28  | 578148.95 | 4140049.3 | 0.000273248 | 0 | 0.000273248 | 0.000273248                | 0.000273248 | 0 | 0 | 1.34360E-09 | 2.00073E-08 | 2.741E-00 | 0.0274111 |
| 578148.954140057.28  | 578148.95 | 4140057.5 | 0.000233039 | 0 | 0.000233659 | 0.000233059                | 0.000233659 | 0 | 0 | 1.14916E-09 | 2.22900E-08 | 2.344E-06 | 0.0254596 |
| 578148.954140065.28  | 578148.95 | 4140065.3 | 0.000202314 | 0 | 0.000202314 | 0.000202314                | 0.000202314 | 0 | 0 | 9.95001E-10 | 1.93003E-08 | 2.03E-08  | 0.0202953 |
| 578148.954140073.28  | 578148.95 | 4140073.3 | 0.000177133 | 0 | 0.000177133 | 0.000177133                | 0.000177133 | 0 | 0 | 8./115/E-10 | 1.68981E-08 | 1.///E-08 | 0.0177693 |
| 578111.194140102.62  | 578111.19 | 4140102.6 | 0.000233666 | 0 | 0.000233666 | 0.000233666                | 0.000233666 | 0 | 0 | 1.14919E-09 | 2.22912E-08 | 2.344E-08 | 0.0234404 |
| 578136.744140133.62  | 578136.74 | 4140133.6 | 9.40783E-05 | 0 | 9.40783E-05 | 9.40783E-05                | 9.40783E-05 | 0 | 0 | 4.62688E-10 | 8.97489E-09 | 9.438E-09 | 0.0094376 |
| 578148.954140121.28  | 578148.95 | 4140121.3 | 9.31038E-05 | 0 | 9.31038E-05 | 9.31038E-05                | 9.31038E-05 | 0 | 0 | 4.57894E-10 | 8.88191E-09 | 9.34E-09  | 0.0093398 |
| 578148.954140129.28  | 578148.95 | 4140129.3 | 8.522//E-05 | 0 | 8.52277E-05 | 8.522//E-05                | 8.52277E-05 | 0 | 0 | 4.19159E-10 | 8.13055E-09 | 8.55E-09  | 0.0085497 |
| 578148.954140137.28  | 578148.95 | 4140137.3 | 7.81781E-05 | 0 | 7.81781E-05 | 7.81781E-05                | 7.81781E-05 | 0 | 0 | 3.84489E-10 | 7.45804E-09 | 7.843E-09 | 0.0078425 |
| 578156.954140041.28  | 578156.95 | 4140041.3 | 0.000270938 | 0 | 0.000270938 | 0.000270938                | 0.000270938 | 0 | 0 | 1.3325E-09  | 2.5847E-08  | 2.718E-08 | 0.0271795 |
| 578156.954140049.28  | 578156.95 | 4140049.3 | 0.00023274  | 0 | 0.00023274  | 0.00023274                 | 0.00023274  | 0 | 0 | 1.14464E-09 | 2.2203E-08  | 2.335E-08 | 0.0233476 |
| 578156.954140057.28  | 578156.95 | 4140057.3 | 0.000201628 | 0 | 0.000201628 | 0.000201628                | 0.000201628 | 0 | 0 | 9.9163E-10  | 1.92349E-08 | 2.023E-08 | 0.0202266 |
| 578156.954140065.28  | 578156.95 | 4140065.3 | 0.000176529 | 0 | 0.000176529 | 0.000176529                | 0.000176529 | 0 | 0 | 8.68189E-10 | 1.68405E-08 | 1.771E-08 | 0.0177087 |
| 578156.954140073.28  | 578156.95 | 4140073.3 | 0.000155813 | 0 | 0.000155813 | 0.000155813                | 0.000155813 | 0 | 0 | 7.66306E-10 | 1.48643E-08 | 1.563E-08 | 0.0156306 |
| 578156.954140113.28  | 578156.95 | 4140113.3 | 9.27837E-05 | 0 | 9.27837E-05 | 9.27837E-05                | 9.27837E-05 | 0 | 0 | 4.5632E-10  | 8.85138E-09 | 9.308E-09 | 0.0093077 |
| 578156.954140121.28  | 578156.95 | 4140121.3 | 8.49517E-05 | 0 | 8.49517E-05 | 8.49517E-05                | 8.49517E-05 | 0 | 0 | 4.17802E-10 | 8.10423E-09 | 8.522E-09 | 0.008522  |
| 578156.954140129.28  | 578156.95 | 4140129.3 | 7.81095E-05 | 0 | 7.81095E-05 | 7.81095E-05                | 7.81095E-05 | 0 | 0 | 3.84151E-10 | 7.45149E-09 | 7.836E-09 | 0.0078356 |
| 578164.954140041.28  | 578164.95 | 4140041.3 | 0.000230228 | 0 | 0.000230228 | 0.000230228                | 0.000230228 | 0 | 0 | 1.13229E-09 | 2.19633E-08 | 2.31E-08  | 0.0230956 |
| 578164.954140049.28  | 578164.95 | 4140049.3 | 0.000200456 | 0 | 0.000200456 | 0.000200456                | 0.000200456 | 0 | 0 | 9.85864E-10 | 1.91231E-08 | 2.011E-08 | 0.020109  |
| 578164.954140057.28  | 578164.95 | 4140057.3 | 0.000175898 | 0 | 0.000175898 | 0.000175898                | 0.000175898 | 0 | 0 | 8.65084E-10 | 1.67803E-08 | 1.765E-08 | 0.0176454 |
| 578164.954140065.28  | 578164.95 | 4140065.3 | 0.000155526 | 0 | 0.000155526 | 0.000155526                | 0.000155526 | 0 | 0 | 7.64893E-10 | 1.48369E-08 | 1.56E-08  | 0.0156018 |
| 578164.954140073.28  | 578164.95 | 4140073.3 | 0.000138492 | 0 | 0.000138492 | 0.000138492                | 0.000138492 | 0 | 0 | 6.81117E-10 | 1.32118E-08 | 1.389E-08 | 0.013893  |
| 578164.954140081.28  | 578164.95 | 4140081.3 | 0.000124107 | 0 | 0.000124107 | 0.000124107                | 0.000124107 | 0 | 0 | 6.1037E-10  | 1.18395E-08 | 1.245E-08 | 0.0124499 |
| 578164.954140105.28  | 578164.95 | 4140105.3 | 9.2664E-05  | 0 | 9.2664E-05  | 9.2664E-05                 | 9.2664E-05  | 0 | 0 | 4.55732E-10 | 8.83996E-09 | 9.296E-09 | 0.0092957 |
| 578164.954140113.28  | 578164.95 | 4140113.3 | 8.49341E-05 | 0 | 8.49341E-05 | 8.49341E-05                | 8.49341E-05 | 0 | 0 | 4.17715E-10 | 8.10254E-09 | 8.52E-09  | 0.0085203 |

| 578164.954140121.28 | 578164.95 | 4140121.3 | 7.81794E-05 | 0 | 7.81794E-05 | 7.81794E-05 | 7.81794E-05 | 0 | 0 | 3.84495E-10 | 7.45816E-09 | 7.843E-09 | 0.0078427 |
|---------------------|-----------|-----------|-------------|---|-------------|-------------|-------------|---|---|-------------|-------------|-----------|-----------|
| 578164.954140129.28 | 578164.95 | 4140129.3 | 7.21819E-05 | 0 | 7.21819E-05 | 7.21819E-05 | 7.21819E-05 | 0 | 0 | 3.54999E-10 | 6.88601E-09 | 7.241E-09 | 0.007241  |
| 578172.954140049.28 | 578172.95 | 4140049.3 | 0.000174488 | 0 | 0.000174488 | 0.000174488 | 0.000174488 | 0 | 0 | 8.5815E-10  | 1.66458E-08 | 1.75E-08  | 0.0175039 |
| 578172.954140057.28 | 578172.95 | 4140057.3 | 0.000154821 | 0 | 0.000154821 | 0.000154821 | 0.000154821 | 0 | 0 | 7.61426E-10 | 1.47696E-08 | 1.553E-08 | 0.015531  |
| 578172.954140065.28 | 578172.95 | 4140065.3 | 0.00013808  | 0 | 0.00013808  | 0.00013808  | 0.00013808  | 0 | 0 | 6.79091E-10 | 1.31725E-08 | 1.385E-08 | 0.0138516 |
| 578172.954140073.28 | 578172.95 | 4140073.3 | 0.000123963 | 0 | 0.000123963 | 0.000123963 | 0.000123963 | 0 | 0 | 6.09663E-10 | 1.18258E-08 | 1.244E-08 | 0.0124355 |
| 578172.954140081.28 | 578172.95 | 4140081.3 | 0.000111937 | 0 | 0.000111937 | 0.000111937 | 0.000111937 | 0 | 0 | 5.50519E-10 | 1.06786E-08 | 1.123E-08 | 0.0112291 |
| 578172.954140089.28 | 578172.95 | 4140089.3 | 0.000101644 | 0 | 0.000101644 | 0.000101644 | 0.000101644 | 0 | 0 | 4.99895E-10 | 9.69662E-09 | 1.02E-08  | 0.0101965 |
| 578172.954140097.28 | 578172.95 | 4140097.3 | 9.27673E-05 | 0 | 9.27673E-05 | 9.27673E-05 | 9.27673E-05 | 0 | 0 | 4.5624E-10  | 8.84982E-09 | 9.306E-09 | 0.0093061 |
| 578172.954140105.28 | 578172.95 | 4140105.3 | 8.5067E-05  | 0 | 8.5067E-05  | 8.5067E-05  | 8.5067E-05  | 0 | 0 | 4.18369E-10 | 8.11522E-09 | 8.534E-09 | 0.0085336 |
| 578172.954140113.28 | 578172.95 | 4140113.3 | 7.8357E-05  | 0 | 7.8357E-05  | 7.8357E-05  | 7.8357E-05  | 0 | 0 | 3.85368E-10 | 7.47511E-09 | 7.86E-09  | 0.0078605 |
| 578172.954140121.28 | 578172.95 | 4140121.3 | 7.24623E-05 | 0 | 7.24623E-05 | 7.24623E-05 | 7.24623E-05 | 0 | 0 | 3.56377E-10 | 6.91276E-09 | 7.269E-09 | 0.0072691 |
| 578180.954140065.28 | 578180.95 | 4140065.3 | 0.000123795 | 0 | 0.000123795 | 0.000123795 | 0.000123795 | 0 | 0 | 6.08839E-10 | 1.18098E-08 | 1.242E-08 | 0.0124187 |
| 578180.954140073.28 | 578180.95 | 4140073.3 | 0.000111959 | 0 | 0.000111959 | 0.000111959 | 0.000111959 | 0 | 0 | 5.50628E-10 | 1.06807E-08 | 1.123E-08 | 0.0112313 |
| 578180.954140081.28 | 578180.95 | 4140081.3 | 0.000101803 | 0 | 0.000101803 | 0.000101803 | 0.000101803 | 0 | 0 | 5.00676E-10 | 9.71177E-09 | 1.021E-08 | 0.0102124 |
| 578180.954140089.28 | 578180.95 | 4140089.3 | 9.30263E-05 | 0 | 9.30263E-05 | 9.30263E-05 | 9.30263E-05 | 0 | 0 | 4.57513E-10 | 8.87452E-09 | 9.332E-09 | 0.009332  |
| 578180.954140097.28 | 578180.95 | 4140097.3 | 8.53902E-05 | 0 | 8.53902E-05 | 8.53902E-05 | 8.53902E-05 | 0 | 0 | 4.19958E-10 | 8.14606E-09 | 8.566E-09 | 0.008566  |
| 578180.954140105.28 | 578180.95 | 4140105.3 | 7.8696E-05  | 0 | 7.8696E-05  | 7.8696E-05  | 7.8696E-05  | 0 | 0 | 3.87035E-10 | 7.50744E-09 | 7.894E-09 | 0.0078945 |
| 578180 954140113 28 | 578180.95 | 4140113.3 | 7 28069F-05 | 0 | 7.28069F-05 | 7.28069F-05 | 7.28069E-05 | 0 | 0 | 3.58072F-10 | 6 94563E-09 | 7.304F-09 | 0.0073037 |
| 578188 954140073 28 | 578188.95 | 4140073.3 | 0.000101976 | 0 | 0.000101976 | 0.000101976 | 0.000101976 | 0 | 0 | 5.01528F-10 | 9.72829F-09 | 1.023E-08 | 0.0102298 |
| 578188 954140081 28 | 578188 95 | 4140081 3 | 9 32896F-05 | 0 | 9 32896F-05 | 9 32896F-05 | 9 32896F-05 | 0 | 0 | 4 58808F-10 | 8 89964F-09 | 9 358F-09 | 0.0093585 |
| 578188 954140089 28 | 578188.95 | 4140089.3 | 8 57417F-05 | 0 | 8 57417F-05 | 8 57417E-05 | 8 57417E-05 | 0 | 0 | 4.21687F-10 | 8.17959E-09 | 8 601F-09 | 0.0086013 |
| 578188 954140097 28 | 578188 95 | 4140097 3 | 7 9113F-05  | 0 | 7 9113F-05  | 7 9113F-05  | 7 9113F-05  | 0 | 0 | 3 89086F-10 | 7 54723E-09 | 7 936F-09 | 0.0079363 |
| 578188 954140057.28 | 578188 95 | 4140057.5 | 7 325/88-05 | 0 | 7 325485-05 | 7 325/8F-05 | 7 325/8F-05 | 0 | 0 | 3.60275E-10 | 6 98836E-09 | 7 3/9F-09 | 0.0073486 |
| 578188 954140103.20 | 578188 95 | 4140103.5 | 6 8058F-05  | 0 | 6 8058F-05  | 6 8058F-05  | 6 80585-05  | 0 | 0 | 3.34717E-10 | 6.4926E-09  | 6 827F-09 | 0.0073400 |
| 578106.554140115.28 | 578188.55 | 4140113.3 | 0.8038L-03  | 0 | 0.8038L-05  | 0.8038L-03  | 0.0030E-03  | 0 | 0 | 4 2260EE 10 | 0.4920E-09  | 0.027L-03 | 0.0008273 |
| 578190.994140081.28 | 578190.95 | 4140081.3 | 7 054925 05 | 0 | 7 05/925 05 | 7 054925 05 | 7 054925 05 | 0 | 0 | 4.23003E-10 | 7 599755 00 | 7 095 00  | 0.0000404 |
| 578190.934140089.28 | 578190.95 | 4140089.3 | 7.55465E-05 | 0 | 7.33483E-03 | 7.93463E-03 | 7.334632-03 | 0 | 0 | 3.91227E-10 | 7.38873E-09 | 7.3065-09 | 0.0073061 |
| 578190.994140097.28 | 578190.95 | 4140097.3 | 6 9EE62E 0E | 0 | 6 9EE62E 0E | 6 9EE62E 0E | 6 955625 05 | 0 | 0 | 2 271695 10 | 6 E4014E 00 | 6 077E 00 | 0.0073301 |
| 578190.934140103.28 | 578190.95 | 4140103.3 | 6.0007EE.0E | 0 | 0.85505E-05 | 6.0007EE.0E | 0.85505E-05 | 0 | 0 | 3.371082-10 | 6 501765 00 | 6.0225.00 | 0.0000775 |
| 578204.954140097.28 | 578204.95 | 4140097.5 | 0.90975E-05 | 0 | 0.90975E-05 | 0.90975E-05 |             | 0 | 0 | 3.39629E-10 | 0.59170E-09 | 0.952E-09 | 0.0009310 |
| 578001.424140057.45 | 578001.42 | 4140037.5 | 7.96907E-05 | 0 | 7.989072-05 | 7.969072-05 | 7.96907E-05 | 0 | 0 | 3.92941E-10 | 7.02199E-09 | 0.015E-09 | 0.0000149 |
| 578001.424140045.45 | 578001.42 | 4140045.5 | 8.3298E-05  | 0 | 8.3298E-05  | 8.3298E-05  | 8.3298E-05  | 0 | 0 | 4.09669E-10 | 7.94647E-09 | 8.356E-09 | 0.0083561 |
| 578009.424140029.45 | 578009.42 | 4140029.5 | 9.23080E-05 | 0 | 9.23080E-05 | 9.23086E-05 | 9.23080E-05 | 0 | 0 | 4.54279E-10 | 8.81178E-09 | 9.2002-09 | 0.0092661 |
| 578009.424140037.45 | 578009.42 | 4140037.5 | 9.71174E-05 | 0 | 9.71174E-05 | 9./11/4E-05 | 9.71174E-05 | 0 | 0 | 4.77634E-10 | 9.26481E-09 | 9.742E-09 | 0.0097424 |
| 578009.424140045.45 | 578009.42 | 4140045.5 | 0.000102212 | 0 | 0.000102212 | 0.000102212 | 0.000102212 | 0 | 0 | 5.0269E-10  | 9.75083E-09 | 1.025E-08 | 0.0102535 |
| 578017.424140029.45 | 578017.42 | 4140029.5 | 0.000113238 | 0 | 0.000113238 | 0.000113238 | 0.000113238 | 0 | 0 | 5.56917E-10 | 1.08027E-08 | 1.136E-08 | 0.0113596 |
| 5/801/.42414003/.45 | 578017.42 | 4140037.5 | 0.000120407 | 0 | 0.000120407 | 0.000120407 | 0.000120407 | 0 | 0 | 5.92176E-10 | 1.14866E-08 | 1.208E-08 | 0.0120788 |
| 578025.424140021.45 | 578025.42 | 4140021.5 | 0.000131131 | 0 | 0.000131131 | 0.000131131 | 0.000131131 | 0 | 0 | 6.44916E-10 | 1.25096E-08 | 1.315E-08 | 0.0131546 |
| 578025.424140029.45 | 578025.42 | 4140029.5 | 0.000141103 | 0 | 0.000141103 | 0.000141103 | 0.000141103 | 0 | 0 | 6.9396E-10  | 1.34609E-08 | 1.415E-08 | 0.0141549 |
| 578033.424140013.45 | 578033.42 | 4140013.5 | 0.000149848 | 0 | 0.000149848 | 0.000149848 | 0.000149848 | 0 | 0 | 7.36968E-10 | 1.42952E-08 | 1.503E-08 | 0.0150322 |
| 578033.424140021.45 | 578033.42 | 4140021.5 | 0.000162887 | 0 | 0.000162887 | 0.000162887 | 0.000162887 | 0 | 0 | 8.01094E-10 | 1.55391E-08 | 1.634E-08 | 0.0163402 |
| 578041.424140013.45 | 578041.42 | 4140013.5 | 0.00018448  | 0 | 0.00018448  | 0.00018448  | 0.00018448  | 0 | 0 | 9.07293E-10 | 1.7599E-08  | 1.851E-08 | 0.0185063 |
| 578041.424140021.45 | 578041.42 | 4140021.5 | 0.000203262 | 0 | 0.000203262 | 0.000203262 | 0.000203262 | 0 | 0 | 9.99667E-10 | 1.93908E-08 | 2.039E-08 | 0.0203905 |
| 578049.424140005.45 | 578049.42 | 4140005.5 | 0.000204529 | 0 | 0.000204529 | 0.000204529 | 0.000204529 | 0 | 0 | 1.00589E-09 | 1.95116E-08 | 2.052E-08 | 0.0205175 |
| 578049.424140013.45 | 578049.42 | 4140013.5 | 0.000226658 | 0 | 0.000226658 | 0.000226658 | 0.000226658 | 0 | 0 | 1.11473E-09 | 2.16228E-08 | 2.274E-08 | 0.0227375 |
| 578049.424140021.45 | 578049.42 | 4140021.5 | 0.000252864 | 0 | 0.000252864 | 0.000252864 | 0.000252864 | 0 | 0 | 1.24361E-09 | 2.41228E-08 | 2.537E-08 | 0.0253664 |
| 578049.424140029.45 | 578049.42 | 4140029.5 | 0.000284383 | 0 | 0.000284383 | 0.000284383 | 0.000284383 | 0 | 0 | 1.39863E-09 | 2.71296E-08 | 2.853E-08 | 0.0285282 |
| 578057.424139997.45 | 578057.42 | 4139997.5 | 0.000222436 | 0 | 0.000222436 | 0.000222436 | 0.000222436 | 0 | 0 | 1.09396E-09 | 2.122E-08   | 2.231E-08 | 0.0223139 |

| 578057.424140005.45 | 578057.42 | 4140005.5              | 0.000247055   | 0 | 0.000247055 | 0.000247055 | 0.000247055  | 0 | 0      | 1.21504E-09  | 2.35685E-08 | 2.478E-08 | 0.0247836 |
|---------------------|-----------|------------------------|---------------|---|-------------|-------------|--------------|---|--------|--------------|-------------|-----------|-----------|
| 578057.424140013.45 | 578057.42 | 4140013.5              | 0.000276397   | 0 | 0.000276397 | 0.000276397 | 0.000276397  | 0 | 0      | 1.35935E-09  | 2.63677E-08 | 2.773E-08 | 0.0277271 |
| 578057.424140021.45 | 578057.42 | 4140021.5              | 0.000311652   | 0 | 0.000311652 | 0.000311652 | 0.000311652  | 0 | 0      | 1.53274E-09  | 2.9731E-08  | 3.126E-08 | 0.0312637 |
| 578057.424140029.45 | 578057.42 | 4140029.5              | 0.000354525   | 0 | 0.000354525 | 0.000354525 | 0.000354525  | 0 | 0      | 1.74359E-09  | 3.3821E-08  | 3.556E-08 | 0.0355646 |
| 578057.424140037.45 | 578057.42 | 4140037.5              | 0.000407561   | 0 | 0.000407561 | 0.000407561 | 0.000407561  | 0 | 0      | 2.00443E-09  | 3.88805E-08 | 4.088E-08 | 0.0408849 |
| 578057.424140045.45 | 578057.42 | 4140045.5              | 0.000474313   | 0 | 0.000474313 | 0.000474313 | 0.000474313  | 0 | 0      | 2.33272E-09  | 4.52485E-08 | 4.758E-08 | 0.0475812 |
| 578065.424140005.45 | 578065.42 | 4140005.5              | 0.0002959     | 0 | 0.0002959   | 0.0002959   | 0.0002959    | 0 | 0      | 1.45527E-09  | 2.82283E-08 | 2.968E-08 | 0.0296835 |
| 578065.424140021.45 | 578065.42 | 4140021.5              | 0.000379315   | 0 | 0.000379315 | 0.000379315 | 0.000379315  | 0 | 0      | 1.86551E-09  | 3.61859E-08 | 3.805E-08 | 0.0380514 |
| 578065.424140029.45 | 578065.42 | 4140029.5              | 0.0004354     | 0 | 0.0004354   | 0.0004354   | 0.0004354    | 0 | 0      | 2.14134E-09  | 4.15363E-08 | 4.368E-08 | 0.0436776 |
| 578065.424140037.45 | 578065.42 | 4140037.5              | 0.000504856   | 0 | 0.000504856 | 0.000504856 | 0.000504856  | 0 | 0      | 2.48294E-09  | 4.81623E-08 | 5.065E-08 | 0.0506452 |
| 578065.424140045.45 | 578065.42 | 4140045.5              | 0.000592816   | 0 | 0.000592816 | 0.000592816 | 0.000592816  | 0 | 0      | 2.91553E-09  | 5.65534E-08 | 5.947E-08 | 0.059469  |
| 578065.424140053.45 | 578065.42 | 4140053.5              | 0.000707347   | 0 | 0.000707347 | 0.000707347 | 0.000707347  | 0 | 0      | 3.47881E-09  | 6.74795E-08 | 7.096E-08 | 0.0709583 |
| 578073.424139989.45 | 578073.42 | 4139989.5              | 0.000278796   | 0 | 0.000278796 | 0.000278796 | 0.000278796  | 0 | 0      | 1.37115E-09  | 2.65966E-08 | 2.797E-08 | 0.0279677 |
| 578073 424140029 45 | 578073 42 | 4140029 5              | 0.0005267     | 0 | 0.0005267   | 0.0005267   | 0.0005267    | 0 | 0      | 2.59037E-09  | 5.02461F-08 | 5 284F-08 | 0.0528365 |
| 578073 424140037 45 | 578073 42 | 4140037.5              | 0.000615311   | 0 | 0.000615311 | 0.000615311 | 0.000615311  | 0 | 0      | 3.02616F-09  | 5 86994F-08 | 6.173E-08 | 0.0617256 |
| 578073 424140045 45 | 578073 42 | 4140045 5              | 0.000728247   | 0 | 0 000728247 | 0.000728247 | 0.000728247  | 0 | 0      | 3 5816F-09   | 6 94733E-08 | 7 305E-08 | 0.0730549 |
| 578081 /2/139981 /5 | 578081 42 | 4139981 5              | 0.000720247   | 0 | 0.00029067  | 0.00029067  | 0.00029067   | 0 | 0      | 1 / 29555-09 | 2 77293E-08 | 2 916F-08 | 0.0291589 |
| 578081 /2/120080 /5 | 578081.42 | 4130080 5              | 0.00023007    | 0 | 0.00023007  | 0.000220007 | 0.00023007   | 0 | 0      | 1.42555E 05  | 2.09653E-08 | 2.310E 00 | 0.0231303 |
| 578081.424135585.45 | 578081.42 | 4139989.5<br>4120007 E | 0.000324331   | 0 | 0.000324331 | 0.000324331 | 0.000324331  | 0 | 0      | 1.390372-09  | 2.09033E-08 | 3.230L-00 | 0.0323017 |
| 578081.424155557.45 | 570001.42 | 4139997.3              | 0.000304821   | 0 | 0.000304821 | 0.000304821 | 0.000304821  | 0 | 0      | 2.020465.00  | 3.46032E-08 | 3.00E-00  | 0.0303974 |
| 578081.424140005.45 | 576061.42 | 4140005.5              | 0.000412854   | 0 | 0.000412854 | 0.000412854 | 0.000412854  | 0 | 0      | 2.03046E-09  | 5.95654E-06 | 4.1422-06 | 0.0414159 |
| 578081.424140021.45 | 578081.42 | 4140021.5              | 0.00054215    | 0 | 0.00054215  | 0.00054215  | 0.00054215   | 0 | 0      | 2.00035E-09  | 5.172E-08   | 5.439E-08 | 0.0543864 |
| 578081.424140029.45 | 578081.42 | 4140029.5              | 0.000630618   | 0 | 0.000630618 | 0.000630618 | 0.000630618  | 0 | 0      | 3.10145E-09  | 6.01597E-08 | 6.326E-08 | 0.0632611 |
| 5/8081.424140037.45 | 578081.42 | 4140037.5              | 0.000742379   | 0 | 0.000/423/9 | 0.000742379 | 0.000742379  | 0 | 0      | 3.6511E-09   | 7.08215E-08 | 7.447E-08 | 0.0744726 |
| 578089.424139981.45 | 578089.42 | 4139981.5              | 0.000334575   | 0 | 0.000334575 | 0.000334575 | 0.000334575  | 0 | 0      | 1.64548E-09  | 3.19178E-08 | 3.356E-08 | 0.0335633 |
| 578089.424139989.45 | 578089.42 | 4139989.5              | 0.000375738   | 0 | 0.000375738 | 0.000375738 | 0.000375738  | 0 | 0      | 1.84792E-09  | 3.58447E-08 | 3.769E-08 | 0.0376926 |
| 578089.424139997.45 | 578089.42 | 4139997.5              | 0.000424279   | 0 | 0.000424279 | 0.000424279 | 0.000424279  | 0 | 0      | 2.08665E-09  | 4.04754E-08 | 4.256E-08 | 0.042562  |
| 578089.424140005.45 | 578089.42 | 4140005.5              | 0.000482529   | 0 | 0.000482529 | 0.000482529 | 0.000482529  | 0 | 0      | 2.37313E-09  | 4.60323E-08 | 4.841E-08 | 0.0484054 |
| 578089.424140013.45 | 578089.42 | 4140013.5              | 0.000553671   | 0 | 0.000553671 | 0.000553671 | 0.000553671  | 0 | 0      | 2.72301E-09  | 5.28191E-08 | 5.554E-08 | 0.0555421 |
| 578089.424140021.45 | 578089.42 | 4140021.5              | 0.000641347   | 0 | 0.000641347 | 0.000641347 | 0.000641347  | 0 | 0      | 3.15422E-09  | 6.11833E-08 | 6.434E-08 | 0.0643375 |
| 578089.424140029.45 | 578089.42 | 4140029.5              | 0.000751553   | 0 | 0.000751553 | 0.000751553 | 0.000751553  | 0 | 0      | 3.69622E-09  | 7.16967E-08 | 7.539E-08 | 0.0753929 |
| 578097.424139989.45 | 578097.42 | 4139989.5              | 0.000432257   | 0 | 0.000432257 | 0.000432257 | 0.000432257  | 0 | 0      | 2.12589E-09  | 4.12364E-08 | 4.336E-08 | 0.0433623 |
| 578097.424139997.45 | 578097.42 | 4139997.5              | 0.000491546   | 0 | 0.000491546 | 0.000491546 | 0.000491546  | 0 | 0      | 2.41748E-09  | 4.68925E-08 | 4.931E-08 | 0.04931   |
| 578097.424140005.45 | 578097.42 | 4140005.5              | 0.000562493   | 0 | 0.000562493 | 0.000562493 | 0.000562493  | 0 | 0      | 2.7664E-09   | 5.36607E-08 | 5.643E-08 | 0.0564271 |
| 578097.424140013.45 | 578097.42 | 4140013.5              | 0.000649893   | 0 | 0.000649893 | 0.000649893 | 0.000649893  | 0 | 0      | 3.19624E-09  | 6.19985E-08 | 6.519E-08 | 0.0651947 |
| 578097.424140021.45 | 578097.42 | 4140021.5              | 0.000759213   | 0 | 0.000759213 | 0.000759213 | 0.000759213  | 0 | 0      | 3.73389E-09  | 7.24274E-08 | 7.616E-08 | 0.0761613 |
| 578105.424140005.45 | 578105.42 | 4140005.5              | 0.000655816   | 0 | 0.000655816 | 0.000655816 | 0.000655816  | 0 | 0      | 3.22538E-09  | 6.25636E-08 | 6.579E-08 | 0.0657889 |
| 578105.424140013.45 | 578105.42 | 4140013.5              | 0.000765228   | 0 | 0.000765228 | 0.000765228 | 0.000765228  | 0 | 0      | 3.76347E-09  | 7.30012E-08 | 7.676E-08 | 0.0767647 |
| 578172.954140089.28 | 578172.95 | 4140089.3              | 0.000101644   | 0 | 0.000101644 | 0.000101644 | 0.000101644  | 0 | 0      | 4.99895E-10  | 9.69662E-09 | 1.02E-08  | 0.0101965 |
| 578172.954140097.28 | 578172.95 | 4140097.3              | 9.27673E-05   | 0 | 9.27673E-05 | 9.27673E-05 | 9.27673E-05  | 0 | 0      | 4.5624E-10   | 8.84982E-09 | 9.306E-09 | 0.0093061 |
| 578172.954140105.28 | 578172.95 | 4140105.3              | 8.5067E-05    | 0 | 8.5067E-05  | 8.5067E-05  | 8.5067E-05   | 0 | 0      | 4.18369E-10  | 8.11522E-09 | 8.534E-09 | 0.0085336 |
| 578172.954140113.28 | 578172.95 | 4140113.3              | 7.8357E-05    | 0 | 7.8357E-05  | 7.8357E-05  | 7.8357E-05   | 0 | 0      | 3.85368E-10  | 7.47511E-09 | 7.86E-09  | 0.0078605 |
| 578172,954140121,28 | 578172.95 | 4140121.3              | 7.24623E-05   | 0 | 7.24623E-05 | 7.24623E-05 | 7.24623E-05  | 0 | 0      | 3.56377E-10  | 6.91276E-09 | 7.269E-09 | 0.0072691 |
| 578180.954140065.28 | 578180.95 | 4140065.3              | 0.000123795   | 0 | 0.000123795 | 0.000123795 | 0.000123795  | 0 | 0      | 6.08839E-10  | 1.18098E-08 | 1.242E-08 | 0.0124187 |
| 578180 954140073 28 | 578180 95 | 4140073 3              | 0.000111959   | 0 | 0.000111959 | 0.000111959 | 0.000111959  | 0 | n<br>n | 5 50628E-10  | 1.06807F-08 | 1.123F-08 | 0.0112313 |
| 578180 954140081 22 | 578180.95 | 4140081 3              | 0.000101803   | õ | 0.000101802 | 0.000111999 | 0.000111999  | 0 | n      | 5.00676F-10  | 9 71177F-00 | 1 0215-02 | 0.0102124 |
| 578180 05/1/0080 20 | 578180.55 | 4140080.3              | 0 202635-05   | 0 | 0 303635-05 | 0 30363E-0E | 0.000101000  | 0 | 0      | A 57512E 10  | 9 97452E-00 | T.0215-00 | 0.0002323 |
| 578180 95/1/0003.20 | 578180.55 | 4140009.3              | 8 5390203E-05 | 0 | 8 530025-05 | 8 53007E-05 | 8 530005E-05 | 0 | 0      | 4.373135-10  | 8 1/606E-09 | 8 566E-00 | 0.009332  |
| 570100.554140057.20 | 570100.55 | 4140097.3              | 7 96065 05    | 0 | 7 9606E 0F  | 7 9606E 0F  | 7 96065 05   | 0 | 0      | 4.13330E-10  | 7 507445 00 | 7 2045 00 | 0.000000  |
| 570100.554140105.28 | 210100.92 | 4140105.5              | 7.0050E-05    | U | 1.0030E-03  | 7.0090E-05  | 7.0030E-03   | U | U      | 2.01022E-10  | 1.30144E-09 | 1.054E-09 | 0.0076945 |

| 578180.954140113.28 | 578180.95 | 4140113.3 | 7.28069E-05 | 0 | 7.28069E-05 | 7.28069E-05 | 7.28069E-05 | 0 | 0 | 3.58072E-10 | 6.94563E-09 | 7.304E-09 0.00730 | 37 |
|---------------------|-----------|-----------|-------------|---|-------------|-------------|-------------|---|---|-------------|-------------|-------------------|----|
| 578188.954140073.28 | 578188.95 | 4140073.3 | 0.000101976 | 0 | 0.000101976 | 0.000101976 | 0.000101976 | 0 | 0 | 5.01528E-10 | 9.72829E-09 | 1.023E-08 0.01022 | 98 |
| 578188.954140081.28 | 578188.95 | 4140081.3 | 9.32896E-05 | 0 | 9.32896E-05 | 9.32896E-05 | 9.32896E-05 | 0 | 0 | 4.58808E-10 | 8.89964E-09 | 9.358E-09 0.00935 | 85 |
| 578188.954140089.28 | 578188.95 | 4140089.3 | 8.57417E-05 | 0 | 8.57417E-05 | 8.57417E-05 | 8.57417E-05 | 0 | 0 | 4.21687E-10 | 8.17959E-09 | 8.601E-09 0.00860 | 13 |
| 578188.954140097.28 | 578188.95 | 4140097.3 | 7.9113E-05  | 0 | 7.9113E-05  | 7.9113E-05  | 7.9113E-05  | 0 | 0 | 3.89086E-10 | 7.54723E-09 | 7.936E-09 0.00793 | 63 |
| 578188.954140105.28 | 578188.95 | 4140105.3 | 7.32548E-05 | 0 | 7.32548E-05 | 7.32548E-05 | 7.32548E-05 | 0 | 0 | 3.60275E-10 | 6.98836E-09 | 7.349E-09 0.00734 | 86 |
| 578188.954140113.28 | 578188.95 | 4140113.3 | 6.8058E-05  | 0 | 6.8058E-05  | 6.8058E-05  | 6.8058E-05  | 0 | 0 | 3.34717E-10 | 6.4926E-09  | 6.827E-09 0.00682 | 73 |
| 578196.954140081.28 | 578196.95 | 4140081.3 | 8.61317E-05 | 0 | 8.61317E-05 | 8.61317E-05 | 8.61317E-05 | 0 | 0 | 4.23605E-10 | 8.21679E-09 | 8.64E-09 0.00864  | 04 |
| 578196.954140089.28 | 578196.95 | 4140089.3 | 7.95483E-05 | 0 | 7.95483E-05 | 7.95483E-05 | 7.95483E-05 | 0 | 0 | 3.91227E-10 | 7.58875E-09 | 7.98E-09 0.007    | 98 |
| 578196.954140097.28 | 578196.95 | 4140097.3 | 7.37279E-05 | 0 | 7.37279E-05 | 7.37279E-05 | 7.37279E-05 | 0 | 0 | 3.62602E-10 | 7.0335E-09  | 7.396E-09 0.00739 | 61 |
| 578196.954140105.28 | 578196.95 | 4140105.3 | 6.85563E-05 | 0 | 6.85563E-05 | 6.85563E-05 | 6.85563E-05 | 0 | 0 | 3.37168E-10 | 6.54014E-09 | 6.877E-09 0.00687 | 73 |
| 578204.954140097.28 | 578204.95 | 4140097.3 | 6.90975E-05 | 0 | 6.90975E-05 | 6.90975E-05 | 6.90975E-05 | 0 | 0 | 3.39829E-10 | 6.59176E-09 | 6.932E-09 0.00693 | 16 |
| 578001.424140037.45 | 578001.42 | 4140037.5 | 7.98967E-05 | 0 | 7.98967E-05 | 7.98967E-05 | 7.98967E-05 | 0 | 0 | 3.92941E-10 | 7.62199E-09 | 8.015E-09 0.00801 | 49 |
| 578001.424140045.45 | 578001.42 | 4140045.5 | 8.3298E-05  | 0 | 8.3298E-05  | 8.3298E-05  | 8.3298E-05  | 0 | 0 | 4.09669E-10 | 7.94647E-09 | 8.356E-09 0.00835 | 61 |
| 578009.424140029.45 | 578009.42 | 4140029.5 | 9.23686E-05 | 0 | 9.23686E-05 | 9.23686E-05 | 9.23686E-05 | 0 | 0 | 4.54279E-10 | 8.81178E-09 | 9.266E-09 0.00926 | 61 |
| 578009.424140037.45 | 578009.42 | 4140037.5 | 9.71174E-05 | 0 | 9.71174E-05 | 9.71174E-05 | 9.71174E-05 | 0 | 0 | 4.77634E-10 | 9.26481E-09 | 9.742E-09 0.00974 | 24 |
| 578009.424140045.45 | 578009.42 | 4140045.5 | 0.000102212 | 0 | 0.000102212 | 0.000102212 | 0.000102212 | 0 | 0 | 5.0269E-10  | 9.75083E-09 | 1.025E-08 0.01025 | 35 |
| 578017.424140029.45 | 578017.42 | 4140029.5 | 0.000113238 | 0 | 0.000113238 | 0.000113238 | 0.000113238 | 0 | 0 | 5.56917E-10 | 1.08027E-08 | 1.136E-08 0.01135 | 96 |
| 578017.424140037.45 | 578017.42 | 4140037.5 | 0.000120407 | 0 | 0.000120407 | 0.000120407 | 0.000120407 | 0 | 0 | 5.92176E-10 | 1.14866E-08 | 1.208E-08 0.01207 | 88 |
| 578025.424140021.45 | 578025.42 | 4140021.5 | 0.000131131 | 0 | 0.000131131 | 0.000131131 | 0.000131131 | 0 | 0 | 6.44916E-10 | 1.25096E-08 | 1.315E-08 0.01315 | 46 |
| 578025.424140029.45 | 578025.42 | 4140029.5 | 0.000141103 | 0 | 0.000141103 | 0.000141103 | 0.000141103 | 0 | 0 | 6.9396E-10  | 1.34609E-08 | 1.415E-08 0.01415 | 49 |
| 578033.424140013.45 | 578033.42 | 4140013.5 | 0.000149848 | 0 | 0.000149848 | 0.000149848 | 0.000149848 | 0 | 0 | 7.36968E-10 | 1.42952E-08 | 1.503E-08 0.01503 | 22 |
| 578033.424140021.45 | 578033.42 | 4140021.5 | 0.000162887 | 0 | 0.000162887 | 0.000162887 | 0.000162887 | 0 | 0 | 8.01094E-10 | 1.55391E-08 | 1.634E-08 0.01634 | 02 |
| 578041.424140013.45 | 578041.42 | 4140013.5 | 0.00018448  | 0 | 0.00018448  | 0.00018448  | 0.00018448  | 0 | 0 | 9.07293E-10 | 1.7599E-08  | 1.851E-08 0.01850 | 63 |
| 578041.424140021.45 | 578041.42 | 4140021.5 | 0.000203262 | 0 | 0.000203262 | 0.000203262 | 0.000203262 | 0 | 0 | 9.99667E-10 | 1.93908E-08 | 2.039E-08 0.02039 | 05 |
| 578049.424140005.45 | 578049.42 | 4140005.5 | 0.000204529 | 0 | 0.000204529 | 0.000204529 | 0.000204529 | 0 | 0 | 1.00589E-09 | 1.95116E-08 | 2.052E-08 0.02051 | 75 |
| 578049.424140013.45 | 578049.42 | 4140013.5 | 0.000226658 | 0 | 0.000226658 | 0.000226658 | 0.000226658 | 0 | 0 | 1.11473E-09 | 2.16228E-08 | 2.274E-08 0.02273 | 75 |
| 578049.424140021.45 | 578049.42 | 4140021.5 | 0.000252864 | 0 | 0.000252864 | 0.000252864 | 0.000252864 | 0 | 0 | 1.24361E-09 | 2.41228E-08 | 2.537E-08 0.02536 | 64 |
| 578049.424140029.45 | 578049.42 | 4140029.5 | 0.000284383 | 0 | 0.000284383 | 0.000284383 | 0.000284383 | 0 | 0 | 1.39863E-09 | 2.71296E-08 | 2.853E-08 0.02852 | 82 |
|                     |           |           |             |   |             |             |             |   |   |             |             |                   |    |

PM2.5 Emissions

**Residential Receptors** 

|         |                              |               |      | Work Hours | Exhaust Emissi | ons      | F           | ugitive Dust En | nissions |             |
|---------|------------------------------|---------------|------|------------|----------------|----------|-------------|-----------------|----------|-------------|
|         | Phase                        |               | Year | Per Day    | (lbs/day)      | (lbs/yr) | (g/s)       | (lbs/day)       | (lbs/yr) | (g/s)       |
| Offroad | Demolition                   | 3.2. Demolit  | 2026 | 10         | 0.010          | 0.250    | 8.62995E-06 | 0.150           | 3.750    | 0.000129449 |
| Offroad | Site Preparation             | 3.4. Site Pre | 2026 | 10         | 0.040          | 0.120    | 4.14237E-06 | 1.170           | 3.510    | 0.000121164 |
| Offroad | Grading                      | 3.6. Grading  | 2026 | 10         | 0.050          | 0.150    | 5.17797E-06 | 1.340           | 4.020    | 0.00013877  |
| Offroad | <b>Building Construction</b> | 3.8. Building | 2027 | 10         | 0.040          | 6.880    | 0.000237496 | 0.000           | 0.000    | 0           |
| Offroad | Paving                       | 3.10. Paving  | 2027 | 10         | 0.050          | 0.500    | 1.72599E-05 | 0.000           | 0.000    | 0           |
| Offroad | Architectural Coating        | 3.12. Archite | 2027 | 10         | 0.030          | 0.540    | 1.86407E-05 | 0.000           | 0.000    | 0           |
| Offroad | Trenching                    | 3.14. Trench  | 2026 | 10         | 0.030          | 0.090    | 3.10678E-06 | 0.000           | 0.000    | 0           |
| Haul    | Demolition                   | 3.2. Demolit  | 2026 | 10         | 0.005          | 0.125    | 6.29986E-05 | 0.005           | 0.125    | 6.29986E-05 |
| Haul    | Site Preparation             | 3.4. Site Pre | 2026 | 10         | 0.000          | 0.000    | 0           | 0.000           | 0.000    | 0           |
| Haul    | Grading                      | 3.6. Grading  | 2026 | 10         | 0.005          | 0.015    | 6.29986E-05 | 0.005           | 0.015    | 6.29986E-05 |
| Haul    | <b>Building Construction</b> | 3.8. Building | 2027 | 10         | 0.005          | 0.860    | 6.29986E-05 | 0.005           | 0.860    | 6.29986E-05 |
| Haul    | Paving                       | 3.10. Paving  | 2027 | 10         | 0.005          | 0.050    | 6.29986E-05 | 0.005           | 0.050    | 6.29986E-05 |
| Haul    | Architectural Coating        | 3.12. Archite | 2027 | 10         | 0.000          | 0.002    | 1.31662E-06 | 0.000           | 0.000    | 0           |
| Haul    | Trenching                    | 3.14. Trench  | 2026 | 10         | 0.000          | 0.000    | 0           | 0.000           | 0.000    | 0           |

| Year      | Max Annual PM2.5<br>Concentration (ug/m3) |
|-----------|-------------------------------------------|
| 2026      | 0.06                                      |
| 2027      | 0.03                                      |
| Maximum   | 0.06                                      |
| Threshold | 0.3                                       |
| Exceed?   | No                                        |

| AERMOD Column Identifier (Exhaust):       | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |  |
|-------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| AERMOD Column Identifier (Fugitive Dust): | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |  |
|                                           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|                                           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |

|                     |           |           |             | Site        |             | Building     |             | Architectural |             |             | Site        |             |                              |             | Architectural |           |           |           |
|---------------------|-----------|-----------|-------------|-------------|-------------|--------------|-------------|---------------|-------------|-------------|-------------|-------------|------------------------------|-------------|---------------|-----------|-----------|-----------|
|                     |           |           | Demolition  | Preparation | Grading     | Construction | Paving      | Coating       | Trenching   | Demolition  | Preparation | Grading     | <b>Building Construction</b> | Paving      | Coating       | Trenching |           |           |
|                     |           |           | Offroad     | Offroad     | Offroad     | Offroad      | Offroad     | Offroad       | Offroad     | Haul        | Haul        | Haul        | Haul                         | Haul        | Haul          | Haul      |           |           |
| Unique Identifier   | X (UTM)   | Y (UTM)   | 2026        | 2026        | 2026        | 2027         | 2027        | 2027          | 2026        | 2026        | 2026        | 2026        | 2027                         | 2027        | 2027          | 2026      | 2026      | 2027      |
| 578048.554140246.42 | 578048.55 | 4140246.4 | 0.000676074 | 0.000847961 | 0.000973755 | 0.001416047  | 0.00010291  | 0.000111143   | 1.85239E-05 | 8.32627E-05 | 0           | 8.32627E-05 | 8.32627E-05                  | 8.32627E-05 | 8.59462E-07   | 0         | 0.0026828 | 0.0017975 |
| 578066.414140268    | 578066.41 | 4140268   | 0.000304332 | 0.000432137 | 0.000496346 | 0.000777429  | 5.64992E-05 | 6.10192E-05   | 1.01699E-05 | 6.27762E-05 | 0           | 6.27762E-05 | 6.27762E-05                  | 6.27762E-05 | 6.5058E-07    | 0         | 0.0013685 | 0.0010212 |
| 578068.454140241.25 | 578068.45 | 4140241.3 | 0.000488691 | 0.000771098 | 0.000885524 | 0.001306682  | 9.49624E-05 | 0.000102559   | 1.70932E-05 | 8.29541E-05 | 0           | 8.29541E-05 | 8.29541E-05                  | 8.29541E-05 | 8.54208E-07   | 0         | 0.0023283 | 0.001671  |
| 578054.694140253.42 | 578054.69 | 4140253.4 | 0.000504802 | 0.000673057 | 0.000772967 | 0.001158739  | 8.42107E-05 | 9.09475E-05   | 1.51579E-05 | 7.5141E-05  | 0           | 7.5141E-05  | 7.5141E-05                   | 7.5141E-05  | 7.76989E-07   | 0         | 0.0021163 | 0.001485  |
| 578061.934140261.73 | 578061.93 | 4140261.7 | 0.000370135 | 0.000518857 | 0.000595922 | 0.00091716   | 6.66541E-05 | 7.19864E-05   | 1.19977E-05 | 6.74293E-05 | 0           | 6.74293E-05 | 6.74293E-05                  | 6.74293E-05 | 6.9811E-07    | 0         | 0.0016318 | 0.0011914 |
| 578046.974140254.6  | 578046.97 | 4140254.6 | 0.000569826 | 0.000707698 | 0.000812734 | 0.001209128  | 8.78727E-05 | 9.49025E-05   | 1.58171E-05 | 7.58226E-05 | 0           | 7.58226E-05 | 7.58226E-05                  | 7.58226E-05 | 7.84546E-07   | 0         | 0.0022577 | 0.0015443 |
| 5780634140234.38    | 578063    | 4140234.4 | 0.000653426 | 0.000981509 | 0.001127053 | 0.001605552  | 0.000116683 | 0.000126017   | 2.10029E-05 | 9.25828E-05 | 0           | 9.25828E-05 | 9.25828E-05                  | 9.25828E-05 | 9.50677E-07   | 0         | 0.0029682 | 0.0020344 |
| 578076.524140257.17 | 578076.52 | 4140257.2 | 0.000304082 | 0.000478856 | 0.000549998 | 0.000856786  | 6.22664E-05 | 6.72478E-05   | 1.1208E-05  | 6.77978E-05 | 0           | 6.77978E-05 | 6.77978E-05                  | 6.77978E-05 | 7.01375E-07   | 0         | 0.0014797 | 0.0011226 |
| 578071.934140251.73 | 578071.93 | 4140251.7 | 0.000367151 | 0.000575568 | 0.00066104  | 0.001008964  | 7.33259E-05 | 7.9192E-05    | 1.31987E-05 | 7.27149E-05 | 0           | 7.27149E-05 | 7.27149E-05                  | 7.27149E-05 | 7.51143E-07   | 0         | 0.0017624 | 0.0013077 |
| 578071.934140271.73 | 578071.93 | 4140271.7 | 0.000259722 | 0.000374272 | 0.000429901 | 0.000683459  | 4.967E-05   | 5.36436E-05   | 8.9406E-06  | 5.99344E-05 | 0           | 5.99344E-05 | 5.99344E-05                  | 5.99344E-05 | 6.21496E-07   | 0         | 0.0011927 | 0.0009073 |
| 578057.74140269.42  | 578057.7  | 4140269.4 | 0.000345219 | 0.000462463 | 0.000531165 | 0.000825076  | 5.99619E-05 | 6.47589E-05   | 1.07931E-05 | 6.31977E-05 | 0           | 6.31977E-05 | 6.31977E-05                  | 6.31977E-05 | 6.5532E-07    | 0         | 0.001476  | 0.0010768 |
| 578081.934140221.73 | 578081.93 | 4140221.7 | 0.000558101 | 0.001107974 | 0.001272166 | 0.001754496  | 0.000127507 | 0.000137708   | 2.29513E-05 | 0.000101274 | 0           | 0.000101274 | 0.000101274                  | 0.000101274 | 1.03402E-06   | 0         | 0.0031637 | 0.0022233 |
| 578081.934140231.73 | 578081.93 | 4140231.7 | 0.000442088 | 0.000833323 | 0.000956944 | 0.001390998  | 0.00010109  | 0.000109177   | 1.81962E-05 | 8.85105E-05 | 0           | 8.85105E-05 | 8.85105E-05                  | 8.85105E-05 | 9.08901E-07   | 0         | 0.0024276 | 0.0017792 |
| 578081.934140251.73 | 578081.93 | 4140251.7 | 0.000301167 | 0.000501767 | 0.000576308 | 0.000895322  | 6.5067E-05  | 7.02724E-05   | 1.17121E-05 | 7.03928E-05 | 0           | 7.03928E-05 | 7.03928E-05                  | 7.03928E-05 | 7.27576E-07   | 0         | 0.0015317 | 0.0011722 |
| 578081.934140261.73 | 578081.93 | 4140261.7 | 0.000255427 | 0.000401186 | 0.000460816 | 0.00073245   | 5.32304E-05 | 5.74888E-05   | 9.58147E-06 | 6.38982E-05 | 0           | 6.38982E-05 | 6.38982E-05                  | 6.38982E-05 | 6.61771E-07   | 0         | 0.0012548 | 0.0009716 |
| 578066.734140278.97 | 578066.73 | 4140279   | 0.000252215 | 0.000346368 | 0.000397854 | 0.000634725  | 4.61283E-05 | 4.98185E-05   | 8.30309E-06 | 5.69444E-05 | 0           | 5.69444E-05 | 5.69444E-05                  | 5.69444E-05 | 5.90977E-07   | 0         | 0.0011186 | 0.0008452 |
| 578091.934140221.73 | 578091.93 | 4140221.7 | 0.000460976 | 0.000979073 | 0.001124216 | 0.001579601  | 0.000114797 | 0.00012398    | 2.06634E-05 | 9.58631E-05 | 0           | 9.58631E-05 | 9.58631E-05                  | 9.58631E-05 | 9.81499E-07   | 0         | 0.0027767 | 0.0020111 |
| 578091.934140231.73 | 578091.93 | 4140231.7 | 0.000365727 | 0.000720196 | 0.000827078 | 0.001225656  | 8.90738E-05 | 9.61997E-05   | 1.60333E-05 | 8.45712E-05 | 0           | 8.45712E-05 | 8.45712E-05                  | 8.45712E-05 | 8.69955E-07   | 0         | 0.0020982 | 0.0015809 |
| 578091.934140241.73 | 578091.93 | 4140241.7 | 0.000300076 | 0.000547181 | 0.000628456 | 0.000969162  | 7.04333E-05 | 7.6068E-05    | 1.2678E-05  | 7.54906E-05 | 0           | 7.54906E-05 | 7.54906E-05                  | 7.54906E-05 | 7.79069E-07   | 0         | 0.0016394 | 0.0012674 |
| 578081.564140270.42 | 578081.56 | 4140270.4 | 0.000225098 | 0.000337087 | 0.000387207 | 0.000624819  | 4.54084E-05 | 4.9041E-05    | 8.17351E-06 | 5.9247E-05  | 0           | 5.9247E-05  | 5.9247E-05                   | 5.9247E-05  | 6.14452E-07   | 0         | 0.0010761 | 0.0008384 |
| 578101.934140211.73 | 578101.93 | 4140211.7 | 0.000515513 | 0.001186807 | 0.001362527 | 0.001794784  | 0.000130435 | 0.00014087    | 2.34783E-05 | 0.000101701 | 0           | 0.000101701 | 0.000101701                  | 0.000101701 | 1.03771E-06   | 0         | 0.0032917 | 0.0022705 |
| 578101.934140221.73 | 578101.93 | 4140221.7 | 0.000391141 | 0.000822955 | 0.000945008 | 0.001357516  | 9.86567E-05 | 0.000106549   | 1.77582E-05 | 8.98524E-05 | 0           | 8.98524E-05 | 8.98524E-05                  | 8.98524E-05 | 9.2179E-07    | 0         | 0.0023566 | 0.0017433 |
| 578101.934140231.73 | 578101.93 | 4140231.7 | 0.000310446 | 0.000600164 | 0.000689285 | 0.00105007   | 7.63132E-05 | 8.24183E-05   | 1.37364E-05 | 8.02527E-05 | 0           | 8.02527E-05 | 8.02527E-05                  | 8.02527E-05 | 8.26586E-07   | 0         | 0.0017741 | 0.0013701 |
| 578101.934140241.73 | 578101.93 | 4140241.7 | 0.000255866 | 0.000456874 | 0.000524772 | 0.000829728  | 6.03E-05    | 6.5124E-05    | 1.0854E-05  | 7.24717E-05 | 0           | 7.24717E-05 | 7.24717E-05                  | 7.24717E-05 | 7.48708E-07   | 0         | 0.0013933 | 0.0011008 |
| 578101.934140251.73 | 578101.93 | 4140251.7 | 0.000216571 | 0.00036041  | 0.000414003 | 0.000671394  | 4.87932E-05 | 5.26967E-05   | 8.78278E-06 | 6.59589E-05 | 0           | 6.59589E-05 | 6.59589E-05                  | 6.59589E-05 | 6.8289E-07    | 0         | 0.0011317 | 0.0009055 |
| 578114.354140204.87 | 578114.35 | 4140204.9 | 0.000524738 | 0.001191699 | 0.00136803  | 0.001740794  | 0.000126511 | 0.000136632   | 2.2772E-05  | 0.000100918 | 0           | 0.000100918 | 0.000100918                  | 0.000100918 | 1.03146E-06   | 0         | 0.0033091 | 0.0022068 |
| 578111.934140211.73 | 578111.93 | 4140211.7 | 0.000443042 | 0.000946557 | 0.0010868   | 0.001483273  | 0.000107796 | 0.00011642    | 1.94033E-05 | 9.40727E-05 | 0           | 9.40727E-05 | 9.40727E-05                  | 9.40727E-05 | 9.63145E-07   | 0         | 0.0026839 | 0.0018966 |
| 578111.934140221.73 | 578111.93 | 4140221.7 | 0.000339554 | 0.000659446 | 0.000757313 | 0.001122333  | 8.15649E-05 | 8.80901E-05   | 1.46817E-05 | 8.42732E-05 | 0           | 8.42732E-05 | 8.42732E-05                  | 8.42732E-05 | 8.66348E-07   | 0         | 0.0019395 | 0.0014614 |
| 578111.934140231.73 | 578111.93 | 4140231.7 | 0.00027084  | 0.000489011 | 0.000561669 | 0.000878954  | 6.38775E-05 | 6.89877E-05   | 1.14979E-05 | 7.63562E-05 | 0           | 7.63562E-05 | 7.63562E-05                  | 7.63562E-05 | 7.87561E-07   | 0         | 0.0014857 | 0.0011653 |
| 578111.934140241.73 | 578111.93 | 4140241.7 | 0.000223569 | 0.000378635 | 0.000434933 | 0.000701977  | 5.10158E-05 | 5.5097E-05    | 9.18284E-06 | 6.9592E-05  | 0           | 6.9592E-05  | 6.9592E-05                   | 6.9592E-05  | 7.1961E-07    | 0         | 0.0011855 | 0.000948  |
| 578121.934140201.73 | 578121.93 | 4140201.7 | 0.000512388 | 0.001088743 | 0.001249871 | 0.001606866  | 0.000116778 | 0.00012612    | 2.102E-05   | 9.91516E-05 | 0           | 9.91516E-05 | 9.91516E-05                  | 9.91516E-05 | 1.01586E-06   | 0         | 0.0030703 | 0.0020491 |
| 578121.934140211.73 | 578121.93 | 4140211.7 | 0.000386609 | 0.000725443 | 0.000833041 | 0.001200108  | 8.72172E-05 | 9.41945E-05   | 1.56991E-05 | 8.82081E-05 | 0           | 8.82081E-05 | 8.82081E-05                  | 8.82081E-05 | 9.06254E-07   | 0         | 0.0021372 | 0.0015588 |
| 578121.934140221.73 | 578121.93 | 4140221.7 | 0.000300555 | 0.000523824 | 0.000601624 | 0.000924872  | 6.72145E-05 | 7.25917E-05   | 1.20986E-05 | 7.98551E-05 | 0           | 7.98551E-05 | 7.98551E-05                  | 7.98551E-05 | 8.22741E-07   | 0         | 0.0015978 | 0.0012252 |
| 578121.934140231.73 | 578121.93 | 4140231.7 | 0.00024086  | 0.000399409 | 0.000458785 | 0.00073458   | 5.33852E-05 | 5.7656E-05    | 9.60934E-06 | 7.28629E-05 | 0           | 7.28629E-05 | 7.28629E-05                  | 7.28629E-05 | 7.52552E-07   | 0         | 0.0012544 | 0.0009921 |
|                     |           |           |             |             |             |              |             |               |             |             |             |             |                              |             |               |           |           |           |

| 578121 934140241 73  | 578121 93 | 4140241 7 | 0 000199021  | 0.000316025   | 0 000363029 | 0 000594194  | 4 31827F-05 | 4 66373E-05   | 7 77289E-06  | 6 68913E-05 | 0 | 6 68913E-05 | 6 68913E-05  | 6 68913E-05  | 6 92264F-07 | 0 | 0.0010196 0.0008185  |
|----------------------|-----------|-----------|--------------|---------------|-------------|--------------|-------------|---------------|--------------|-------------|---|-------------|--------------|--------------|-------------|---|----------------------|
| 578133 38/1/019/ 38  | 578133 38 | 4140194 4 | 0.000524396  | 0.00101686    | 0.001167337 | 0.001493663  | 0.000108551 | 0.000117235   | 1 95392F-05  | 9 92014E-05 | 0 | 9 92014E-05 | 9 92014E-05  | 9 92014E-05  | 1 01992E-06 | ő | 0.0029265 0.0019189  |
| 578135.384140154.38  | 578133.38 | 4140194.4 | 0.000324330  | 0.00101080    | 0.001107337 | 0.001433003  | 0.000108551 | 0.000117233   | 1.5555522-05 | 0.340055.05 | 0 | 0.340055.05 | 0.340055.05  | 0.240655.05  | 0.515005.07 | 0 | 0.0023203 0.0013183  |
| 578131.934140201.73  | 578131.93 | 4140201.7 | 0.000441288  | 0.000787697   | 0.000904477 | 0.001274718  | 9.26394E-05 | 0.000100051   | 1.66/51E-05  | 9.24965E-05 | 0 | 9.24965E-05 | 9.24965E-05  | 9.24965E-05  | 9.51598E-07 | 0 | 0.0023351 0.0016534  |
| 5/8131.934140211./3  | 578131.93 | 4140211.7 | 0.000341402  | 0.000559486   | 0.000642569 | 0.000980147  | 7.12316E-05 | 7.69301E-05   | 1.2821/E-05  | 8.35009E-05 | 0 | 8.35009E-05 | 8.35009E-05  | 8.35009E-05  | 8.60554E-07 | 0 | 0.001/233 0.0012962  |
| 578131.934140221.73  | 578131.93 | 4140221.7 | 0.000269567  | 0.000421286   | 0.000483908 | 0.000771499  | 5.60682E-05 | 6.05537E-05   | 1.00923E-05  | 7.61099E-05 | 0 | 7.61099E-05 | 7.61099E-05  | 7.61099E-05  | 7.85876E-07 | 0 | 0.0013371 0.0010411  |
| 578131.934140231.73  | 578131.93 | 4140231.7 | 0.000217711  | 0.00032985    | 0.000378907 | 0.000618516  | 4.49503E-05 | 4.85463E-05   | 8.09105E-06  | 6.98566E-05 | 0 | 6.98566E-05 | 6.98566E-05  | 6.98566E-05  | 7.22586E-07 | 0 | 0.0010743 0.0008524  |
| 578141.934140201.73  | 578141.93 | 4140201.7 | 0.000383824  | 0.000593708   | 0.000681851 | 0.001028327  | 7.47331E-05 | 8.07117E-05   | 1.3452E-05   | 8.68808E-05 | 0 | 8.68808E-05 | 8.68808E-05  | 8.68808E-05  | 8.9663E-07  | 0 | 0.0018466 0.0013584  |
| 578141.934140211.73  | 578141.93 | 4140211.7 | 0.000303715  | 0.000441971   | 0.000507664 | 0.000807712  | 5.87E-05    | 6.3396E-05    | 1.0566E-05   | 7.92208E-05 | 0 | 7.92208E-05 | 7.92208E-05  | 7.92208E-05  | 8.18475E-07 | 0 | 0.0014224 0.0010891  |
| 578141.934140221.73  | 578141.93 | 4140221.7 | 0.000243797  | 0.000343468   | 0.000394553 | 0.000645816  | 4.69343E-05 | 5.06891E-05   | 8.44818E-06  | 7.27004E-05 | 0 | 7.27004E-05 | 7.27004E-05  | 7.27004E-05  | 7.52012E-07 | 0 | 0.0011357 0.0008896  |
| 578141,934140231,73  | 578141.93 | 4140231.7 | 0.000198258  | 0.000275328   | 0.000316294 | 0.000526025  | 3.82286F-05 | 4.12869E-05   | 6.88115E-06  | 6.70803E-05 | 0 | 6.70803E-05 | 6.70803E-05  | 6.70803E-05  | 6.94634F-07 | 0 | 0.0009309 0.0007404  |
| 578151 93/1/0221 73  | 578151 93 | 4140221 7 | 0.000219724  | 0.000285217   | 0.000327661 | 0.000548428  | 3 98567E-05 | 4 30453E-05   | 7 17421E-06  | 6 95713E-05 | 0 | 6 95713E-05 | 6 95713E-05  | 6 95713E-05  | 7 20572E-07 | 0 | 0.0009789 0.0007712  |
| 570151.554140221.75  | 570151.55 | 4140166.2 | 0.0005213724 | 0.001094903   | 0.001345631 | 0.001756491  | 0.000127651 | 0.000127962   | 2 207725 05  | 0.000100367 | 0 | 0.000100367 | 0.000100267  | 0.000100367  | 1.03004E.06 | 0 | 0.0000754 0.0007712  |
| 578109.174140100.51  | 576109.17 | 4140100.5 | 0.000521505  | 0.001084802   | 0.001243031 | 0.001750481  | 0.000127031 | 0.000137803   | 2.29772E-05  | 0.000100367 | 0 | 0.000100307 | 0.000100367  | 0.000100567  | 1.05904E-00 | 0 | 0.0030734 0.0022238  |
| 578175.314140159.08  | 5/81/5.31 | 4140159.1 | 0.000526192  | 0.001120904   | 0.00128/1/3 | 0.001863293  | 0.000135414 | 0.000146247   | 2.43745E-05  | 0.000102459 | 0 | 0.000102459 | 0.000102459  | 0.000102459  | 1.061E-06   | 0 | 0.0031636 0.0023509  |
| 578171.934140171.73  | 578171.93 | 4140171.7 | 0.000454374  | 0.000822303   | 0.000944377 | 0.001420932  | 0.000103265 | 0.000111527   | 1.85878E-05  | 9.40569E-05 | 0 | 9.40569E-05 | 9.40569E-05  | 9.40569E-05  | 9.74613E-07 | 0 | 0.0024278 0.0018248  |
| 578171.934140181.73  | 578171.93 | 4140181.7 | 0.000380088  | 0.000583945   | 0.000670736 | 0.001064809  | 7.73844E-05 | 8.35751E-05   | 1.39292E-05  | 8.66628E-05 | 0 | 8.66628E-05 | 8.66628E-05  | 8.66628E-05  | 8.98341E-07 | 0 | 0.001822 0.0014      |
| 578181.934140151.73  | 578181.93 | 4140151.7 | 0.000519813  | 0.00108883    | 0.00125045  | 0.00186966   | 0.000135876 | 0.000146747   | 2.44578E-05  | 0.000104186 | 0 | 0.000104186 | 0.000104186  | 0.000104186  | 1.07913E-06 | 0 | 0.0030919 0.0023617  |
| 578181.934140161.73  | 578181.93 | 4140161.7 | 0.000454901  | 0.000854015   | 0.000980853 | 0.001506027  | 0.00010945  | 0.000118206   | 1.97009E-05  | 9.59368E-05 | 0 | 9.59368E-05 | 9.59368E-05  | 9.59368E-05  | 9.94639E-07 | 0 | 0.0025013 0.0019266  |
| 5781804140184.63     | 578180    | 4140184.6 | 0.000322089  | 0.000457048   | 0.000525045 | 0.000869647  | 6.32011E-05 | 6.82572E-05   | 1.13762E-05  | 8.11844E-05 | 0 | 8.11844E-05 | 8.11844E-05  | 8.11844E-05  | 8.42451E-07 | 0 | 0.0014779 0.0011643  |
| 578181.934140191.73  | 578181.93 | 4140191.7 | 0.00027686   | 0.00036371    | 0.000417847 | 0.000706753  | 5.13629E-05 | 5.54719E-05   | 9.24531E-06  | 7.6343E-05  | 0 | 7.6343E-05  | 7.6343E-05   | 7.6343E-05   | 7.92472E-07 | 0 | 0.0012203 0.0009671  |
| 578191,934140141,73  | 578191.93 | 4140141.7 | 0.000494699  | 0.000979949   | 0.001125529 | 0.00174886   | 0.000127097 | 0.000137265   | 2.28775E-05  | 0.000105835 | 0 | 0.000105835 | 0.000105835  | 0.000105835  | 1.09653E-06 | 0 | 0.0028347 0.002226   |
| 578191 93/1/0151 73  | 578191 93 | 4140151 7 | 0.000445202  | 0.000824045   | 0 000946482 | 0.001/180617 | 0.000107603 | 0.000116211   | 1 93685E-05  | 9 7772E-05  | 0 | 9 7772E-05  | 9 7772F-05   | 9 7772E-05   | 1.01395E-06 | 0 | 0.0024306 0.001901   |
| 570101.034140161.73  | 570101.00 | 4140151.7 | 0.000301000  | 0.000664307   | 0.000763171 | 0.001225627  | 0.000107005 | 0.610755.05   | 1.53003E 05  | 0.056025.05 | 0 | 0.056025.05 | 0.056035.05  | 0.056025.05  | 0.40001E.07 | 0 | 0.0024300 0.001501   |
| 578191.934140101.75  | 576191.95 | 4140101.7 | 0.000391999  | 0.000004397   | 0.000765171 | 0.001223027  | 0.90710E-05 | 9.019/3E-03   | 1.00529E-05  | 9.03093E-05 | 0 | 9.03093E-03 | 9.03093E-03  | 9.03093E-03  | 9.40091E-07 | 0 | 0.0020107 0.001393   |
| 578191.934140191.73  | 5/8191.93 | 4140191.7 | 0.000245318  | 0.000313231   | 0.000359878 | 0.000621554  | 4.51/1E-05  | 4.8/84/E-05   | 8.130/9E-06  | 7.3181/E-05 | 0 | 7.3181/E-05 | 7.31817E-05  | 7.3181/E-U5  | 7.60281E-07 | 0 | 0.0010729 0.0008626  |
| 578191.934140201.73  | 578191.93 | 4140201.7 | 0.000207638  | 0.00024824    | 0.000285217 | 0.000497229  | 3.61358E-05 | 3.90267E-05   | 6.50445E-06  | 6.85318E-05 | 0 | 6.85318E-05 | 6.85318E-05  | 6.85318E-05  | 7.12158E-07 | 0 | 0.0008847 0.0007102  |
| 578191.934140211.73  | 578191.93 | 4140211.7 | 0.000176122  | 0.000200624   | 0.000230513 | 0.000404164  | 2.93724E-05 | 3.17222E-05   | 5.28703E-06  | 6.43543E-05 | 0 | 6.43543E-05 | 6.43543E-05  | 6.43543E-05  | 6.68723E-07 | 0 | 0.0007413 0.0005946  |
| 578201.934140141.73  | 578201.93 | 4140141.7 | 0.000427559  | 0.000764803   | 0.000878474 | 0.001394119  | 0.000101317 | 0.000109422   | 1.8237E-05   | 9.95668E-05 | 0 | 9.95668E-05 | 9.95668E-05  | 9.95668E-05  | 1.03282E-06 | 0 | 0.0022882 0.001805   |
| 578201.934140151.73  | 578201.93 | 4140151.7 | 0.000385813  | 0.000651122   | 0.000747927 | 0.00120292   | 8.74215E-05 | 9.44153E-05   | 1.57359E-05  | 9.24605E-05 | 0 | 9.24605E-05 | 9.24605E-05  | 9.24605E-05  | 9.59906E-07 | 0 | 0.0019855 0.0015706  |
| 578201.934140161.73  | 578201.93 | 4140161.7 | 0.000341249  | 0.000535399   | 0.000615047 | 0.001015932  | 7.38323E-05 | 7.97389E-05   | 1.32898E-05  | 8.60454E-05 | 0 | 8.60454E-05 | 8.60454E-05  | 8.60454E-05  | 8.93931E-07 | 0 | 0.0016771 0.0013425  |
| 578201.934140171.73  | 578201.93 | 4140171.7 | 0.000297272  | 0.000429611   | 0.000493566 | 0.000839014  | 6.09749E-05 | 6.58529E-05   | 1.09755E-05  | 8.0322E-05  | 0 | 8.0322E-05  | 8.0322E-05   | 8.0322E-05   | 8.34854E-07 | 0 | 0.0013921 0.0011273  |
| 578201 934140191 73  | 578201 93 | 4140191 7 | 0 000218847  | 0.00027269    | 0 000313316 | 0 000549811  | 3 99572E-05 | 4 31537E-05   | 7 19229E-06  | 7 05011E-05 | 0 | 7 05011E-05 | 7 05011E-05  | 7.05011E-05  | 7 32987E-07 | 0 | 0.000953 0.0007747   |
| 578201 024140201 72  | 579201.02 | 4140201 7 | 0.000126060  | 0.000210990   | 0.000252652 | 0.00044622   | 2 242995-05 | 2 50221E-05   | 5 92719E-06  | 6 6284E-05  | 0 | 6 6284E-05  | 6 6284E-05   | 6 6284E-05   | 6 90121E-07 | õ | 0.0007979 0.0006469  |
| 570201.554140201.75  | 570201.55 | 4140161 7 | 0.000100505  | 0.000213003   | 0.000252055 | 0.000956126  | 6 22102E 05 | 6 71067E 05   | 1 11004E OF  | 0.0204E 05  | 0 | 0.0204E 05  | 0.0204E 05   | 0.0204E 05   | 0.001010 07 | 0 | 0.001/365 0.0011500  |
| 578211.934140101.75  | 576211.95 | 4140101.7 | 0.000299872  | 0.000442550   | 0.0003084   | 0.000830130  | 0.22192E-05 | 0.719072-05   | 1.11994E-03  | 6.22327E-03 | 0 | 6.22527E-05 | 0.22527E-05  | 6.22527E-05  | 0.3400E-U/  | 0 | 0.0014263 0.0011309  |
| 578211.934140191.73  | 578211.93 | 4140191.7 | 0.000196425  | 0.000239508   | 0.000275201 | 0.000488952  | 3.55343E-05 | 3.83//1E-05   | 6.39618E-06  | 6.82168E-05 | 0 | 6.82168E-05 | 6.82168E-05  | 6.82168E-05  | 7.09644E-07 | 0 | 0.000854 0.0007      |
| 578108.954140089.28  | 578108.95 | 4140089.3 | 0.00505219   | 0.021106/08   | 0.02421/445 | 0.024066704  | 0.001/49034 | 0.001888956   | 0.000314826  | 0.000677692 | 0 | 0.000677692 | 0.000677692  | 0.000677692  | 6.464/2E-06 | 0 | 0.0520466 0.0290665  |
| 578108.954140097.28  | 578108.95 | 4140097.3 | 0.004941635  | 0.025973529   | 0.029793265 | 0.025082563  | 0.001822861 | 0.00196869    | 0.000328115  | 0.000580079 | 0 | 0.000580079 | 0.000580079  | 0.000580079  | 5.63445E-06 | 0 | 0.0621967 0.0300399  |
| 578116.954140081.28  | 578116.95 | 4140081.3 | 0.003913176  | 0.014681778   | 0.016852408 | 0.020468942  | 0.001487568 | 0.001606574   | 0.000267762  | 0.000645527 | 0 | 0.000645527 | 0.000645527  | 0.000645527  | 6.1705E-06  | 0 | 0.0370062 0.0248603  |
| 578116.954140089.28  | 578116.95 | 4140089.3 | 0.003819495  | 0.017250924   | 0.01979782  | 0.022096218  | 0.00160583  | 0.001734296   | 0.000289049  | 0.000547859 | 0 | 0.000547859 | 0.000547859  | 0.000547859  | 5.34102E-06 | 0 | 0.042253 0.0265374   |
| 578116.954140097.28  | 578116.95 | 4140097.3 | 0.003656864  | 0.020297671   | 0.023289192 | 0.023155626  | 0.001682822 | 0.001817447   | 0.000302908  | 0.000472134 | 0 | 0.000472134 | 0.000472134  | 0.000472134  | 4.66351E-06 | 0 | 0.0484909 0.0276048  |
| 578116.954140105.28  | 578116.95 | 4140105.3 | 0.003437779  | 0.024058064   | 0.02759652  | 0.023458365  | 0.001704823 | 0.001841209   | 0.000306868  | 0.000411316 | 0 | 0.000411316 | 0.000411316  | 0.000411316  | 4.09737E-06 | 0 | 0.0562219 0.0278311  |
| 578124,954140073,28  | 578124.95 | 4140073.3 | 0.003113028  | 0.010811255   | 0.012412612 | 0.016696237  | 0.001213389 | 0.00131046    | 0.00021841   | 0.000624377 | 0 | 0.000624377 | 0.000624377  | 0.000624377  | 5.97319E-06 | 0 | 0.0278041 0.0204748  |
| 578124 954140081 28  | 578124 95 | 4140081 3 | 0.003036506  | 0.012280151   | 0 014097695 | 0.01820633   | 0.001323134 | 0.001428985   | 0.000238164  | 0.000527501 | 0 | 0.000527501 | 0.000527501  | 0.000527501  | 5 15037E-06 | 0 | 0.0307075 0.0220186  |
| 578124 054140080 28  | 579124.05 | 4140090 2 | 0.002012065  | 0.012047002   | 0.016000100 | 0.010504272  | 0.001/17/69 | 0.001520966   | 0.000255144  | 0.000352904 | 0 | 0.000452804 | 0.000452804  | 0.000452804  | 4 49225E-06 | õ | 0.0240208 0.0222628  |
| 578124.554140085.28  | 578124.95 | 4140083.3 | 0.002313303  | 0.013347003   | 0.010003103 | 0.019304372  | 0.001417403 | 0.001530800   | 0.000255144  | 0.000432804 | 0 | 0.000432804 | 0.000432804  | 0.000432804  | 4.48333L-00 | 0 | 0.0340308 0.0233028  |
| 578124.954140097.28  | 576124.95 | 4140097.5 | 0.002734434  | 0.013915570   | 0.01820524  | 0.020499044  | 0.001469750 | 0.001008957   | 0.000208150  | 0.000595598 | 0 | 0.000595596 | 0.000395596  | 0.000595596  | 3.93200E-00 | 0 | 0.0379802 0.0243883  |
| 578124.954140105.28  | 578124.95 | 4140105.3 | 0.002574753  | 0.01831526    | 0.021014866 | 0.021035111  | 0.001528/14 | 0.001651012   | 0.000275169  | 0.000345125 | 0 | 0.000345125 | 0.000345125  | 0.000345125  | 3.47225E-06 | 0 | 0.0428703 0.0249086  |
| 578124.954140113.28  | 578124.95 | 4140113.3 | 0.002395425  | 0.021339613   | 0.024478399 | 0.020895439  | 0.001518564 | 0.001640049   | 0.000273342  | 0.000304978 | 0 | 0.000304978 | 0.000304978  | 0.000304978  | 3.0795E-06  | 0 | 0.0490967 0.0246671  |
| 578124.954140121.28  | 578124.95 | 4140121.3 | 0.002235684  | 0.02530224    | 0.029014996 | 0.019911652  | 0.001447068 | 0.001562833   | 0.000260472  | 0.000271384 | 0 | 0.000271384 | 0.000271384  | 0.000271384  | 2.74429E-06 | 0 | 0.0573562 0.0234671  |
| 578132.954140065.28  | 578132.95 | 4140065.3 | 0.002532781  | 0.008249641   | 0.009472902 | 0.013468137  | 0.000978789 | 0.001057092   | 0.000176182  | 0.000609803 | 0 | 0.000609803 | 0.000609803  | 0.000609803  | 5.8365E-06  | 0 | 0.0216511 0.0167295  |
| 578132.954140073.28  | 578132.95 | 4140073.3 | 0.002469433  | 0.009136705   | 0.010490965 | 0.014622627  | 0.001062691 | 0.001147706   | 0.000191284  | 0.000513546 | 0 | 0.000513546 | 0.000513546  | 0.000513546  | 5.01644E-06 | 0 | 0.0233155 0.0178651  |
| 578132.954140081.28  | 578132.95 | 4140081.3 | 0.002375695  | 0.01010991    | 0.011607573 | 0.015716456  | 0.001142184 | 0.001233559   | 0.000205593  | 0.000440125 | 0 | 0.000440125 | 0.000440125  | 0.000440125  | 4.36174E-06 | 0 | 0.025179 0.0189768   |
| 578132.954140089.28  | 578132.95 | 4140089.3 | 0.002257608  | 0.011213029   | 0.012872796 | 0.016714607  | 0.001214724 | 0.001311902   | 0.00021865   | 0.000382342 | 0 | 0.000382342 | 0.000382342  | 0.000382342  | 3.82839E-06 | 0 | 0.0273268 0.0200097  |
| 578132 954140105 28  | 578132 95 | 4140105 3 | 0.001990936  | 0.01400395    | 0 016071746 | 0 018088705  | 0 001314586 | 0 001419753   | 0.000236626  | 0.000296661 | 0 | 0.000296661 | 0.000296661  | 0.000296661  | 3 00576E-06 | 0 | 0.0328966 0.0214194  |
| 578122 05/11/0112 28 | 579122.05 | 4140112.2 | 0.00197157   | 0.015966621   | 0.019205292 | 0.019202214  | 0.001222008 | 0.001/1297/11 | 0.0002200220 | 0.000250001 | 0 | 0.000250001 | 0.000250001  | 0.000250001  | 2 68647E-06 | õ | 0.0267105 0.0214865  |
| 570132.554140131.20  | 570132.55 | 4140121.2 | 0.00107137   | 0.01925011    | 0.020024142 | 0.017601262  | 0.001322300 | 0.001200566   | 0.000230123  | 0.000204455 | 0 | 0.000204455 | 0.0002077390 | 0.0002077290 | 2.00047E 00 | 0 | 0.0116628 0.0209428  |
| 578132.954140121.28  | 570132.95 | 4140121.5 | 0.001772555  | 0.01625011    | 0.020954145 | 0.01/091505  | 0.001285709 | 0.001386300   | 0.000231428  | 0.000237369 | 0 | 0.000237369 | 0.000257569  | 0.000257569  | 2.41596E-00 | 0 | 0.0410028 0.0208428  |
| 578132.934140129.28  | 576152.95 | 4140129.5 | 0.001080475  | 0.021413964   | 0.024557049 | 0.010595190  | 0.001191511 | 0.001280852   | 0.000214472  | 0.000214572 | 0 | 0.000214572 | 0.000214572  | 0.000214372  | 2.18009E-00 | 0 | 0.0483033 0.0193043  |
| 578140.954140057.28  | 578140.95 | 4140057.3 | 0.002101778  | 0.006449684   | 0.007406725 | 0.010901063  | 0.000792228 | 0.000855607   | 0.000142601  | 0.000600064 | 0 | 0.000600064 | 0.000600064  | 0.000600064  | 5.7479E-06  | 0 | 0.0173009 0.0137548  |
| 578140.954140065.28  | 578140.95 | 4140065.3 | 0.002047843  | 0.006999006   | 0.00803735  | 0.011715594  | 0.000851424 | 0.000919538   | 0.000153256  | 0.000503832 | 0 | 0.000503832 | 0.000503832  | 0.000503832  | 4.92299E-06 | 0 | 0.0182451 0.0144991  |
| 578140.954140073.28  | 578140.95 | 4140073.3 | 0.00197407   | 0.007586485   | 0.008711646 | 0.012513434  | 0.000909407 | 0.000982159   | 0.000163693  | 0.000431365 | 0 | 0.000431365 | 0.000431365  | 0.000431365  | 4.27627E-06 | 0 | 0.0192986 0.015272   |
| 578140.954140081.28  | 578140.95 | 4140081.3 | 0.001883394  | 0.008225143   | 0.009444493 | 0.013275637  | 0.000964799 | 0.001041983   | 0.000173664  | 0.000374663 | 0 | 0.000374663 | 0.000374663  | 0.000374663  | 3.75348E-06 | 0 | 0.020476 0.0160355   |
| 578118.524140112.89  | 578118.52 | 4140112.9 | 0.003014093  | 0.026913868   | 0.030865651 | 0.022572027  | 0.001640409 | 0.001771642   | 0.000295274  | 0.000350429 | 0 | 0.000350429 | 0.000350429  | 0.000350429  | 3.51426E-06 | 0 | 0.0617897 0.0266884  |
| 578140.954140113.28  | 578140.95 | 4140113.3 | 0.001510729  | 0.011685781   | 0.013411251 | 0.015078789  | 0.001095842 | 0.00118351    | 0.000197252  | 0.000233447 | 0 | 0.000233447 | 0.000233447  | 0.000233447  | 2.38137E-06 | 0 | 0.0272719 0.0178274  |
| 578140.954140121.28  | 578140.95 | 4140121.3 | 0.001447785  | 0.012962681   | 0.014873081 | 0.014748087  | 0.001071809 | 0.001157553   | 0.000192926  | 0.000211047 | 0 | 0.000211047 | 0.000211047  | 0.000211047  | 2.15439E-06 | 0 | 0.0298986 0.0174017  |
| 578140 954140129 28  | 5781/0.95 | 4140129.3 | 0.001390644  | 0.014606128   | 0.016753589 | 0.013801086  | 0.001002986 | 0.001083225   | 0.000180537  | 0.000191957 | 0 | 0.000191957 | 0.000191957  | 0.000191957  | 1 96026E-06 | 0 | 0.0333148 0.0162732  |
| 578140 054140127 28  | 579140.05 | 4140125.5 | 0.001220172  | 0.014000120   | 0.010120842 | 0.012067715  | 0.001002500 | 0.001003225   | 0.000157962  | 0.000175097 | 0 | 0.000175097 | 0.000175097  | 0.000131337  | 1.79995E-06 | 0 | 0.0276249 0.0142429  |
| 570140.554140157.20  | 570140.35 | 4140040 2 | 0.001320173  | 0.00010073021 | 0.015120042 | 0.01200//13  | 0.0006472   | 0.000347173   | 0.00013/003  | 0.0001/306/ | 0 | 0.0001/300/ | 0.0001/306/  | 0.0001/306/  | E 71064E 00 | 0 | 0.01/120/ 0.011///00 |
| 576148.954140049.28  | 5/8148.95 | 4140049.3 | 0.00172278   | 0.005137805   | 0.005900589 | 0.008906846  | 0.0006473   | 0.000699084   | 0.000110514  | 0.000594939 | U | 0.000594939 | 0.000594939  | 0.000594939  | 3./1004E-06 | 0 | 0.0141204 0.0114488  |
| 5/8148.95414005/.28  | 5/8148.95 | 4140057.3 | 0.001/30498  | 0.005485579   | 0.006299933 | 0.0094/54/6  | 0.000688625 | 0.000/43/15   | 0.000123952  | 0.000499023 | U | 0.000499023 | 0.000499023  | 0.000499023  | 4.88328E-06 | U | 0.014638 0.0119107   |
| 578148.954140065.28  | 578148.95 | 4140065.3 | 0.001669432  | 0.005839765   | 0.00670657  | 0.010016846  | 0.000/27968 | 0.000/86206   | 0.000131034  | 0.000426215 | 0 | 0.000426215 | 0.000426215  | 0.000426215  | 4.22819E-06 | 0 | 0.0151992 0.0123877  |
| 578148.954140073.28  | 578148.95 | 4140073.3 | 0.001595976  | 0.006207487   | 0.007128652 | 0.010525722  | 0.000764951 | 0.000826147   | 0.000137691  | 0.00036942  | 0 | 0.00036942  | 0.00036942   | 0.00036942   | 3.70192E-06 | 0 | 0.0158086 0.0128594  |
| 578111.194140102.62  | 578111.19 | 4140102.6 | 0.004392779  | 0.027539227   | 0.031585922 | 0.024788678  | 0.001801503 | 0.001945623   | 0.00032427   | 0.000496467 | 0 | 0.000496467 | 0.000496467  | 0.000496467  | 4.88341E-06 | 0 | 0.0648351 0.0295336  |
| 578136.744140133.62  | 578136.74 | 4140133.6 | 0.001494593  | 0.019579003   | 0.022449967 | 0.014320473  | 0.001040732 | 0.001123991   | 0.000187332  | 0.000192907 | 0 | 0.000192907 | 0.000192907  | 0.000192907  | 1.96616E-06 | 0 | 0.0440967 0.016873   |
| 578148.954140121.28  | 578148.95 | 4140121.3 | 0.001209994  | 0.008927658   | 0.010245906 | 0.011536033  | 0.000838374 | 0.000905444   | 0.000150907  | 0.000190054 | 0 | 0.000190054 | 0.000190054  | 0.000190054  | 1.94579E-06 | 0 | 0.0209146 0.0136619  |
| 578148.954140129.28  | 578148.95 | 4140129.3 | 0.00116767   | 0.009457504   | 0.010851139 | 0.010660515  | 0.000774747 | 0.000836726   | 0.000139454  | 0.000173891 | 0 | 0.000173891 | 0.000173891  | 0.000173891  | 1.78119E-06 | 0 | 0.0219635 0.0126216  |
| 578148.954140137.28  | 578148.95 | 4140137.3 | 0.001110389  | 0.009921636   | 0.011379902 | 0.009123236  | 0.000663026 | 0.000716068   | 0.000119345  | 0.000159473 | 0 | 0.000159473 | 0.000159473  | 0.000159473  | 1.63386E-06 | 0 | 0.0228502 0.0108229  |
| 578156.954140041.28  | 578156.95 | 4140041 3 | 0.001517896  | 0.004142766   | 0.004758089 | 0.007327976  | 0.000532556 | 0.000575161   | 9.58602E-05  | 0.000589013 | 0 | 0.000589013 | 0.000589013  | 0.000589013  | 5.66238E-06 | 0 | 0.0116926 0.0096194  |
| 578156 95/1/00/0 29  | 578156.05 | 4140040.2 | 0.001/920/4  | 0.004370610   | 0.005010705 | 0.00772656   | 0.000222222 | 0 00060722    | 0.000101205  | 0.000/06075 | 0 | 0.000496075 | 0.000/06075  | 0.000406075  | 4 864075-06 | 0 | 0.0119667 0.000001   |
| 3, 3130.334140043.20 | 3/0130.33 | 4140049.3 | 0.001402340  | 2.0043/0013   | 2.002012/22 | 0.00773030   | 0.00030223  | 0.00000723    | 2.000101202  | 0.000+00070 | 0 | 5.000-50075 | 0.000+50075  | 0.000490075  | 7.00-07L-00 | U | 5.0115007 0.0059051  |

| 578156.954140057.28 | 578156.95 | 4140057.3 | 0.001433634 | 0.004588959 | 0.005270539 | 0.008109054 | 0.000589321 | 0.000636466 | 0.000106078 | 0.0004241   | 0 | 0.0004241   | 0.0004241   | 0.0004241   | 4.21386E-06 | 0 | 0.0122474 0.0101873 |
|---------------------|-----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|-------------|-------------|-------------|-------------|---|---------------------|
| 578156.954140065.28 | 578156.95 | 4140065.3 | 0.001374417 | 0.004802977 | 0.005516275 | 0.008448666 | 0.000614002 | 0.000663122 | 0.00011052  | 0.000367718 | 0 | 0.000367718 | 0.000367718 | 0.000367718 | 3.68931E-06 | 0 | 0.0125396 0.0104649 |
| 578156.954140073.28 | 578156.95 | 4140073.3 | 0.001308641 | 0.005011975 | 0.005756173 | 0.008740898 | 0.00063524  | 0.000686059 | 0.000114343 | 0.000322248 | 0 | 0.000322248 | 0.000322248 | 0.000322248 | 3.25636E-06 | 0 | 0.0128356 0.0107099 |
| 578156.954140113.28 | 578156.95 | 4140113.3 | 0.001059901 | 0.005903759 | 0.006778097 | 0.009049671 | 0.00065768  | 0.000710294 | 0.000118382 | 0.000189059 | 0 | 0.000189059 | 0.000189059 | 0.000189059 | 1.9391E-06  | 0 | 0.0142383 0.0107977 |
| 578156.954140121.28 | 578156.95 | 4140121.3 | 0.001028745 | 0.005937362 | 0.006815688 | 0.008559795 | 0.000622078 | 0.000671844 | 0.000111974 | 0.000172997 | 0 | 0.000172997 | 0.000172997 | 0.000172997 | 1.77542E-06 | 0 | 0.0142398 0.0102015 |
| 578156.954140129.28 | 578156.95 | 4140129.3 | 0.000993843 | 0.005834918 | 0.006696798 | 0.007704899 | 0.000559949 | 0.000604745 | 0.000100791 | 0.000159038 | 0 | 0.000159038 | 0.000159038 | 0.000159038 | 1.63242E-06 | 0 | 0.0139444 0.0091893 |
| 578164.954140041.28 | 578164.95 | 4140041.3 | 0.001281472 | 0.003521586 | 0.004044882 | 0.006358638 | 0.00046211  | 0.000499079 | 8.31799E-05 | 0.000490504 | 0 | 0.000490504 | 0.000490504 | 0.000490504 | 4.81157E-06 | 0 | 0.0099121 0.0083056 |
| 578164.954140049.28 | 578164.95 | 4140049.3 | 0.001243028 | 0.003659586 | 0.004203413 | 0.006621611 | 0.000481222 | 0.000519719 | 8.66199E-05 | 0.000421233 | 0 | 0.000421233 | 0.000421233 | 0.000421233 | 4.18936E-06 | 0 | 0.0100351 0.0084692 |
| 578164.954140057.28 | 578164.95 | 4140057.3 | 0.001196023 | 0.003785867 | 0.004348464 | 0.006852495 | 0.000498001 | 0.000537841 | 8.96402E-05 | 0.00036607  | 0 | 0.00036607  | 0.00036607  | 0.00036607  | 3.67611E-06 | 0 | 0.0101521 0.0086242 |
| 578164.954140065.28 | 578164.95 | 4140065.3 | 0.001143443 | 0.003899672 | 0.004479153 | 0.007043188 | 0.00051186  | 0.000552808 | 9.21347E-05 | 0.000321388 | 0 | 0.000321388 | 0.000321388 | 0.000321388 | 3.25036E-06 | 0 | 0.0102572 0.0087539 |
| 578164.954140073.28 | 578164.95 | 4140073.3 | 0.001089052 | 0.003998013 | 0.004592033 | 0.007179985 | 0.000521801 | 0.000563545 | 9.39242E-05 | 0.000284668 | 0 | 0.000284668 | 0.000284668 | 0.000284668 | 2.89436E-06 | 0 | 0.0103424 0.0088376 |
| 578164.954140081.28 | 578164.95 | 4140081.3 | 0.001037598 | 0.004077949 | 0.004683715 | 0.00725189  | 0.000527027 | 0.000569189 | 9.48648E-05 | 0.000254096 | 0 | 0.000254096 | 0.000254096 | 0.000254096 | 2.59372E-06 | 0 | 0.0104023 0.0088589 |
| 578164.954140105.28 | 578164.95 | 4140105.3 | 0.0009334   | 0.004154982 | 0.004771505 | 0.007013505 | 0.000509702 | 0.000550479 | 9.17464E-05 | 0.000188591 | 0 | 0.000188591 | 0.000188591 | 0.000188591 | 1.9366E-06  | 0 | 0.0103288 0.0084528 |
| 578164.954140113.28 | 578164.95 | 4140113.3 | 0.000910882 | 0.004078049 | 0.004682832 | 0.006705392 | 0.00048731  | 0.000526295 | 8.77159E-05 | 0.000172723 | 0 | 0.000172723 | 0.000172723 | 0.000172723 | 1.77505E-06 | 0 | 0.0101049 0.0080662 |
| 578164.954140121.28 | 578164.95 | 4140121.3 | 0.000885977 | 0.003902177 | 0.004480444 | 0.00617892  | 0.000449049 | 0.000484973 | 8.08289E-05 | 0.000158878 | 0 | 0.000158878 | 0.000158878 | 0.000158878 | 1.63388E-06 | 0 | 0.0096672 0.0074323 |
| 578164.954140129.28 | 578164.95 | 4140129.3 | 0.000854448 | 0.00360358  | 0.004137039 | 0.005400204 | 0.000392457 | 0.000423853 | 7.06422E-05 | 0.000146685 | 0 | 0.000146685 | 0.000146685 | 0.000146685 | 1.50854E-06 | 0 | 0.0089591 0.0065114 |
| 578172.954140049.28 | 578172.95 | 4140049.3 | 0.001047137 | 0.003026125 | 0.003476049 | 0.00560204  | 0.000407125 | 0.000439695 | 7.32825E-05 | 0.000363112 | 0 | 0.000363112 | 0.000363112 | 0.000363112 | 3.64665E-06 | 0 | 0.0083488 0.0071787 |
| 578172.954140057.28 | 578172.95 | 4140057.3 | 0.001005818 | 0.00308916  | 0.00354848  | 0.005732069 | 0.000416575 | 0.000449901 | 7.49835E-05 | 0.000319851 | 0 | 0.000319851 | 0.000319851 | 0.000319851 | 3.23563E-06 | 0 | 0.0083581 0.0072415 |
| 578172.954140065.28 | 578172.95 | 4140065.3 | 0.000962431 | 0.003136101 | 0.003602402 | 0.005820135 | 0.000422975 | 0.000456813 | 7.61355E-05 | 0.00028377  | 0 | 0.00028377  | 0.00028377  | 0.00028377  | 2.88575E-06 | 0 | 0.0083446 0.0072703 |
| 578172.954140073.28 | 578172.95 | 4140073.3 | 0.000920025 | 0.003162302 | 0.003632466 | 0.005850686 | 0.000425195 | 0.000459211 | 7.65351E-05 | 0.000253728 | 0 | 0.000253728 | 0.000253728 | 0.000253728 | 2.59072E-06 | 0 | 0.0082988 0.0072451 |
| 578172.954140081.28 | 578172.95 | 4140081.3 | 0.000882219 | 0.003164499 | 0.003634917 | 0.005814851 | 0.000422591 | 0.000456398 | 7.60664E-05 | 0.000228431 | 0 | 0.000228431 | 0.000228431 | 0.000228431 | 2.33939E-06 | 0 | 0.0082146 0.007153  |
| 578172.954140089.28 | 578172.95 | 4140089.3 | 0.000851973 | 0.003141885 | 0.003608838 | 0.005716841 | 0.000415468 | 0.000448706 | 7.47843E-05 | 0.000206985 | 0 | 0.000206985 | 0.000206985 | 0.000206985 | 2.12427E-06 | 0 | 0.0080915 0.0069971 |
| 578172.954140097.28 | 578172.95 | 4140097.3 | 0.000828735 | 0.00308649  | 0.003545079 | 0.005544537 | 0.000402946 | 0.000435182 | 7.25303E-05 | 0.000188642 | 0 | 0.000188642 | 0.000188642 | 0.000188642 | 1.93876E-06 | 0 | 0.0079101 0.0067619 |
| 578172.954140105.28 | 578172.95 | 4140105.3 | 0.000810147 | 0.002989738 | 0.003433802 | 0.005288303 | 0.000384324 | 0.00041507  | 6.91784E-05 | 0.000172822 | 0 | 0.000172822 | 0.000172822 | 0.000172822 | 1.77783E-06 | 0 | 0.0076485 0.0064351 |
| 578172.954140113.28 | 578172.95 | 4140113.3 | 0.000792204 | 0.002843078 | 0.003265204 | 0.004944171 | 0.000359315 | 0.00038806  | 6.46767E-05 | 0.000159073 | 0 | 0.000159073 | 0.000159073 | 0.000159073 | 1.6376E-06  | 0 | 0.0072833 0.0060113 |
| 578172.954140121.28 | 578172.95 | 4140121.3 | 0.000770486 | 0.002634161 | 0.003025089 | 0.004482602 | 0.00032577  | 0.000351832 | 5.86387E-05 | 0.000146998 | 0 | 0.000146998 | 0.000146998 | 0.000146998 | 1.5144E-06  | 0 | 0.0067824 0.0054557 |
| 578180.954140065.28 | 578180.95 | 4140065.3 | 0.000819919 | 0.002506825 | 0.002879783 | 0.004774371 | 0.000346975 | 0.000374733 | 6.24554E-05 | 0.000253371 | 0 | 0.000253371 | 0.000253371 | 0.000253371 | 2.58722E-06 | 0 | 0.0067757 0.0060054 |
| 578180.954140073.28 | 578180.95 | 4140073.3 | 0.000789031 | 0.002487947 | 0.002858078 | 0.00472784  | 0.000343593 | 0.00037108  | 6.18467E-05 | 0.000228478 | 0 | 0.000228478 | 0.000228478 | 0.000228478 | 2.33985E-06 | 0 | 0.0066539 0.0059018 |
| 578180.954140081.28 | 578180.95 | 4140081.3 | 0.000762346 | 0.002450841 | 0.002815409 | 0.004634668 | 0.000336822 | 0.000363768 | 6.06279E-05 | 0.000207255 | 0 | 0.000207255 | 0.000207255 | 0.000207255 | 2.12759E-06 | 0 | 0.0065037 0.0057519 |
| 578180.954140089.28 | 578180.95 | 4140089.3 | 0.000741822 | 0.002392254 | 0.002748047 | 0.004490396 | 0.000326337 | 0.000352444 | 5.87407E-05 | 0.000189065 | 0 | 0.000189065 | 0.000189065 | 0.000189065 | 1.94417E-06 | 0 | 0.006319 0.0055493  |
| 578180.954140097.28 | 578180.95 | 4140097.3 | 0.000726021 | 0.00230786  | 0.002651024 | 0.004289662 | 0.000311749 | 0.000336689 | 5.61148E-05 | 0.000173345 | 0 | 0.000173345 | 0.000173345 | 0.000173345 | 1.78458E-06 | 0 | 0.0060877 0.0052866 |
| 578180.954140105.28 | 578180.95 | 4140105.3 | 0.00071192  | 0.002193701 | 0.002519801 | 0.00402868  | 0.000292782 | 0.000316205 | 5.27008E-05 | 0.00015963  | 0 | 0.00015963  | 0.00015963  | 0.00015963  | 1.64468E-06 | 0 | 0.0057974 0.0049586 |
| 578180.954140113.28 | 578180.95 | 4140113.3 | 0.000696076 | 0.002047963 | 0.002352302 | 0.003708391 | 0.000269505 | 0.000291066 | 4.85109E-05 | 0.000147577 | 0 | 0.000147577 | 0.000147577 | 0.000147577 | 1.5216E-06  | 0 | 0.00544 0.0045656   |
| 578188.954140073.28 | 578188.95 | 4140073.3 | 0.000685311 | 0.001962927 | 0.002255108 | 0.003816798 | 0.000277384 | 0.000299574 | 4.9929E-05  | 0.000207609 | 0 | 0.000207609 | 0.000207609 | 0.000207609 | 2.13121E-06 | 0 | 0.0053685 0.0048111 |
| 578188.954140081.28 | 578188.95 | 4140081.3 | 0.000667912 | 0.001909947 | 0.00219421  | 0.003695749 | 0.000268586 | 0.000290073 | 4.83455E-05 | 0.00018962  | 0 | 0.00018962  | 0.00018962  | 0.00018962  | 1.94967E-06 | 0 | 0.0051997 0.0046356 |
| 578188.954140089.28 | 578188.95 | 4140089.3 | 0.000653957 | 0.00184169  | 0.002115746 | 0.003537308 | 0.000257072 | 0.000277638 | 4.62729E-05 | 0.000174018 | 0 | 0.000174018 | 0.000174018 | 0.000174018 | 1.79193E-06 | 0 | 0.0050057 0.0044218 |
| 578188.954140097.28 | 578188.95 | 4140097.3 | 0.000642469 | 0.001756741 | 0.002018096 | 0.003341433 | 0.000242837 | 0.000262264 | 4.37106E-05 | 0.000160393 | 0 | 0.000160393 | 0.000160393 | 0.000160393 | 1.6534E-06  | 0 | 0.0047818 0.004169  |
| 578188.954140105.28 | 578188.95 | 4140105.3 | 0.000630714 | 0.001654594 | 0.001900686 | 0.003110306 | 0.00022604  | 0.000244123 | 4.06871E-05 | 0.000148395 | 0 | 0.000148395 | 0.000148395 | 0.000148395 | 1.53096E-06 | 0 | 0.0045235 0.0038788 |
| 578188.954140113.28 | 578188.95 | 4140113.3 | 0.000616099 | 0.001536881 | 0.001765393 | 0.002850343 | 0.000207147 | 0.000223719 | 3.72865E-05 | 0.00013776  | 0 | 0.00013776  | 0.00013776  | 0.00013776  | 1.42236E-06 | 0 | 0.0042312 0.0035582 |
| 578196.954140081.28 | 578196.95 | 4140081.3 | 0.000590708 | 0.001508853 | 0.00173351  | 0.002969082 | 0.000215776 | 0.000233038 | 3.88397E-05 | 0.000174735 | 0 | 0.000174735 | 0.000174735 | 0.000174735 | 1.80008E-06 | 0 | 0.0042214 0.0037692 |
| 578196.954140089.28 | 578196.95 | 4140089.3 | 0.000581187 | 0.001444912 | 0.001660003 | 0.00281858  | 0.000204839 | 0.000221226 | 3.6871E-05  | 0.0001612   | 0 | 0.0001612   | 0.0001612   | 0.0001612   | 1.66249E-06 | 0 | 0.0040454 0.0035687 |
| 578196.954140097.28 | 578196.95 | 4140097.3 | 0.000572354 | 0.001371535 | 0.00157565  | 0.002646127 | 0.000192306 | 0.00020769  | 3.4615E-05  | 0.000149278 | 0 | 0.000149278 | 0.000149278 | 0.000149278 | 1.54085E-06 | 0 | 0.0038527 0.0033462 |
| 578196.954140105.28 | 578196.95 | 4140105.3 | 0.000562145 | 0.001289575 | 0.001481434 | 0.002456028 | 0.00017849  | 0.00019277  | 3.21283E-05 | 0.000138711 | 0 | 0.000138711 | 0.000138711 | 0.000138711 | 1.43277E-06 | 0 | 0.0036427 0.0031061 |
| 578204.954140097.28 | 578204.95 | 4140097.3 | 0.000513738 | 0.001099959 | 0.001263685 | 0.002136852 | 0.000155295 | 0.000167718 | 2.7953E-05  | 0.000139754 | 0 | 0.000139754 | 0.000139754 | 0.000139754 | 1.44408E-06 | 0 | 0.0031848 0.0027408 |
| 578001.424140037.45 | 578001.42 | 4140037.5 | 0.001207529 | 0.000454201 | 0.000522147 | 0.001068355 | 7.76421E-05 | 8.38534E-05 | 1.39756E-05 | 0.000157191 | 0 | 0.000157191 | 0.000157191 | 0.000157191 | 1.66977E-06 | 0 | 0.0025122 0.0015459 |
| 578001.424140045.45 | 578001.42 | 4140045.5 | 0.001291269 | 0.000465741 | 0.000535417 | 0.001097159 | 7.97354E-05 | 8.61142E-05 | 1.43524E-05 | 0.000164813 | 0 | 0.000164813 | 0.000164813 | 0.000164813 | 1.74086E-06 | 0 | 0.0026364 0.0015944 |
| 578009.424140029.45 | 578009.42 | 4140029.5 | 0.001399509 | 0.000546998 | 0.000628784 | 0.001264004 | 9.18608E-05 | 9.92096E-05 | 1.65349E-05 | 0.000180999 | 0 | 0.000180999 | 0.000180999 | 0.000180999 | 1.93042E-06 | 0 | 0.0029538 0.001819  |
| 578009.424140037.45 | 578009.42 | 4140037.5 | 0.001511774 | 0.000567004 | 0.000651784 | 0.001311221 | 9.52922E-05 | 0.000102916 | 1.71526E-05 | 0.000191324 | 0 | 0.000191324 | 0.000191324 | 0.000191324 | 2.02967E-06 | 0 | 0.0031304 0.0018941 |
| 578009.424140045.45 | 578009.42 | 4140045.5 | 0.001637601 | 0.000587805 | 0.000675695 | 0.001359867 | 9.88276E-05 | 0.000106734 | 1.7789E-05  | 0.000202632 | 0 | 0.000202632 | 0.000202632 | 0.000202632 | 2.13615E-06 | 0 | 0.0033242 0.0019728 |
| 578017.424140029.45 | 578017.42 | 4140029.5 | 0.001742083 | 0.000680924 | 0.000782677 | 0.001541718 | 0.000112043 | 0.000121007 | 2.01678E-05 | 0.000222744 | 0 | 0.000222744 | 0.000222744 | 0.000222744 | 2.36658E-06 | 0 | 0.0036713 0.0022226 |
| 578017.424140037.45 | 578017.42 | 4140037.5 | 0.00190384  | 0.000713571 | 0.000820201 | 0.001614741 | 0.00011735  | 0.000126738 | 2.11231E-05 | 0.000238276 | 0 | 0.000238276 | 0.000238276 | 0.000238276 | 2.51641E-06 | 0 | 0.0039353 0.0023379 |
| 578025.424140021.45 | 578025.42 | 4140021.5 | 0.001971694 | 0.00080505  | 0.000925274 | 0.001779872 | 0.000129351 | 0.000139699 | 2.32832E-05 | 0.000258578 | 0 | 0.000258578 | 0.000258578 | 0.000258578 | 2.74053E-06 | 0 | 0.0042425 0.0025688 |
| 578025.424140029.45 | 578025.42 | 4140029.5 | 0.00217113  | 0.000852998 | 0.000980377 | 0.001883294 | 0.000136867 | 0.000147817 | 2.46361E-05 | 0.000279884 | 0 | 0.000279884 | 0.000279884 | 0.000279884 | 2.94893E-06 | 0 | 0.0045889 0.0027307 |
| 578033.424140013.45 | 578033.42 | 4140013.5 | 0.002183614 | 0.000935489 | 0.001075095 | 0.002015411 | 0.000146469 | 0.000158186 | 2.63644E-05 | 0.000297284 | 0 | 0.000297284 | 0.000297284 | 0.000297284 | 3.13169E-06 | 0 | 0.0048151 0.0029178 |
| 578033.424140021.45 | 578033.42 | 4140021.5 | 0.002416142 | 0.001000604 | 0.001149919 | 0.002150931 | 0.000156318 | 0.000168823 | 2.81372E-05 | 0.000325115 | 0 | 0.000325115 | 0.000325115 | 0.000325115 | 3.40419E-06 | 0 | 0.005245 0.0031297  |
| 578041.424140013.45 | 578041.42 | 4140013.5 | 0.002617587 | 0.001151196 | 0.00132286  | 0.002407166 | 0.000174939 | 0.000188935 | 3.14891E-05 | 0.000371299 | 0 | 0.000371299 | 0.000371299 | 0.000371299 | 3.85548E-06 | 0 | 0.0058657 0.0035175 |
| 578041.424140021.45 | 578041.42 | 4140021.5 | 0.002918706 | 0.001244313 | 0.001429845 | 0.002592546 | 0.000188412 | 0.000203485 | 3.39141E-05 | 0.000412214 | 0 | 0.000412214 | 0.000412214 | 0.000412214 | 4.24801E-06 | 0 | 0.0064512 0.0038131 |
| 578049.424140005.45 | 578049.42 | 4140005.5 | 0.002755858 | 0.00129763  | 0.001490994 | 0.002639135 | 0.000191798 | 0.000207141 | 3.45236E-05 | 0.000415252 | 0 | 0.000415252 | 0.000415252 | 0.000415252 | 4.27448E-06 | 0 | 0.0064095 0.0038729 |
| 578049.424140013.45 | 578049.42 | 4140013.5 | 0.003072227 | 0.001412188 | 0.001622601 | 0.002860541 | 0.000207888 | 0.000224519 | 3.74199E-05 | 0.000463682 | 0 | 0.000463682 | 0.000463682 | 0.000463682 | 4.73697E-06 | 0 | 0.0070718 0.0042251 |
| 578049.424140021.45 | 578049.42 | 4140021.5 | 0.003443342 | 0.0015416   | 0.001771268 | 0.003107587 | 0.000225842 | 0.000243909 | 4.06516E-05 | 0.00052203  | 0 | 0.00052203  | 0.00052203  | 0.00052203  | 5.28465E-06 | 0 | 0.0078409 0.0046267 |
| 578049.424140029.45 | 578049.42 | 4140029.5 | 0.003883543 | 0.001689193 | 0.001940814 | 0.003385465 | 0.000246037 | 0.00026572  | 4.42866E-05 | 0.00059356  | 0 | 0.00059356  | 0.00059356  | 0.00059356  | 5.94337E-06 | 0 | 0.008745 0.0050903  |
| 578057.424139997.45 | 578057.42 | 4139997.5 | 0.002822766 | 0.001434611 | 0.001648244 | 0.002839271 | 0.000206342 | 0.00022285  | 3.71416E-05 | 0.000455111 | 0 | 0.000455111 | 0.000455111 | 0.000455111 | 4.64873E-06 | 0 | 0.006853 0.0041833  |
| 578057.424140005.45 | 578057.42 | 4140005.5 | 0.003137468 | 0.001567924 | 0.001801385 | 0.003089927 | 0.000224559 | 0.000242523 | 4.04206E-05 | 0.000509257 | 0 | 0.000509257 | 0.000509257 | 0.000509257 | 5.16323E-06 | 0 | 0.0075657 0.0045807 |
| 578057.424140013.45 | 578057.42 | 4140013.5 | 0.003505009 | 0.001720349 | 0.001976476 | 0.003373671 | 0.00024518  | 0.000264794 | 4.41323E-05 | 0.000574768 | 0 | 0.000574768 | 0.000574768 | 0.000574768 | 5.77646E-06 | 0 | 0.0083955 0.005039  |
| 578057.424140021.45 | 578057.42 | 4140021.5 | 0.003936809 | 0.001895225 | 0.002177348 | 0.00369525  | 0.00026855  | 0.000290034 | 4.8339E-05  | 0.000654912 | 0 | 0.000654912 | 0.000654912 | 0.000654912 | 6.51327E-06 | 0 | 0.0093675 0.0055702 |
| 578057.424140029.45 | 578057.42 | 4140029.5 | 0.004448277 | 0.002096981 | 0.002409087 | 0.00406087  | 0.000295121 | 0.000318731 | 5.31219E-05 | 0.000754424 | 0 | 0.000754424 | 0.000754424 | 0.000754424 | 7.40928E-06 | 0 | 0.0105163 0.006191  |
| 578057.424140037.45 | 578057.42 | 4140037.5 | 0.005060929 | 0.00233225  | 0.002679306 | 0.004480004 | 0.000325582 | 0.000351628 | 5.86047E-05 | 0.000880634 | 0 | 0.000880634 | 0.000880634 | 0.000880634 | 8.51767E-06 | 0 | 0.0118924 0.006927  |
| 578057.424140045.45 | 578057.42 | 4140045.5 | 0.005802879 | 0.002609256 | 0.002997442 | 0.004963451 | 0.000360716 | 0.000389573 | 6.49289E-05 | 0.001044532 | 0 | 0.001044532 | 0.001044532 | 0.001044532 | 9.91273E-06 | 0 | 0.0135636 0.0078127 |
| 578065.424140005.45 | 578065.42 | 4140005.5 | 0.003465274 | 0.001877612 | 0.002156976 | 0.00358641  | 0.00026064  | 0.000281491 | 4.69152E-05 | 0.000618617 | 0 | 0.000618617 | 0.000618617 | 0.000618617 | 6.18406E-06 | 0 | 0.008784 0.005372   |
| 578065.424140021.45 | 578065.42 | 4140021.5 | 0.004338365 | 0.002304359 | 0.002647124 | 0.004350119 | 0.000316142 | 0.000341434 | 5.69056E-05 | 0.000810339 | 0 | 0.000810339 | 0.000810339 | 0.000810339 | 7.92737E-06 | 0 | 0.0109674 0.0066363 |
| 578065.424140029.45 | 578065.42 | 4140029.5 | 0.004892597 | 0.002572437 | 0.002955012 | 0.004820504 | 0.000350327 | 0.000378354 | 6.30589E-05 | 0.000943562 | 0 | 0.000943562 | 0.000943562 | 0.000943562 | 9.09949E-06 | 0 | 0.0123702 0.0074454 |
| 578065.424140037.45 | 578065.42 | 4140037.5 | 0.005549001 | 0.002887352 | 0.003316674 | 0.005362572 | 0.000389722 | 0.0004209   | 7.01499E-05 | 0.001113984 | 0 | 0.001113984 | 0.001113984 | 0.001113984 | 1.05511E-05 | 0 | 0.0140511 0.0084117 |
| 578065.424140045.45 | 578065.42 | 4140045.5 | 0.006335473 | 0.003262729 | 0.003747749 | 0.005994901 | 0.000435676 | 0.00047053  | 7.84217E-05 | 0.001339251 | 0 | 0.001339251 | 0.001339251 | 0.001339251 | 1.23893E-05 | 0 | 0.0161029 0.009592  |
| 578065.424140053.45 | 578065.42 | 4140053.5 | 0.007290852 | 0.003718271 | 0.004270848 | 0.006744083 | 0.000490122 | 0.000529332 | 8.8222E-05  | 0.001651877 | 0 | 0.001651877 | 0.001651877 | 0.001651877 | 1.4783E-05  | 0 | 0.0186719 0.0110821 |

| E79072 424120090 4E | E70072 42  | 4120080 F | 0 002027546    | 0.001921546 | 0 002002428 | 0.002407296    | 0 00024762   | 0.00026744  | 4 457345 05 | 0.000590365  | 0 | 0.000580365 | 0.000580365  | 0.000590365  | E 9366E 06  | 0 | 0 0001460  | 0.005.090 |
|---------------------|------------|-----------|----------------|-------------|-------------|----------------|--------------|-------------|-------------|--------------|---|-------------|--------------|--------------|-------------|---|------------|-----------|
| 578073.424159989.45 | 576075.42  | 4159969.5 | 0.005027540    | 0.001821340 | 0.002092438 | 0.005407580    | 0.00024705   | 0.00020744  | 4.43734E-03 | 0.000380303  | 0 | 0.000380303 | 0.000360303  | 0.000360303  | 3.8200E-00  | 0 | 0.0081408  | 0.003089  |
| 578073.424140029.45 | 5/80/3.42  | 4140029.5 | 0.005149797    | 0.003107467 | 0.003569292 | 0.005647133    | 0.000410402  | 0.000443234 | 7.38724E-05 | 0.001162372  | 0 | 0.001162372 | 0.001162372  | 0.001162372  | 1.10076E-05 | 0 | 0.0142252  | 0.0088365 |
| 5/80/3.42414003/.45 | 578073.42  | 4140037.5 | 0.005/99501    | 0.003518807 | 0.004041657 | 0.00633591     | 0.000460459  | 0.000497295 | 8.28825E-05 | 0.001388881  | 0 | 0.001388881 | 0.001388881  | 0.001388881  | 1.28595E-05 | 0 | 0.0162206  | 0.0100843 |
| 578073.424140045.45 | 578073.42  | 4140045.5 | 0.006562837    | 0.004014768 | 0.004611163 | 0.007147434    | 0.000519436  | 0.00056099  | 9.34984E-05 | 0.001696687  | 0 | 0.001696687 | 0.001696687  | 0.001696687  | 1.52197E-05 | 0 | 0.0186756  | 0.0116365 |
| 578081.424139981.45 | 578081.42  | 4139981.5 | 0.002881962    | 0.001909823 | 0.002193686 | 0.003486248    | 0.000253361  | 0.00027363  | 4.5605E-05  | 0.000606561  | 0 | 0.000606561 | 0.000606561  | 0.000606561  | 6.07475E-06 | 0 | 0.0082442  | 0.0052324 |
| 578081.424139989.45 | 578081.42  | 4139989.5 | 0.003157275    | 0.002104688 | 0.002417487 | 0.00382739     | 0.000278153  | 0.000300406 | 5.00676E-05 | 0.000682199  | 0 | 0.000682199 | 0.000682199  | 0.000682199  | 6.78367E-06 | 0 | 0.0090939  | 0.0057771 |
| 578081.424139997.45 | 578081.42  | 4139997.5 | 0.003467912    | 0.002329379 | 0.002675539 | 0.004218193    | 0.000306555  | 0.000331079 | 5.51798E-05 | 0.00077333   | 0 | 0.00077333  | 0.00077333   | 0.00077333   | 7.62444E-06 | 0 | 0.0100747  | 0.0064101 |
| 578081.424140005.45 | 578081.42  | 4140005.5 | 0.003818856    | 0.002589854 | 0.002974682 | 0.004667424    | 0.000339202  | 0.000366338 | 6.10564E-05 | 0.000884272  | 0 | 0.000884272 | 0.000884272  | 0.000884272  | 8.6283E-06  | 0 | 0.011213   | 0.0071501 |
| 578081 424140021 45 | 578081 42  | 4140021 5 | 0.004669915    | 0.003255607 | 0.003739232 | 0.005797801    | 0.000421352  | 0.00045506  | 7 58433E-05 | 0.001195598  | 0 | 0.001195598 | 0.001195598  | 0.001195598  | 1 13305E-05 | 0 | 0.01/1318  | 0.0090767 |
| 578081.424140021.45 | 578081.42  | 4140021.5 | 0.004003313    | 0.003233007 | 0.003733232 | 0.005757801    | 0.000421332  | 0.00043300  | 7.30433L-05 | 0.0011333338 | 0 | 0.001133338 | 0.0011333338 | 0.0011333338 | 1.133031-05 | 0 | 0.0141318  | 0.0030707 |
| 578081.424140029.45 | 578081.42  | 4140029.5 | 0.005186805    | 0.003686848 | 0.004234444 | 0.006515899    | 0.000473539  | 0.000511422 | 8.5237E-05  | 0.001421644  | 0 | 0.001421644 | 0.001421644  | 0.001421644  | 1.31/94E-05 | 0 | 0.0160366  | 0.0103573 |
| 578081.424140037.45 | 578081.42  | 4140037.5 | 0.005///06/    | 0.00420705  | 0.004831782 | 0.00/365919    | 0.000535314  | 0.0005/8139 | 9.63565E-05 | 0.001/26/09  | 0 | 0.001/26/09 | 0.001/26/09  | 0.001/26/09  | 1.55151E-05 | 0 | 0.0183657  | 0.0119483 |
| 578089.424139981.45 | 578089.42  | 4139981.5 | 0.002933625    | 0.002164005 | 0.002485461 | 0.003848406    | 0.000279681  | 0.000302055 | 5.03425E-05 | 0.000703821  | 0 | 0.000703821 | 0.000703821  | 0.000703821  | 6.99233E-06 | 0 | 0.0090411  | 0.0058448 |
| 578089.424139989.45 | 578089.42  | 4139989.5 | 0.003195703    | 0.00239338  | 0.002748882 | 0.004241536    | 0.000308251  | 0.000332911 | 5.54852E-05 | 0.000796571  | 0 | 0.000796571 | 0.000796571  | 0.000796571  | 7.85261E-06 | 0 | 0.0099866  | 0.0064837 |
| 578089.424139997.45 | 578089.42  | 4139997.5 | 0.003485434    | 0.002656898 | 0.003051508 | 0.004690069    | 0.000340848  | 0.000368116 | 6.13526E-05 | 0.000908357  | 0 | 0.000908357 | 0.000908357  | 0.000908357  | 8.86708E-06 | 0 | 0.0110719  | 0.0072246 |
| 578089.424140005.45 | 578089.42  | 4140005.5 | 0.00380721     | 0.002963871 | 0.00340403  | 0.005208502    | 0.000378525  | 0.000408807 | 6.81345E-05 | 0.00104594   | 0 | 0.00104594  | 0.00104594   | 0.00104594   | 1.00844E-05 | 0 | 0.0123351  | 0.0080978 |
| 578089 424140013 45 | 578089 42  | 4140013 5 | 0.004165796    | 0.003326361 | 0.003820298 | 0.005815421    | 0.000422632  | 0 000456443 | 7 60738E-05 | 0.001219475  | 0 | 0.001219475 | 0.001219475  | 0.001219475  | 1 15713E-05 | 0 | 0.0138275  | 0.009145  |
| 578080 424140021 45 | 578080 42  | 4140021.5 | 0.004564461    | 0.002757279 | 0.004215244 | 0.006528660    | 0.000474467  | 0.000512425 | 9 54041E-05 | 0.001//29/0  | ő | 0.001442940 | 0.001//29/0  | 0.001//29/0  | 1 240265-05 | 0 | 0.0156102  | 0.0104167 |
| 578089.424140021.45 | 578089.42  | 4140021.5 | 0.004304401    | 0.003737378 | 0.004313244 | 0.000328003    | 0.000474407  | 0.000512425 | 0.040412-00 | 0.001443843  | 0 | 0.001443845 | 0.001443843  | 0.001443843  | 1.540302-05 | 0 | 0.0130102  | 0.0104107 |
| 578089.424140029.45 | 578089.42  | 4140029.5 | 0.005007256    | 0.004276109 | 0.00491089  | 0.007374098    | 0.000535908  | 0.000578781 | 9.04035E-05 | 0.001/45/05  | 0 | 0.001/45/05 | 0.001/45/05  | 0.001/45/05  | 1.57068E-05 | 0 | 0.0177821  | 0.0119959 |
| 578097.424139989.45 | 5/809/.42  | 4139989.5 | 0.003140078    | 0.002666393 | 0.003062255 | 0.004620404    | 0.000335785  | 0.000362648 | 6.04413E-05 | 0.000925046  | 0 | 0.000925046 | 0.000925046  | 0.000925046  | 9.0338E-06  | 0 | 0.0107793  | 0.00/1/8  |
| 578097.424139997.45 | 578097.42  | 4139997.5 | 0.003397177    | 0.002968046 | 0.003408662 | 0.005125979    | 0.000372528  | 0.00040233  | 6.7055E-05  | 0.001064169  | 0 | 0.001064169 | 0.001064169  | 0.001064169  | 1.02729E-05 | 0 | 0.0119693  | 0.0080394 |
| 578097.424140005.45 | 578097.42  | 4140005.5 | 0.003674993    | 0.003317953 | 0.003810472 | 0.005707951    | 0.000414822  | 0.000448008 | 7.4668E-05  | 0.001237188  | 0 | 0.001237188 | 0.001237188  | 0.001237188  | 1.17556E-05 | 0 | 0.0133525  | 0.0090569 |
| 578097.424140013.45 | 578097.42  | 4140013.5 | 0.003976882    | 0.003731888 | 0.004285799 | 0.00639061     | 0.000464434  | 0.000501589 | 8.35981E-05 | 0.001461054  | 0 | 0.001461054 | 0.001461054  | 0.001461054  | 1.35822E-05 | 0 | 0.0150003  | 0.0102923 |
| 578097.424140021.45 | 578097.42  | 4140021.5 | 0.004303303    | 0.004226038 | 0.004853219 | 0.007196225    | 0.000522982  | 0.00056482  | 9.41367E-05 | 0.001761999  | 0 | 0.001761999 | 0.001761999  | 0.001761999  | 1.58669E-05 | 0 | 0.0170007  | 0.0118239 |
| 578105 424140005 45 | 579105 42  | 4140005 5 | 0.002444005    | 0.002616046 | 0.004152664 | 0.006121627    | 0.000444996  | 0.000480477 | 8 00704E-05 | 0.001/01000  | ő | 0.001/01000 | 0.001/72929  | 0.001/01999  | 1 27065-05  | 0 | 0.01/2/0/  | 0.0100064 |
| 578105.424140005.45 | 578105.42  | 4140003.5 | 0.003444003    | 0.003010340 | 0.004133004 | 0.000121027    | 0.0004444880 | 0.000480477 | 8.00734L-05 | 0.001472828  | 0 | 0.001472828 | 0.001472828  | 0.001472828  | 1.57002-05  | 0 | 0.0142404  | 0.0100004 |
| 578105.424140013.45 | 578105.42  | 4140013.5 | 0.003682624    | 0.004068451 | 0.004672123 | 0.006860807    | 0.000498605  | 0.000538494 | 8.97489E-05 | 0.00177493   | 0 | 0.00177493  | 0.00177493   | 0.00177493   | 1.59926E-05 | 0 | 0.0160628  | 0.0114638 |
| 578172.954140089.28 | 5/81/2.95  | 4140089.3 | 0.000851973    | 0.003141885 | 0.003608838 | 0.005/16841    | 0.000415468  | 0.000448706 | 7.47843E-05 | 0.000206985  | 0 | 0.000206985 | 0.000206985  | 0.000206985  | 2.1242/E-06 | 0 | 0.0080915  | 0.0069971 |
| 578172.954140097.28 | 578172.95  | 4140097.3 | 0.000828735    | 0.00308649  | 0.003545079 | 0.005544537    | 0.000402946  | 0.000435182 | 7.25303E-05 | 0.000188642  | 0 | 0.000188642 | 0.000188642  | 0.000188642  | 1.93876E-06 | 0 | 0.0079101  | 0.0067619 |
| 578172.954140105.28 | 578172.95  | 4140105.3 | 0.000810147    | 0.002989738 | 0.003433802 | 0.005288303    | 0.000384324  | 0.00041507  | 6.91784E-05 | 0.000172822  | 0 | 0.000172822 | 0.000172822  | 0.000172822  | 1.77783E-06 | 0 | 0.0076485  | 0.0064351 |
| 578172.954140113.28 | 578172.95  | 4140113.3 | 0.000792204    | 0.002843078 | 0.003265204 | 0.004944171    | 0.000359315  | 0.00038806  | 6.46767E-05 | 0.000159073  | 0 | 0.000159073 | 0.000159073  | 0.000159073  | 1.6376E-06  | 0 | 0.0072833  | 0.0060113 |
| 578172.954140121.28 | 578172.95  | 4140121.3 | 0.000770486    | 0.002634161 | 0.003025089 | 0.004482602    | 0.00032577   | 0.000351832 | 5.86387E-05 | 0.000146998  | 0 | 0.000146998 | 0.000146998  | 0.000146998  | 1.5144E-06  | 0 | 0.0067824  | 0.0054557 |
| 578180.954140065.28 | 578180.95  | 4140065.3 | 0.000819919    | 0.002506825 | 0.002879783 | 0.004774371    | 0.000346975  | 0.000374733 | 6.24554E-05 | 0.000253371  | 0 | 0.000253371 | 0.000253371  | 0.000253371  | 2.58722E-06 | 0 | 0.0067757  | 0.0060054 |
| 578180 95/1/0073 28 | 578180.95  | 4140073 3 | 0.000789031    | 0.002487947 | 0.002858078 | 0.00472784     | 0.000343593  | 0.00037108  | 6 18467E-05 | 0.000228478  | 0 | 0.000228478 | 0.000228/178 | 0.000228478  | 2 33985E-06 | 0 | 0.0066539  | 0.0059018 |
| 578180.054140091.28 | 570100.55  | 4140091 3 | 0.000763346    | 0.002407547 | 0.002030070 | 0.00472704     | 0.000345555  | 0.000363769 | 6.06370E.05 | 0.000220470  | 0 | 0.000220470 | 0.000220470  | 0.000220470  | 2.333050 00 | 0 | 0.00000000 | 0.0053010 |
| 576160.954140061.26 | 576160.95  | 4140061.5 | 0.000702540    | 0.002430841 | 0.002813409 | 0.004034008    | 0.000550822  | 0.000303708 | 0.002/9E-05 | 0.000207255  | 0 | 0.000207255 | 0.000207233  | 0.000207255  | 2.12/392-00 | 0 | 0.0003037  | 0.0037319 |
| 578180.954140089.28 | 578180.95  | 4140089.3 | 0.000741822    | 0.002392254 | 0.002748047 | 0.004490396    | 0.000326337  | 0.000352444 | 5.8/40/E-05 | 0.000189065  | 0 | 0.000189065 | 0.000189065  | 0.000189065  | 1.94417E-06 | 0 | 0.006319   | 0.0055493 |
| 578180.954140097.28 | 578180.95  | 4140097.3 | 0.000726021    | 0.00230786  | 0.002651024 | 0.004289662    | 0.000311749  | 0.000336689 | 5.61148E-05 | 0.0001/3345  | 0 | 0.0001/3345 | 0.0001/3345  | 0.0001/3345  | 1.78458E-06 | 0 | 0.0060877  | 0.0052866 |
| 578180.954140105.28 | 578180.95  | 4140105.3 | 0.00071192     | 0.002193701 | 0.002519801 | 0.00402868     | 0.000292782  | 0.000316205 | 5.27008E-05 | 0.00015963   | 0 | 0.00015963  | 0.00015963   | 0.00015963   | 1.64468E-06 | 0 | 0.0057974  | 0.0049586 |
| 578180.954140113.28 | 578180.95  | 4140113.3 | 0.000696076    | 0.002047963 | 0.002352302 | 0.003708391    | 0.000269505  | 0.000291066 | 4.85109E-05 | 0.000147577  | 0 | 0.000147577 | 0.000147577  | 0.000147577  | 1.5216E-06  | 0 | 0.00544    | 0.0045656 |
| 578188.954140073.28 | 578188.95  | 4140073.3 | 0.000685311    | 0.001962927 | 0.002255108 | 0.003816798    | 0.000277384  | 0.000299574 | 4.9929E-05  | 0.000207609  | 0 | 0.000207609 | 0.000207609  | 0.000207609  | 2.13121E-06 | 0 | 0.0053685  | 0.0048111 |
| 578188.954140081.28 | 578188.95  | 4140081.3 | 0.000667912    | 0.001909947 | 0.00219421  | 0.003695749    | 0.000268586  | 0.000290073 | 4.83455E-05 | 0.00018962   | 0 | 0.00018962  | 0.00018962   | 0.00018962   | 1.94967E-06 | 0 | 0.0051997  | 0.0046356 |
| 578188 95/1/0089 28 | 578188 95  | 4140089.3 | 0.000653957    | 0.00184169  | 0.002115746 | 0.003537308    | 0.000257072  | 0.000277638 | 4 62729E-05 | 0.000174018  | 0 | 0.00017/018 | 0.00017/018  | 0.000174018  | 1 79193E-06 | 0 | 0.0050057  | 0.0044218 |
| 578188 054140007 28 | 579199 05  | 4140005.5 | 0.000643469    | 0.001756741 | 0.002113740 | 0.003337300    | 0.000237072  | 0.000277050 | 4 271065-05 | 0.0001/4010  | 0 | 0.000174010 | 0.000174010  | 0.0001/4010  | 1.6524E-06  | 0 | 0.0030037  | 0.0044210 |
| 578188.554140057.28 | 578188.55  | 4140097.3 | 0.000042403    | 0.001/50/41 | 0.002018030 | 0.003341433    | 0.000242837  | 0.000202204 | 4.371002-05 | 0.000100393  | 0 | 0.000100393 | 0.000100393  | 0.000100355  | 1.00046-00  | 0 | 0.0047818  | 0.004103  |
| 578188.954140105.28 | 5/8188.95  | 4140105.3 | 0.000630714    | 0.001654594 | 0.001900686 | 0.003110306    | 0.00022604   | 0.000244123 | 4.068/1E-05 | 0.000148395  | 0 | 0.000148395 | 0.000148395  | 0.000148395  | 1.53096E-06 | 0 | 0.0045235  | 0.0038788 |
| 578188.954140113.28 | 5/8188.95  | 4140113.3 | 0.000616099    | 0.001536881 | 0.001/65393 | 0.002850343    | 0.00020/14/  | 0.000223719 | 3.72865E-05 | 0.00013776   | 0 | 0.00013776  | 0.00013776   | 0.00013776   | 1.42236E-06 | 0 | 0.0042312  | 0.0035582 |
| 578196.954140081.28 | 578196.95  | 4140081.3 | 0.000590708    | 0.001508853 | 0.00173351  | 0.002969082    | 0.000215776  | 0.000233038 | 3.88397E-05 | 0.000174735  | 0 | 0.000174735 | 0.000174735  | 0.000174735  | 1.80008E-06 | 0 | 0.0042214  | 0.0037692 |
| 578196.954140089.28 | 578196.95  | 4140089.3 | 0.000581187    | 0.001444912 | 0.001660003 | 0.00281858     | 0.000204839  | 0.000221226 | 3.6871E-05  | 0.0001612    | 0 | 0.0001612   | 0.0001612    | 0.0001612    | 1.66249E-06 | 0 | 0.0040454  | 0.0035687 |
| 578196.954140097.28 | 578196.95  | 4140097.3 | 0.000572354    | 0.001371535 | 0.00157565  | 0.002646127    | 0.000192306  | 0.00020769  | 3.4615E-05  | 0.000149278  | 0 | 0.000149278 | 0.000149278  | 0.000149278  | 1.54085E-06 | 0 | 0.0038527  | 0.0033462 |
| 578196.954140105.28 | 578196.95  | 4140105.3 | 0.000562145    | 0.001289575 | 0.001481434 | 0.002456028    | 0.00017849   | 0.00019277  | 3.21283E-05 | 0.000138711  | 0 | 0.000138711 | 0.000138711  | 0.000138711  | 1.43277E-06 | 0 | 0.0036427  | 0.0031061 |
| 578204.954140097.28 | 578204.95  | 4140097.3 | 0.000513738    | 0.001099959 | 0.001263685 | 0.002136852    | 0.000155295  | 0.000167718 | 2.7953E-05  | 0.000139754  | 0 | 0.000139754 | 0.000139754  | 0.000139754  | 1.44408E-06 | 0 | 0.0031848  | 0.0027408 |
| 578001 424140037 45 | 578001 42  | 4140037.5 | 0.001207529    | 0.000454201 | 0.000522147 | 0.001068355    | 7 76421E-05  | 8 38534F-05 | 1 39756E-05 | 0.000157191  | 0 | 0.000157191 | 0.000157191  | 0.000157191  | 1 66977E-06 | 0 | 0.0025122  | 0.0015459 |
| 578001.424140037.45 | 570001.42  | 4140037.5 | 0.001207325    | 0.000454201 | 0.000522147 | 0.001000000000 | 7.072545.05  | 0.50554E 05 | 1.435345.05 | 0.000157151  | 0 | 0.000157151 | 0.00015/151  | 0.00015/151  | 1 740965 06 | 0 | 0.0025122  | 0.0015044 |
| 578001.424140045.45 | 576001.42  | 4140045.5 | 0.001291209    | 0.000403741 | 0.000555417 | 0.001097139    | 7.97554E-05  | 0.01142E-05 | 1.45524E-05 | 0.000104815  | 0 | 0.000104815 | 0.000104615  | 0.000104615  | 1.74060E-00 | 0 | 0.0020504  | 0.0013944 |
| 578009.424140029.45 | 578009.42  | 4140029.5 | 0.001399509    | 0.000546998 | 0.000628784 | 0.001264004    | 9.18608E-05  | 9.92096E-05 | 1.65349E-05 | 0.000180999  | 0 | 0.000180999 | 0.000180999  | 0.000180999  | 1.93042E-06 | 0 | 0.0029538  | 0.001819  |
| 578009.424140037.45 | 578009.42  | 4140037.5 | 0.001511774    | 0.000567004 | 0.000651784 | 0.001311221    | 9.52922E-05  | 0.000102916 | 1.71526E-05 | 0.000191324  | 0 | 0.000191324 | 0.000191324  | 0.000191324  | 2.02967E-06 | 0 | 0.0031304  | 0.0018941 |
| 578009.424140045.45 | 578009.42  | 4140045.5 | 0.001637601    | 0.000587805 | 0.000675695 | 0.001359867    | 9.88276E-05  | 0.000106734 | 1.7789E-05  | 0.000202632  | 0 | 0.000202632 | 0.000202632  | 0.000202632  | 2.13615E-06 | 0 | 0.0033242  | 0.0019728 |
| 578017.424140029.45 | 578017.42  | 4140029.5 | 0.001742083    | 0.000680924 | 0.000782677 | 0.001541718    | 0.000112043  | 0.000121007 | 2.01678E-05 | 0.000222744  | 0 | 0.000222744 | 0.000222744  | 0.000222744  | 2.36658E-06 | 0 | 0.0036713  | 0.0022226 |
| 578017.424140037.45 | 578017.42  | 4140037.5 | 0.00190384     | 0.000713571 | 0.000820201 | 0.001614741    | 0.00011735   | 0.000126738 | 2.11231E-05 | 0.000238276  | 0 | 0.000238276 | 0.000238276  | 0.000238276  | 2.51641E-06 | 0 | 0.0039353  | 0.0023379 |
| 578025 424140021 45 | 570025 42  | 4140021 5 | 0.001071004    | 0.000005.05 | 0.000035374 | 0.001770072    | 0.000120251  | 0.000120000 | 2 220225 05 | 0.00035.0570 | - | 0.000350570 | 0.00035.0570 | 0.000350570  | 3 740535 00 | 0 | 0.0042425  | 0.0035688 |
| 578025.424140021.45 | 578025.42  | 4140021.5 | 0.001971694    | 0.00080505  | 0.000925274 | 0.001779872    | 0.000129351  | 0.000139699 | 2.32832E-05 | 0.000258578  | 0 | 0.000258578 | 0.000258578  | 0.000258578  | 2.74053E-06 | 0 | 0.0042425  | 0.0025688 |
| 578025.424140029.45 | 578025.42  | 4140029.5 | 0.00217113     | 0.000852998 | 0.000980377 | 0.001883294    | 0.000136867  | 0.000147817 | 2.46361E-05 | 0.000279884  | 0 | 0.000279884 | 0.000279884  | 0.000279884  | 2.94893E-06 | 0 | 0.0045889  | 0.0027307 |
| 578033.424140013.45 | 578033.42  | 4140013.5 | 0.002183614    | 0.000935489 | 0.001075095 | 0.002015411    | 0.000146469  | 0.000158186 | 2.63644E-05 | 0.000297284  | 0 | 0.000297284 | 0.000297284  | 0.000297284  | 3.13169E-06 | 0 | 0.0048151  | 0.0029178 |
| 578022 424140021 45 | E 70022 42 | 4140021 5 | 0.002416142    | 0.001000604 | 0.001140010 | 0.002150021    | 0.000156319  | 0.000169922 | 2 912725 05 | 0.000335115  | - | 0.000225115 | 0.000335115  | 0.000225115  | 2 404105 00 | - | 0.005245   | 0.0021207 |
| 570055.424140021.45 | 5/0055.42  | 4140021.5 | 0.002410142    | 0.001000004 | 0.001149919 | 0.002120331    | 0.000120319  | 0.000108823 | 2.013/2E-U3 | 0.000325115  | U | 0.000525115 | 0.000325115  | 0.000325115  | 3.40419E-00 | U | 0.005245   | 0.0031297 |
| 578041.424140013.45 | 578041.42  | 4140013.5 | 0.002617587    | 0.001151196 | 0.00132286  | 0.002407166    | 0.000174939  | 0.000188935 | 3.14891E-05 | 0.000371299  | 0 | 0.000371299 | 0.000371299  | 0.000371299  | 3.85548E-06 | 0 | 0.0058657  | 0.0035175 |
| 578041.424140021.45 | 578041.42  | 4140021.5 | 0.002918706    | 0.001244313 | 0.001429845 | 0.002592546    | 0.000188412  | 0.000203485 | 3.39141E-05 | 0.000412214  | 0 | 0.000412214 | 0.000412214  | 0.000412214  | 4.24801E-06 | 0 | 0.0064512  | 0.0038131 |
| E78040 42414000E 45 | E 78040 42 | 4140005 5 | 0.003755959    | 0.00120762  | 0.001400004 | 0.003630135    | 0.000101702  | 0.000207141 | 3 453365 05 | 0.000415252  | 0 | 0.000415252 | 0.000415353  | 0.000415252  | 4 374495 00 | 0 | 0.0064005  | 0.0039730 |
| 370049.424140005.45 | 578049.42  | 4140005.5 | 0.002/55858    | 0.00129703  | 0.001490994 | 0.002039135    | 0.000131138  | 0.000207141 | 5.45230E-05 | 0.000415252  | U | 0.000415252 | 0.000415252  | 0.000415252  | 4.2/448E-Ub | U | 0.0064095  | 0.0038/29 |
| 578049.424140013.45 | 578049.42  | 4140013.5 | 0.003072227    | 0.001412188 | 0.001622601 | 0.002860541    | 0.000207888  | 0.000224519 | 3.74199E-05 | 0.000463682  | 0 | 0.000463682 | 0.000463682  | 0.000463682  | 4.73697E-06 | 0 | 0.0070718  | 0.0042251 |
| 578049.424140021.45 | 578049.42  | 4140021.5 | 0.003443342    | 0.0015416   | 0.001771268 | 0.003107587    | 0.000225842  | 0.000243909 | 4.06516E-05 | 0.00052203   | 0 | 0.00052203  | 0.00052203   | 0.00052203   | 5.28465E-06 | 0 | 0.0078409  | 0.0046267 |
| 578049 424140020 45 | 578040 42  | 4140020 5 | 0.002803543    | 0.001690102 | 0.001040914 | 0.002295465    | 0.000246027  | 0.00026572  | A 439665 OF | 0.00050350   | 0 | 0.00050356  | 0.00050356   | 0.00050350   | 5 042275 00 | 0 | 0.009745   | 0.0050003 |
| 370043.424140023.45 | J/0043.42  | +140029.5 | 0.000000003043 | 0.001003133 | 0.001940014 | 0.000000400    | 0.000240037  | 0.00020372  | +.42000E-05 | 0.00033550   | U | 0.00033330  | 0.00033330   | 0.00033220   | J.3433/E-U0 | U | 0.006745   | 0.0050903 |

Cancer Risk Summary & Maximum Annual GLC for Chronic Calculations

#### **Cancer Risk Summary**

|             |                        |           |              | Max Risk: | 5.97       |
|-------------|------------------------|-----------|--------------|-----------|------------|
| XY          | х                      | Y         | Offroad Risk | Haul Risk | Total Risk |
| 578048.554  | 578048.55              | 4140246.4 | 0.349640645  | 0.004125  | 0.3537661  |
| 578066.414  | 578066.41              | 4140268   | 0.190106392  | 0.003123  | 0.1932292  |
| 578068 454  | 578068 45              | 4140241 3 | 0 31807      | 0 0041    | 0 3221702  |
| 578054 604  | 578054 60              | A140252 A | 0.284654264  | 0.0072    | 0.3221702  |
| 578054.034. | 578054.09              | 4140255.4 | 0.284034204  | 0.00373   | 0.2003030  |
| 578001.934. | 578001.93              | 4140261.7 | 0.224502112  | 0.003351  | 0.227855   |
| 5/8046.9/4. | 578046.97              | 4140254.6 | 0.298612064  | 0.003766  | 0.3023779  |
| 5780634140  | 578063                 | 4140234.4 | 0.391997741  | 0.004563  | 0.396561   |
| 578076.524: | 578076.52              | 4140257.2 | 0.208429126  | 0.003367  | 0.2117957  |
| 578071.934: | 578071.93              | 4140251.7 | 0.245582375  | 0.003605  | 0.2491879  |
| 578071.934: | 578071.93              | 4140271.7 | 0.166969076  | 0.002983  | 0.1699523  |
| 578057.7414 | 578057.7               | 4140269.4 | 0.202418616  | 0.003146  | 0.2055642  |
| 578081.934: | 578081.93              | 4140221.7 | 0.422794608  | 0.004963  | 0.4277579  |
| 578081.934: | 578081.93              | 4140231.7 | 0.335799673  | 0.004363  | 0.3401624  |
| 578081.934: | 578081.93              | 4140251.7 | 0.217189226  | 0.003492  | 0.2206816  |
| 578081.934: | 578081.93              | 4140261.7 | 0.17814241   | 0.003177  | 0.1813189  |
| 578066.734: | 578066.73              | 4140279   | 0.15542648   | 0.002837  | 0.1582632  |
| 578091.934  | 578091.93              | 4140221.7 | 0.37961163   | 0.004711  | 0.3843228  |
| 578091 934  | 578091 93              | 4140231 7 | 0 295270808  | 0.004176  | 0 2994466  |
| 578001 03/  | 578091.93              | 4140231.7 | 0.23/103563  | 0.004170  | 0.2378/31  |
| 578091.934. | 578091.93<br>E79091 E6 | 4140241.7 | 0.234103505  | 0.00374   | 0.2378431  |
| 578081.504. | 576061.50              | 4140270.4 | 0.132309349  | 0.002949  | 0.1352567  |
| 578101.934. | 578101.93              | 4140211.7 | 0.430775468  | 0.004981  | 0.4357565  |
| 5/8101.934. | 578101.93              | 4140221.7 | 0.32619017   | 0.004425  | 0.3306148  |
| 5/8101.9342 | 578101.93              | 4140231.7 | 0.252895386  | 0.003968  | 0.256863   |
| 578101.934: | 578101.93              | 4140241.7 | 0.200460305  | 0.003594  | 0.2040541  |
| 578101.934: | 578101.93              | 4140251.7 | 0.162725428  | 0.003278  | 0.1660033  |
| 578114.354: | 578114.35              | 4140204.9 | 0.419419102  | 0.004951  | 0.4243701  |
| 578111.934: | 578111.93              | 4140211.7 | 0.357072013  | 0.004623  | 0.3616951  |
| 578111.934: | 578111.93              | 4140221.7 | 0.270489654  | 0.004158  | 0.2746481  |
| 578111.934: | 578111.93              | 4140231.7 | 0.212214415  | 0.00378   | 0.2159947  |
| 578111.934: | 578111.93              | 4140241.7 | 0.169938279  | 0.003454  | 0.1733924  |
| 578121.934: | 578121.93              | 4140201.7 | 0.388749572  | 0.004876  | 0.3936257  |
| 578121.934: | 578121.93              | 4140211.7 | 0.290436363  | 0.00435   | 0.2947864  |
| 578121.934: | 578121.93              | 4140221.7 | 0.22395962   | 0.003949  | 0.2279088  |
| 578121.934: | 578121.93              | 4140231.7 | 0.17805114   | 0.003612  | 0.1816634  |
| 578121.934; | 578121.93              | 4140241.7 | 0.144292305  | 0.003323  | 0.1476152  |
| 578133.384: | 578133.38              | 4140194.4 | 0.363946759  | 0.004896  | 0.3688424  |
| 578131.934  | 578131.93              | 4140201.7 | 0.310291421  | 0.004568  | 0.3148591  |
| 578131 934  | 578131.93              | 4140211 7 | 0.238607405  | 0.004131  | 0 2427381  |
| 578121 02/  | 578121 02              | 4140211.7 | 0.127017605  | 0.004131  | 0.1015800  |
| E70121 024  | 570131.33              | 4140221.7 | 0.157617033  | 0.003772  | 0.1515055  |
| 578131.934. | 578131.93              | 4140231.7 | 0.150052052  | 0.003408  | 0.1541211  |
| 578141.934. | 578141.93              | 4140201.7 | 0.251817601  | 0.004304  | 0.2501214  |
| 578141.934. | 578141.93              | 4140211.7 | 0.197832441  | 0.003929  | 0.2017611  |
| 5/8141.934. | 578141.93              | 4140221.7 | 0.158158639  | 0.00361   | 0.161/683  |
| 578141.934: | 578141.93              | 4140231.7 | 0.128774245  | 0.003334  | 0.1321085  |
| 578151.934: | 578151.93              | 4140221.7 | 0.134971326  | 0.003459  | 0.1384301  |
| 578169.174: | 578169.17              | 4140166.3 | 0.423374262  | 0.004987  | 0.4283616  |
| 578175.314: | 578175.31              | 4140159.1 | 0.447644831  | 0.005093  | 0.4527376  |
| 578171.934: | 578171.93              | 4140171.7 | 0.344202569  | 0.004678  | 0.3488807  |
| 578171.934: | 578171.93              | 4140181.7 | 0.260078601  | 0.004312  | 0.2643906  |
| 578181.934: | 578181.93              | 4140151.7 | 0.448518952  | 0.00518   | 0.4536988  |
| 578181.934: | 578181.93              | 4140161.7 | 0.363233246  | 0.004774  | 0.3680075  |
| 5781804140  | 578180                 | 4140184.6 | 0.213081137  | 0.004044  | 0.2171249  |
| 578181.934: | 578181.93              | 4140191.7 | 0.174004102  | 0.003804  | 0.177808   |
| 578191.934: | 578191.93              | 4140141.7 | 0.419592574  | 0.005263  | 0.4248559  |
| 578191.934: | 578191.93              | 4140151.7 | 0.356631359  | 0.004867  | 0.3614983  |
| 578191.934  | 578191.93              | 4140161.7 | 0.296600513  | 0.004512  | 0.301113   |
| 578191.934  | 578191.93              | 4140191.7 | 0.153162904  | 0.003649  | 0.1568123  |
| 578191.934: | 578191.93              | 4140201.7 | 0.123131147  | 0.003418  | 0.1265495  |
|             |                        |           |              |           |            |

#### Max GLC for Chronic Calcs

|                  |           |           | Max GLC:  | 0.218063   |
|------------------|-----------|-----------|-----------|------------|
| XY               | Х         | Y         | 2027      | 2026       |
| 578048.55414024  | 578048.55 | 4140246.4 | 0.0098484 | 0.0156895  |
| 578066.41414026  | 578066.41 | 4140268   | 0.005424  | 0.0082026  |
| 578068.45414024  | 578068.45 | 4140241.3 | 0.0090937 | 0.0134269  |
| 578054.69414025  | 578054.69 | 4140253.4 | 0.0080659 | 0.0125093  |
| 578061.93414026  | 578061.93 | 4140261.7 | 0.0063923 | 0.0097227  |
| 578046.97414025  | 578046.97 | 4140254.6 | 0.0084142 | 0.0134162  |
| 5780634140234.   | 578063    | 4140234.4 | 0.0111642 | 0.016761   |
| 578076.52414025  | 578076.52 | 4140257.2 | 0.0059762 | 0.0087879  |
| 578071.93414025  | 578071.93 | 4140251.7 | 0.0070305 | 0.0103724  |
| 578071.93414027  | 578071.93 | 4140271.7 | 0.0047732 | 0.0071791  |
| 578057.74140269  | 578057.7  | 4140269.4 | 0.0057531 | 0.0088549  |
| 578081.93414022  | 578081.93 | 4140221.7 | 0.0121994 | 0.0170271  |
| 578081.93414023  | 578081.93 | 4140231.7 | 0.0096804 | 0.0136467  |
| 578081.93414025  | 578081.93 | 4140251.7 | 0.0062445 | 0.0090404  |
| 578081.9341402(  | 578081.93 | 4140261.7 | 0.0051149 | 0.0075094  |
| 578066.73414027  | 578066.73 | 4140279   | 0.0044341 | 0.0067526  |
| 578091.93414022  | 578091.93 | 4140221.7 | 0.0109881 | 0.0150946  |
| 578091.93414023  | 578091.93 | 4140231.7 | 0.0085364 | 0.0118892  |
| 578091.93414024  | 578091.93 | 4140241.7 | 0.0067587 | 0.0095543  |
| 578081.56414027  | 578081.56 | 4140270.4 | 0.0043681 | 0.0064903  |
| 578101.93414021  | 578101.93 | 4140211.7 | 0.0124776 | 0.0170164  |
| 578101.93414022  | 578101.93 | 4140221.7 | 0.0094507 | 0.0129684  |
| 578101.93414023  | 578101.93 | 4140231.7 | 0.0073212 | 0.0101763  |
| 578101.93414024  | 578101.93 | 4140241.7 | 0.0057941 | 0.0081962  |
| 578101.93414025  | 578101.93 | 4140251.7 | 0.0046958 | 0.0067594  |
| 578114.3541402(  | 578114.35 | 4140204.9 | 0.0121046 | 0.0168776  |
| 578111.93414021  | 578111.93 | 4140211.7 | 0.010322  | 0.0143193  |
| 578111.93414022  | 578111.93 | 4140221.7 | 0.0078234 | 0.0109191  |
| 578111.93414023  | 578111.93 | 4140231.7 | 0.0061373 | 0.0086498  |
| 578111.93414024  | 578111.93 | 4140241.7 | 0.0049103 | 0.0070217  |
| 578121.9341402(  | 578121.93 | 4140201.7 | 0.0111795 | 0.0159551  |
| 578121.93414021  | 578121.93 | 4140211.7 | 0.0083636 | 0.0119521  |
| 578121.93414022  | 578121.93 | 4140221.7 | 0.0064574 | 0.0092536  |
| 578121.93414023  | 578121.93 | 4140231.7 | 0.0051383 | 0.0073987  |
| 578121.93414024  | 578121.93 | 4140241.7 | 0.0041643 | 0.0060549  |
| 578133.38414019  | 578133.38 | 4140194.4 | 0.0103991 | 0.0154363  |
| 578131.9341402(  | 578131.93 | 4140201.7 | 0.0088825 | 0.0131103  |
| 578131.93414021  | 578131.93 | 4140211.7 | 0.0068422 | 0.0100977  |
| 578131.93414022  | 578131.93 | 4140221.7 | 0.0053961 | 0.0079594  |
| 578131.93414023  | 578131.93 | 4140231.7 | 0.0043349 | 0.006408   |
| 578141.9341402(  | 578141.93 | 4140201.7 | 0.007178  | 0.0109362  |
| 578141.93414021  | 578141.93 | 4140211.7 | 0.005649  | 0.00861    |
| 5/8141.9341402   | 578141.93 | 4140221.7 | 0.004526  | 0.0068888  |
| 5/8141.9341402:  | 578141.93 | 4140231.7 | 0.0036944 | 0.0056077  |
| 5/8151.9341402   | 578151.93 | 4140221.7 | 0.0038514 | 0.0060111  |
| 5/8169.1/41401   | 578169.17 | 4140166.3 | 0.0122135 | 0.01/0/02  |
| 5/81/5.31414015  | 5/81/5.31 | 4140159.1 | 0.0129523 | 0.017763   |
| 578171.9341401   | 5/81/1.93 | 41401/1./ | 0.0098932 | 0.0142171  |
| 578171.93414018  | 5/81/1.93 | 4140181.7 | 0.0074297 | 0.0111050  |
| 578181.9341401:  | 570101.95 | 4140151.7 | 0.0129979 | 0.01/0/34  |
| 5781804170187 (  | 570101.93 | 4140101.7 | 0.010482  | 0.01409810 |
| 578181 02/11/010 | 578181 02 | 4140104.0 | 0.0000784 | 0.0032040  |
| 578191 9341401   | 578101.93 | 4140141 7 | 0.0121665 | 0.0165521  |
| 578191 9341401   | 578191 92 | 4140151 7 | 0.0103086 | 0.0143446  |
| 578191 93414016  | 578191 93 | 4140161 7 | 0.0085429 | 0.0122049  |
| 578191.9341401   | 578191.93 | 4140191.7 | 0.0043595 | 0.0068524  |
| 578191.9341402(  | 578191.93 | 4140201.7 | 0.0034974 | 0.0056315  |

| 578191.934:             | 578191.93                               | 4140211.7              | 0.100425206                | 0.00321  | 0.1036351 |
|-------------------------|-----------------------------------------|------------------------|----------------------------|----------|-----------|
| 578201.934:             | 578201.93                               | 4140141.7              | 0.335859968                | 0.004958 | 0.3408175 |
| 578201.934:             | 578201.93                               | 4140151.7              | 0.290801455                | 0.004608 | 0.295409  |
| 578201.934:             | 578201.93                               | 4140161.7              | 0.246607651                | 0.004291 | 0.2508985 |
| 578201.934              | 578201.93                               | 4140171.7              | 0.20467991                 | 0.004007 | 0.2086872 |
| 578201 934              | 578201 93                               | 4140191 7              | 0 135604798                | 0.003518 | 0 1391231 |
| 578201.934              | 578201.93                               | 4140201 7              | 0 110567103                | 0.003308 | 0 1138749 |
| E70211 024              | 570201.55                               | 4140161.7              | 0.110307103                | 0.003308 | 0.1130745 |
| 578211.934.             | 578211.93                               | 4140101.7              | 0.208394081                | 0.004103 | 0.2124981 |
| 578211.934.             | 578211.93                               | 4140191.7              | 0.120703144                | 0.003400 | 0.1241094 |
| 578108.954.             | 578108.95                               | 4140089.3              | 5.709281323                | 0.031031 | 5.7403121 |
| 578108.954.             | 578108.95                               | 4140097.3              | 5.938521604                | 0.027045 | 5.965567  |
| 578116.954:             | 578116.95                               | 4140081.3              | 4.84488883                 | 0.029618 | 4.8745073 |
| 578116.954:             | 578116.95                               | 4140089.3              | 5.214913982                | 0.025637 | 5.2405509 |
| 578116.954:             | 578116.95                               | 4140097.3              | 5.451790457                | 0.022385 | 5.4741754 |
| 578116.954:             | 578116.95                               | 4140105.3              | 5.512557101                | 0.019667 | 5.5322245 |
| 578124.954:             | 578124.95                               | 4140073.3              | 3.951178708                | 0.028671 | 3.9798501 |
| 578124.954:             | 578124.95                               | 4140081.3              | 4.294914626                | 0.024722 | 4.3196365 |
| 578124.954:             | 578124.95                               | 4140089.3              | 4.588037807                | 0.02152  | 4.6095579 |
| 578124.954:             | 578124.95                               | 4140097.3              | 4.809833123                | 0.018877 | 4.8287099 |
| 578124.954:             | 578124.95                               | 4140105.3              | 4.925157585                | 0.016667 | 4.9418244 |
| 578124.954:             | 578124.95                               | 4140113.3              | 4.884729907                | 0.014782 | 4.8995115 |
| 578124.954:             | 578124.95                               | 4140121.3              | 4.650672096                | 0.013173 | 4.6638447 |
| 578132.954:             | 578132.95                               | 4140065.3              | 3.189604321                | 0.028015 | 3.2176196 |
| 578132.954:             | 578132.95                               | 4140073.3              | 3.45223742                 | 0.024079 | 3.4763164 |
| 578132.954:             | 578132.95                               | 4140081.3              | 3.699660115                | 0.020936 | 3.7205965 |
| 578132.954              | 578132.95                               | 4140089.3              | 3.923980806                | 0.018376 | 3.9423571 |
| 578132.954              | 578132.95                               | 4140105.3              | 4,22729085                 | 0.014428 | 4.2417185 |
| 578132.954              | 578132.95                               | 4140113 3              | 4 247165047                | 0.012895 | 4 2600601 |
| 578132.554.             | 578132.05                               | 4140113.3<br>A1A0121 3 | 4.247103047<br>A 1236/1611 | 0.012000 | 4.2000001 |
| 578132.554.             | 578132.05                               | 4140121.3<br>A1A0129 3 | 3 820810613                | 0.011307 | 3 8312751 |
| 578132.954.             | 578132.95                               | 4140129.3              | 2 58/712021                | 0.010404 | 2 612202  |
| 578140.954.             | 578140.95                               | 4140057.3              | 2.384713021                | 0.02755  | 2.012303  |
| 576140.954.             | 578140.95                               | 4140005.5              | 2.709095402                | 0.02505  | 2.7955259 |
| 578140.954.             | 578140.95                               | 4140073.3              | 2.950023195                | 0.020520 | 2.9705493 |
| 578140.954.             | 578140.95                               | 4140081.3              | 3.121386296                | 0.018017 | 3.139403  |
| 5/8118.524.             | 578118.52                               | 4140112.9              | 5.292440616                | 0.016868 | 5.3093091 |
| 578140.954              | 578140.95                               | 4140113.3              | 3.516440718                | 0.011431 | 3.52/8/13 |
| 5/8140.9542             | 578140.95                               | 4140121.3              | 3.43610442                 | 0.010341 | 3.4464455 |
| 578140.954:             | 578140.95                               | 4140129.3              | 3.215020086                | 0.009409 | 3.2244293 |
| 578140.954:             | 578140.95                               | 4140137.3              | 2.813841946                | 0.008586 | 2.8224284 |
| 578148.954:             | 578148.95                               | 4140049.3              | 2.114909137                | 0.027411 | 2.1423203 |
| 578148.954:             | 578148.95                               | 4140057.3              | 2.243815234                | 0.02344  | 2.267255  |
| 578148.954:             | 578148.95                               | 4140065.3              | 2.365801367                | 0.020295 | 2.3860967 |
| 578148.954:             | 578148.95                               | 4140073.3              | 2.479770786                | 0.017769 | 2.49754   |
| 578111.194:             | 578111.19                               | 4140102.6              | 5.851750503                | 0.02344  | 5.8751909 |
| 578136.744:             | 578136.74                               | 4140133.6              | 3.337048909                | 0.009438 | 3.3464865 |
| 578148.954:             | 578148.95                               | 4140121.3              | 2.690420604                | 0.00934  | 2.6997604 |
| 578148.954:             | 578148.95                               | 4140129.3              | 2.486839321                | 0.00855  | 2.495389  |
| 578148.954:             | 578148.95                               | 4140137.3              | 2.131657396                | 0.007843 | 2.1394999 |
| 578156.954:             | 578156.95                               | 4140041.3              | 1.742774557                | 0.027179 | 1.769954  |
| 578156.954:             | 578156.95                               | 4140049.3              | 1.835377223                | 0.023348 | 1.8587248 |
| 578156.954:             | 578156.95                               | 4140057.3              | 1.919105038                | 0.020227 | 1.9393316 |
| 578156.954:             | 578156.95                               | 4140065.3              | 1.994854773                | 0.017709 | 2.0125635 |
| 578156.954:             | 578156.95                               | 4140073.3              | 2.059331898                | 0.015631 | 2.0749625 |
| 578156.954:             | 578156.95                               | 4140113.3              | 2.115923711                | 0.009308 | 2.1252314 |
| 578156.954:             | 578156.95                               | 4140121.3              | 2.001097449                | 0.008522 | 2.0096195 |
| 578156.954:             | 578156.95                               | 4140129.3              | 1.80296621                 | 0.007836 | 1.8108018 |
| 578164.954:             | 578164.95                               | 4140041.3              | 1.511351556                | 0.023096 | 1.5344471 |
| 578164.954              | 578164.95                               | 4140049.3              | 1.570409818                | 0.020109 | 1.5905188 |
| 578164.954              | 578164.95                               | 4140057.3              | 1.621742946                | 0.017645 | 1.6393883 |
| 578164.954              | 578164.95                               | 4140065.3              | 1.663536727                | 0.015602 | 1.6791385 |
| 578164 954              | 578164.95                               | 4140073.3              | 1.692693379                | 0.013893 | 1.7065863 |
| 578164 954              | 578164 95                               | 4140081 3              | 1.706783607                | 0.01245  | 1.7192335 |
| 578164 954              | 578164 95                               | 4140105 3              | 1.64512608                 | 0.009296 | 1.6544218 |
| 578164 954              | 578164 95                               | 4140113 3              | 1 572424728                | 0 00852  | 1 580945  |
| 578164 954              | 578164 95                               | 4140121 3              | 1.449810819                | 0.007843 | 1.4576535 |
| 578164 954              | 578164 95                               | 4140129 3              | 1.269567376                | 0.007241 | 1.2768084 |
| 578172 954              | 578172 95                               | 4140049 3              | 1.328926213                | 0.017504 | 1.3464302 |
| _ / ~ _ / _ / _ / _ / . | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                        |                            |          |           |

| 576191.95414021                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578191.93                                                                                                                                                                                                                                                                                  | 4140211.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0028514                                                                                                                                                                                                                                                                                                                                               | 0.0046648                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 578201.93414014                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578201.93                                                                                                                                                                                                                                                                                  | 4140141.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0097138                                                                                                                                                                                                                                                                                                                                               | 0.0135287                                                                                                                                                                                                                                                                                                                    |
| 578201.93414015                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578201.93                                                                                                                                                                                                                                                                                  | 4140151.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0083882                                                                                                                                                                                                                                                                                                                                               | 0.011912                                                                                                                                                                                                                                                                                                                     |
| 578201.9341401(                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578201.93                                                                                                                                                                                                                                                                                  | 4140161.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0070922                                                                                                                                                                                                                                                                                                                                               | 0.010302                                                                                                                                                                                                                                                                                                                     |
| 578201.93414017                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578201.93                                                                                                                                                                                                                                                                                  | 4140171.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0058664                                                                                                                                                                                                                                                                                                                                               | 0.0087526                                                                                                                                                                                                                                                                                                                    |
| 578201.93414019                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578201.93                                                                                                                                                                                                                                                                                  | 4140191.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0038621                                                                                                                                                                                                                                                                                                                                               | 0.0060951                                                                                                                                                                                                                                                                                                                    |
| 578201 93414020                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578201 93                                                                                                                                                                                                                                                                                  | 4140201 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0031434                                                                                                                                                                                                                                                                                                                                               | 0 0050742                                                                                                                                                                                                                                                                                                                    |
| 578211 93/1/01/                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578211 03                                                                                                                                                                                                                                                                                  | 11/0161 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0059864                                                                                                                                                                                                                                                                                                                                               | 0.0088246                                                                                                                                                                                                                                                                                                                    |
| 570211.5541401(                                                                                                                                                                                                                                                                                                                                                                                                                                   | 570211.03                                                                                                                                                                                                                                                                                  | 4140101.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0033804                                                                                                                                                                                                                                                                                                                                               | 0.0088240                                                                                                                                                                                                                                                                                                                    |
| 578211.9541401                                                                                                                                                                                                                                                                                                                                                                                                                                    | 578211.95                                                                                                                                                                                                                                                                                  | 4140191.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0034401                                                                                                                                                                                                                                                                                                                                               | 0.0034311                                                                                                                                                                                                                                                                                                                    |
| 578108.95414002                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578108.95                                                                                                                                                                                                                                                                                  | 4140089.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.100002                                                                                                                                                                                                                                                                                                                                                | 0.2119406                                                                                                                                                                                                                                                                                                                    |
| 578108.95414005                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578108.95                                                                                                                                                                                                                                                                                  | 4140097.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1/3528/                                                                                                                                                                                                                                                                                                                                               | 0.2180626                                                                                                                                                                                                                                                                                                                    |
| 578116.95414008                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578116.95                                                                                                                                                                                                                                                                                  | 4140081.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.141/60/                                                                                                                                                                                                                                                                                                                                               | 0.1///985                                                                                                                                                                                                                                                                                                                    |
| 5/8116.95414008                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578116.95                                                                                                                                                                                                                                                                                  | 4140089.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1529044                                                                                                                                                                                                                                                                                                                                               | 0.1883036                                                                                                                                                                                                                                                                                                                    |
| 578116.95414009                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578116.95                                                                                                                                                                                                                                                                                  | 4140097.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1601461                                                                                                                                                                                                                                                                                                                                               | 0.194199                                                                                                                                                                                                                                                                                                                     |
| 578116.9541401(                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578116.95                                                                                                                                                                                                                                                                                  | 4140105.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1621798                                                                                                                                                                                                                                                                                                                                               | 0.1942461                                                                                                                                                                                                                                                                                                                    |
| 578124.95414007                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578124.95                                                                                                                                                                                                                                                                                  | 4140073.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1157223                                                                                                                                                                                                                                                                                                                                               | 0.1449486                                                                                                                                                                                                                                                                                                                    |
| 578124.95414008                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578124.95                                                                                                                                                                                                                                                                                  | 4140081.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1260583                                                                                                                                                                                                                                                                                                                                               | 0.1547747                                                                                                                                                                                                                                                                                                                    |
| 578124.95414008                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578124.95                                                                                                                                                                                                                                                                                  | 4140089.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1349468                                                                                                                                                                                                                                                                                                                                               | 0.1626823                                                                                                                                                                                                                                                                                                                    |
| 578124.95414009                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578124.95                                                                                                                                                                                                                                                                                  | 4140097.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1417542                                                                                                                                                                                                                                                                                                                                               | 0.1680854                                                                                                                                                                                                                                                                                                                    |
| 578124.9541401(                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578124.95                                                                                                                                                                                                                                                                                  | 4140105.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1454073                                                                                                                                                                                                                                                                                                                                               | 0.1700076                                                                                                                                                                                                                                                                                                                    |
| 578124.95414011                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578124.95                                                                                                                                                                                                                                                                                  | 4140113.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1444064                                                                                                                                                                                                                                                                                                                                               | 0.167056                                                                                                                                                                                                                                                                                                                     |
| 578124.95414012                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578124.95                                                                                                                                                                                                                                                                                  | 4140121.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1375894                                                                                                                                                                                                                                                                                                                                               | 0.1582291                                                                                                                                                                                                                                                                                                                    |
| 578132.9541400€                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578132.95                                                                                                                                                                                                                                                                                  | 4140065.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0934456                                                                                                                                                                                                                                                                                                                                               | 0.1175669                                                                                                                                                                                                                                                                                                                    |
| 578132.95414007                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578132.95                                                                                                                                                                                                                                                                                  | 4140073.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1013294                                                                                                                                                                                                                                                                                                                                               | 0.1250241                                                                                                                                                                                                                                                                                                                    |
| 578132.95414008                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578132.95                                                                                                                                                                                                                                                                                  | 4140081.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1088107                                                                                                                                                                                                                                                                                                                                               | 0.1317748                                                                                                                                                                                                                                                                                                                    |
| 578132,95414008                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578132.95                                                                                                                                                                                                                                                                                  | 4140089.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1156437                                                                                                                                                                                                                                                                                                                                               | 0.1376034                                                                                                                                                                                                                                                                                                                    |
| 578132 9541401(                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578132.95                                                                                                                                                                                                                                                                                  | 4140105.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 1250419                                                                                                                                                                                                                                                                                                                                               | 0 1443464                                                                                                                                                                                                                                                                                                                    |
| 578132.95414010                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578132.95                                                                                                                                                                                                                                                                                  | 4140105.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1258011                                                                                                                                                                                                                                                                                                                                               | 0.1436345                                                                                                                                                                                                                                                                                                                    |
| 570152.55414011<br>E70122 0E414011                                                                                                                                                                                                                                                                                                                                                                                                                | 570132.35<br>E70132.0E                                                                                                                                                                                                                                                                     | 4140113.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.12220011                                                                                                                                                                                                                                                                                                                                              | 0.1430345                                                                                                                                                                                                                                                                                                                    |
| 578132.95414012                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578132.95                                                                                                                                                                                                                                                                                  | 4140121.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1222440                                                                                                                                                                                                                                                                                                                                               | 0.1380285                                                                                                                                                                                                                                                                                                                    |
| 576152.95414012                                                                                                                                                                                                                                                                                                                                                                                                                                   | 576152.95                                                                                                                                                                                                                                                                                  | 4140129.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1152851                                                                                                                                                                                                                                                                                                                                               | 0.120502                                                                                                                                                                                                                                                                                                                     |
| 578140.9541400                                                                                                                                                                                                                                                                                                                                                                                                                                    | 578140.95                                                                                                                                                                                                                                                                                  | 4140057.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0757525                                                                                                                                                                                                                                                                                                                                               | 0.0959059                                                                                                                                                                                                                                                                                                                    |
| 578140.95414000                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578140.95                                                                                                                                                                                                                                                                                  | 4140065.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0812713                                                                                                                                                                                                                                                                                                                                               | 0.101129                                                                                                                                                                                                                                                                                                                     |
| 578140.9541400                                                                                                                                                                                                                                                                                                                                                                                                                                    | 578140.95                                                                                                                                                                                                                                                                                  | 4140073.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.086/119                                                                                                                                                                                                                                                                                                                                               | 0.1060038                                                                                                                                                                                                                                                                                                                    |
| 578140.95414008                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578140.95                                                                                                                                                                                                                                                                                  | 4140081.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0919186                                                                                                                                                                                                                                                                                                                                               | 0.1104594                                                                                                                                                                                                                                                                                                                    |
| 5/8118.52414011                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/8118.52                                                                                                                                                                                                                                                                                  | 4140112.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1560111                                                                                                                                                                                                                                                                                                                                               | 0.1841279                                                                                                                                                                                                                                                                                                                    |
| 578140.95414011                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578140.95                                                                                                                                                                                                                                                                                  | 4140113.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1042233                                                                                                                                                                                                                                                                                                                                               | 0.1185944                                                                                                                                                                                                                                                                                                                    |
| 578140.95414012                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578140.95                                                                                                                                                                                                                                                                                  | 4140121.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1019208                                                                                                                                                                                                                                                                                                                                               | 0.1152328                                                                                                                                                                                                                                                                                                                    |
| 578140.95414012                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578140.95                                                                                                                                                                                                                                                                                  | 4140129.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.095371                                                                                                                                                                                                                                                                                                                                                | 0.107725                                                                                                                                                                                                                                                                                                                     |
| 578140.95414013                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578140.95                                                                                                                                                                                                                                                                                  | 4140137.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0833998                                                                                                                                                                                                                                                                                                                                               | 0.0948079                                                                                                                                                                                                                                                                                                                    |
| 578148.95414004                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578148.95                                                                                                                                                                                                                                                                                  | 4140049.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0619753                                                                                                                                                                                                                                                                                                                                               | 0.0792084                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                              |
| 578148.95414005                                                                                                                                                                                                                                                                                                                                                                                                                                   | 578148.95                                                                                                                                                                                                                                                                                  | 4140057.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0658178                                                                                                                                                                                                                                                                                                                                               | 0.0827366                                                                                                                                                                                                                                                                                                                    |
| 578148.95414005<br>578148.95414006                                                                                                                                                                                                                                                                                                                                                                                                                | 578148.95<br>578148.95                                                                                                                                                                                                                                                                     | 4140057.3<br>4140065.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0658178<br>0.0694888                                                                                                                                                                                                                                                                                                                                  | 0.0827366<br>0.0859371                                                                                                                                                                                                                                                                                                       |
| 578148.95414005<br>578148.95414006<br>578148.95414007                                                                                                                                                                                                                                                                                                                                                                                             | 578148.95<br>578148.95<br>578148.95                                                                                                                                                                                                                                                        | 4140057.3<br>4140065.3<br>4140073.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0658178<br>0.0694888<br>0.0729481                                                                                                                                                                                                                                                                                                                     | 0.0827366<br>0.0859371<br>0.0887932                                                                                                                                                                                                                                                                                          |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.1941401(                                                                                                                                                                                                                                                                                                                                                                          | 578148.95<br>578148.95<br>578148.95<br>578148.95                                                                                                                                                                                                                                           | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299                                                                                                                                                                                                                                                                                                        | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644                                                                                                                                                                                                                                                                             |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015                                                                                                                                                                                                                                                                                                                                                       | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74                                                                                                                                                                                                                              | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536                                                                                                                                                                                                                                                                                           | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121                                                                                                                                                                                                                                                                |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012                                                                                                                                                                                                                                                                                                                                    | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95                                                                                                                                                                                                                 | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479                                                                                                                                                                                                                                                                              | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781                                                                                                                                                                                                                                                    |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012                                                                                                                                                                                                                                                                                                                 | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95                                                                                                                                                                                                    | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939                                                                                                                                                                                                                                                                 | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299                                                                                                                                                                                                                                       |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578148.95414015                                                                                                                                                                                                                                                                                              | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95                                                                                                                                                                                       | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140137.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775                                                                                                                                                                                                                                                    | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161                                                                                                                                                                                                                          |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578148.95414015<br>578156.95414004                                                                                                                                                                                                                                                                           | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578148.95                                                                                                                                                                          | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140137.3<br>4140041.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815                                                                                                                                                                                                                                       | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994                                                                                                                                                                                                             |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578148.95414002<br>578156.95414002                                                                                                                                                                                                                                                                           | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95                                                                                                                                                             | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140137.3<br>4140041.3<br>4140049.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823                                                                                                                                                                                                                           | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841                                                                                                                                                                                                  |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578156.95414004<br>578156.95414004<br>578156.95414005                                                                                                                                                                                                                                                        | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95                                                                                                                                                | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140137.3<br>4140041.3<br>4140049.3<br>4140057.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298                                                                                                                                                                                                              | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455                                                                                                                                                                                     |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414012<br>578148.95414012<br>578148.95414012<br>578156.95414004<br>578156.95414004<br>578156.95414006<br>578156.95414006                                                                                                                                                                                                                                     | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95                                                                                                                                   | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140137.3<br>4140041.3<br>4140049.3<br>4140057.3<br>4140065.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0586218                                                                                                                                                                                                 | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631                                                                                                                                                                        |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414012<br>578148.95414012<br>578148.95414012<br>578156.95414004<br>578156.95414004<br>578156.95414006<br>578156.95414007                                                                                                                                                                                                                                     | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95                                                                                                                                   | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>414013.6<br>4140121.3<br>4140129.3<br>4140017.3<br>4140041.3<br>4140049.3<br>4140057.3<br>4140065.3<br>4140067.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0586218<br>0.065959                                                                                                                                                                                     | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.073659                                                                                                                                                            |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414012<br>578148.95414012<br>578148.95414012<br>578156.95414004<br>578156.95414004<br>578156.95414006<br>578156.95414007<br>578156.95414001                                                                                                                                                                                                                  | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95                                                                                                                                   | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140047.3<br>4140049.3<br>4140057.3<br>4140065.3<br>4140073.3<br>41400113 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0663298<br>0.0663595<br>0.0655994                                                                                                                                                                       | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968                                                                                                                                              |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578156.95414004<br>578156.95414004<br>578156.95414007<br>578156.95414007<br>578156.95414001<br>578156.95414011                                                                                                                                                                                               | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95                                                                                                                      | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140017.3<br>4140041.3<br>4140049.3<br>4140057.3<br>4140057.3<br>4140073.3<br>4140013.3<br>4140113.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.053823<br>0.0563298<br>0.0663595<br>0.0625994<br>0.052594                                                                                                                                                            | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004                                                                                                                                 |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578148.95414012<br>578156.95414000<br>578156.95414007<br>578156.95414007<br>578156.95414011<br>578156.95414012                                                                                                                                                                                               | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95                                                                                                         | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140041.3<br>4140041.3<br>4140049.3<br>4140057.3<br>4140065.3<br>4140073.3<br>4140173.3<br>4140129.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0566218<br>0.065959<br>0.0625994<br>0.052994                                                                                                                                                            | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.06250615                                                                                                                   |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578148.95414012<br>578156.95414000<br>578156.95414000<br>578156.95414007<br>578156.95414001<br>578156.95414011<br>578156.95414012<br>578164.95414012                                                                                                                                                         | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95                                                                               | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140047.3<br>4140041.3<br>4140049.3<br>4140057.3<br>4140057.3<br>4140073.3<br>4140073.3<br>4140129.3<br>4140129.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0659599<br>0.0625994<br>0.0592051<br>0.0532954<br>0.043147                                                                                                                                              | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0620615<br>0.056665                                                                                                        |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414013<br>578148.95414013<br>578148.95414013<br>578148.95414013<br>578156.95414000<br>578156.95414000<br>578156.95414007<br>578156.95414013<br>578156.95414013<br>578156.95414013<br>578156.95414007                                                                                                                                                         | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95 | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>414013.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140041.3<br>4140049.3<br>4140049.3<br>4140057.3<br>4140073.3<br>4140073.3<br>4140113.3<br>4140129.3<br>4140049.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0563298<br>0.065959<br>0.0625994<br>0.0592051<br>0.0532954<br>0.0543215                                                                                                                                 | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0620615<br>0.0569665<br>0.0584465                                                                                          |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578156.95414002<br>578156.95414002<br>578156.95414007<br>578156.95414007<br>578156.95414011<br>578156.95414012<br>578156.95414012<br>578156.95414002<br>578164.95414002                                                                                                                                      | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95 | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140041.3<br>4140041.3<br>4140049.3<br>4140073.3<br>4140013.3<br>4140129.3<br>4140041.3<br>4140049.3<br>4140049.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0563298<br>0.065959<br>0.0625994<br>0.0592051<br>0.0532954<br>0.0532954<br>0.0443147                                                                                                                    | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0620615<br>0.0569665<br>0.0584465                                                                                          |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414011<br>578148.95414011<br>578156.95414004<br>578156.95414004<br>578156.95414007<br>578156.95414007<br>578156.95414011<br>578156.95414011<br>578156.95414004<br>578164.95414004<br>578164.95414005                                                                                                                                      | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578164.95<br>578164.95                                        | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140041.3<br>4140041.3<br>4140049.3<br>4140057.3<br>4140073.3<br>4140121.3<br>4140129.3<br>4140041.3<br>4140047.3<br>4140047.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0586218<br>0.0605959<br>0.0625994<br>0.0592051<br>0.0532954<br>0.0443147<br>0.04460689<br>0.0476121                                                                                                     | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0620615<br>0.0584465<br>0.059629                                                                                           |
| 578148.95414005<br>578148.95414006<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414011<br>578148.95414011<br>578148.95414012<br>578156.95414004<br>578156.95414004<br>578156.95414007<br>578156.95414011<br>578156.95414011<br>578156.95414012<br>578164.95414004<br>578164.95414006<br>578164.95414006                                                                                                                   | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578164.95<br>578164.95                                        | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140041.3<br>4140041.3<br>4140049.3<br>4140073.3<br>4140073.3<br>4140073.3<br>41400129.3<br>4140041.3<br>4140041.3<br>4140045.3<br>4140057.3<br>4140057.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0586218<br>0.0605959<br>0.0625994<br>0.0592051<br>0.0532954<br>0.0443147<br>0.0460689<br>0.0476121<br>0.0488865                                                                                         | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0685004<br>0.0620615<br>0.0584465<br>0.059629<br>0.0604659                                                                 |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414011<br>578148.95414011<br>578148.95414012<br>578156.95414004<br>578156.95414007<br>578156.95414007<br>578156.95414011<br>578156.95414012<br>578156.95414012<br>578164.95414000<br>578164.95414007<br>578164.95414007                                                                                                                   | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578164.95<br>578164.95<br>578164.95                                                     | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140041.3<br>4140041.3<br>4140049.3<br>4140073.3<br>4140073.3<br>4140012.3<br>4140041.3<br>4140041.3<br>4140045.3<br>4140057.3<br>4140057.3<br>4140057.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.063298<br>0.0625994<br>0.0592051<br>0.0532954<br>0.0443147<br>0.0460689<br>0.0476121<br>0.0488865<br>0.04797559                                                                                                      | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0685004<br>0.0620615<br>0.0569665<br>0.0584465<br>0.059629<br>0.0608705                                                    |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578148.95414012<br>578156.95414004<br>578156.95414007<br>578156.95414007<br>578156.95414012<br>578156.95414012<br>578156.95414012<br>578164.95414004<br>578164.95414007<br>578164.95414007<br>578164.95414007                                                                                                | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578164.95<br>578164.95<br>578164.95                                                     | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140041.3<br>4140041.3<br>4140049.3<br>4140057.3<br>4140073.3<br>4140041.3<br>4140041.3<br>4140047.3<br>4140047.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140073.3<br>4140073.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.063298<br>0.062599<br>0.0625994<br>0.0532954<br>0.043147<br>0.0460689<br>0.0476121<br>0.0488865<br>0.0497959<br>0.0502631                                                                                            | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0620615<br>0.0569665<br>0.0584465<br>0.059629<br>0.0604659<br>0.0607865                                                    |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578148.95414012<br>578156.95414004<br>578156.95414007<br>578156.95414007<br>578156.95414012<br>578156.95414012<br>578164.95414004<br>578164.95414007<br>578164.95414007<br>578164.95414007<br>578164.95414007<br>578164.95414007                                                                             | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95                           | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140041.3<br>4140041.3<br>4140049.3<br>4140057.3<br>4140073.3<br>4140041.3<br>4140041.3<br>4140045.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140053.3<br>4140053.3<br>4140073.3<br>4140081.3<br>4140053.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0586218<br>0.0605959<br>0.0625994<br>0.0592051<br>0.0532954<br>0.0443147<br>0.0460689<br>0.0476121<br>0.0488865<br>0.0497959<br>0.0502631<br>0.0485561                                                  | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0620615<br>0.0569665<br>0.0584465<br>0.059629<br>0.0604659<br>0.0607865<br>0.0607865<br>0.057449                           |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414015<br>578148.95414012<br>578148.95414012<br>578148.95414012<br>578156.95414004<br>578156.95414004<br>578156.95414007<br>578156.95414001<br>578156.95414004<br>578164.95414004<br>578164.95414007<br>578164.95414007<br>578164.95414007<br>578164.95414007<br>578164.95414007<br>578164.95414007<br>578164.95414007<br>578164.95414007                    | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95              | 4140057.3<br>4140065.3<br>4140073.3<br>4140102.6<br>4140133.6<br>4140121.3<br>4140129.3<br>4140129.3<br>4140041.3<br>4140041.3<br>4140049.3<br>4140057.3<br>4140073.3<br>4140041.3<br>4140041.3<br>4140045.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140053.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0586218<br>0.0605959<br>0.0625994<br>0.0592051<br>0.0532954<br>0.04532954<br>0.0443147<br>0.0460689<br>0.0476121<br>0.0488865<br>0.0497959<br>0.0502631<br>0.0485561<br>0.0464156                       | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0620615<br>0.0569665<br>0.0584465<br>0.059629<br>0.0604659<br>0.0607865<br>0.057449<br>0.0548187                           |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414011<br>578148.95414011<br>578148.95414011<br>578148.95414012<br>578156.95414000<br>578156.95414000<br>578156.95414001<br>578156.95414001<br>578156.95414010<br>578164.95414002<br>578164.95414000<br>578164.95414000<br>578164.95414000<br>578164.95414000<br>578164.95414001<br>578164.95414001<br>578164.95414011<br>578164.95414011<br>578164.95414011 | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95                                        | 4140057.3<br>4140065.3<br>4140073.3<br>414012.6<br>414013.6<br>414012.3<br>414012.3<br>4140129.3<br>414004.3<br>414004.3<br>414004.3<br>4140057.3<br>4140073.3<br>414004.3<br>414004.3<br>414004.3<br>414004.3<br>4140057.3<br>4140057.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>414005.3<br>4140 | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0582218<br>0.0582218<br>0.0625994<br>0.0625994<br>0.0592051<br>0.0532954<br>0.043254<br>0.0443147<br>0.0460689<br>0.0476121<br>0.048865<br>0.0497959<br>0.0502631<br>0.0485561<br>0.0485561<br>0.046156<br>0.0427712 | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0685004<br>0.0569665<br>0.0584465<br>0.059629<br>0.0604659<br>0.0604659<br>0.0607865<br>0.057449<br>0.0548187<br>0.0507098 |
| 578148.95414005<br>578148.95414007<br>578148.95414007<br>578111.19414010<br>578136.74414011<br>578148.95414011<br>578148.95414011<br>578148.95414012<br>578156.95414000<br>578156.95414000<br>578156.95414001<br>578156.95414011<br>578156.95414010<br>578164.95414002<br>578164.95414000<br>578164.95414000<br>578164.95414000<br>578164.95414001<br>578164.95414010<br>578164.95414011<br>578164.95414011<br>578164.95414011<br>578164.95414012 | 578148.95<br>578148.95<br>578148.95<br>578111.19<br>578136.74<br>578148.95<br>578148.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578156.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95<br>578164.95                           | 4140057.3<br>4140065.3<br>4140073.3<br>414012.6<br>414013.6<br>4140121.3<br>4140129.3<br>4140047.3<br>4140047.3<br>4140049.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140073.3<br>4140041.3<br>4140041.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.3<br>4140057.                                                                   | 0.0658178<br>0.0694888<br>0.0729481<br>0.1714299<br>0.0989536<br>0.0797479<br>0.0736939<br>0.0630775<br>0.0510815<br>0.053823<br>0.0563298<br>0.0586218<br>0.0605959<br>0.0625994<br>0.0592051<br>0.0532954<br>0.0432561<br>0.048865<br>0.0497959<br>0.0502631<br>0.0485561<br>0.0485561<br>0.0485561<br>0.0427712<br>0.0373885                         | 0.0827366<br>0.0859371<br>0.0887932<br>0.2114644<br>0.1120121<br>0.090781<br>0.0840299<br>0.0727161<br>0.0658994<br>0.06841<br>0.0705455<br>0.0723631<br>0.0737659<br>0.0724968<br>0.0685004<br>0.0685004<br>0.0569665<br>0.0584465<br>0.059629<br>0.0604659<br>0.0604659<br>0.0607865<br>0.057449<br>0.057498<br>0.057498   |
| 578172.954:             | 578172.95  | 4140057.3 | 1.357320079 | 0.015531 | 1.3728511 |
|-------------------------|------------|-----------|-------------|----------|-----------|
| 578172.954:             | 578172.95  | 4140065.3 | 1.37585449  | 0.013852 | 1.3897061 |
| 578172.954:             | 578172.95  | 4140073.3 | 1.38098774  | 0.012435 | 1.3934232 |
| 578172,954 <sup>°</sup> | 578172.95  | 4140081.3 | 1.370776822 | 0.011229 | 1.3820059 |
| 578172 954              | 578172 95  | 4140089 3 | 1 346329261 | 0.010197 | 1 3565258 |
| 578172.954 <sup>7</sup> | 578172.95  | 4140097 3 | 1 304921931 | 0.009306 | 1 314228  |
| 578172.554.             | 578172.05  | 4140007.0 | 1 24/201/02 | 0.009534 | 1 2520251 |
| 578172.554.             | 578172.95  | 4140105.3 | 1.244391492 | 0.008534 | 1.2329231 |
| 576172.954.             | 576172.95  | 4140115.5 | 1.105655055 | 0.00780  | 1.1/1/141 |
| 5/81/2.954.             | 578172.95  | 4140121.3 | 1.05652359  | 0.007269 | 1.063/92/ |
| 578180.954:             | 578180.95  | 4140065.3 | 1.130202131 | 0.012419 | 1.1426208 |
| 578180.9542             | 578180.95  | 41400/3.3 | 1.118012857 | 0.011231 | 1.1292442 |
| 578180.954:             | 578180.95  | 4140081.3 | 1.094999699 | 0.010212 | 1.1052121 |
| 578180.954:             | 578180.95  | 4140089.3 | 1.060311232 | 0.009332 | 1.0696433 |
| 578180.954:             | 578180.95  | 4140097.3 | 1.012756416 | 0.008566 | 1.0213224 |
| 578180.954:             | 578180.95  | 4140105.3 | 0.95147835  | 0.007894 | 0.9593728 |
| 578180.954:             | 578180.95  | 4140113.3 | 0.876698149 | 0.007304 | 0.8840019 |
| 578188.954:             | 578188.95  | 4140073.3 | 0.904576351 | 0.01023  | 0.9148062 |
| 578188.954:             | 578188.95  | 4140081.3 | 0.875527825 | 0.009358 | 0.8848863 |
| 578188.954:             | 578188.95  | 4140089.3 | 0.837878084 | 0.008601 | 0.8464794 |
| 578188.954:             | 578188.95  | 4140097.3 | 0.791711597 | 0.007936 | 0.7996479 |
| 578188.954:             | 578188.95  | 4140105.3 | 0.737534407 | 0.007349 | 0.744883  |
| 578188,954 <sup>2</sup> | 578188.95  | 4140113.3 | 0.67681501  | 0.006827 | 0.6836423 |
| 578196.954              | 578196.95  | 4140081.3 | 0.705370043 | 0.00864  | 0.7140104 |
| 578196 954              | 578196 95  | 4140089 3 | 0 669788967 | 0.00798  | 0.6777689 |
| 578196 95 <i>1</i>      | 578196.95  | 4140005.5 | 0.629228889 | 0.007396 | 0.636625  |
| 578190.954.             | 578190.95  | 4140097.3 | 0.029228889 | 0.007330 | 0.030023  |
| 578190.954.             | 576190.95  | 4140105.5 | 0.564064046 | 0.000077 | 0.591502  |
| 578204.954.             | 578204.95  | 4140097.3 | 0.50994457  | 0.000932 | 0.3108/02 |
| 578001.424.             | 578001.42  | 4140037.5 | 0.300555973 | 0.008015 | 0.3085709 |
| 578001.424.             | 578001.42  | 4140045.5 | 0.31100/1/8 | 0.008356 | 0.3193633 |
| 578009.424:             | 578009.42  | 4140029.5 | 0.352634105 | 0.009266 | 0.3619002 |
| 578009.4242             | 578009.42  | 4140037.5 | 0.36844514  | 0.009742 | 0.3/818/6 |
| 578009.424:             | 578009.42  | 4140045.5 | 0.385161478 | 0.010254 | 0.395415  |
| 578017.424:             | 578017.42  | 4140029.5 | 0.429022852 | 0.01136  | 0.4403825 |
| 578017.424:             | 578017.42  | 4140037.5 | 0.452624567 | 0.012079 | 0.4647034 |
| 578025.424:             | 578025.42  | 4140021.5 | 0.490216355 | 0.013155 | 0.5033709 |
| 578025.424:             | 578025.42  | 4140029.5 | 0.521998582 | 0.014155 | 0.5361535 |
| 578033.424:             | 578033.42  | 4140013.5 | 0.549213381 | 0.015032 | 0.5642455 |
| 578033.424:             | 578033.42  | 4140021.5 | 0.589233549 | 0.01634  | 0.6055737 |
| 578041.424:             | 578041.42  | 4140013.5 | 0.651637045 | 0.018506 | 0.6701434 |
| 578041.424:             | 578041.42  | 4140021.5 | 0.705103783 | 0.020391 | 0.7254943 |
| 578049.424:             | 578049.42  | 4140005.5 | 0.706123097 | 0.020518 | 0.7266406 |
| 578049.424:             | 578049.42  | 4140013.5 | 0.767954504 | 0.022737 | 0.790692  |
| 578049.424:             | 578049.42  | 4140021.5 | 0.837484215 | 0.025366 | 0.8628506 |
| 578049.424:             | 578049.42  | 4140029.5 | 0.91635774  | 0.028528 | 0.944886  |
| 578057.424              | 578057.42  | 4139997.5 | 0.751183205 | 0.022314 | 0.7734971 |
| 578057.424              | 578057.42  | 4140005 5 | 0.819324426 | 0.024784 | 0 844108  |
| 578057 424              | 578057.42  | 4140013 5 | 0.896778012 | 0.027727 | 0 9245051 |
| 578057.424.             | 578057.42  | 4140021 5 | 0.090770012 | 0.027727 | 1 0162547 |
| 578057.424.             | 578057.42  | 4140021.5 | 1 025257710 | 0.031204 | 1 121/222 |
| 578057.424.             | 578057.42  | 4140029.5 | 1.003037719 | 0.033303 | 1.1214223 |
| 576057.424.             | 576057.42  | 4140037.5 | 1.202214723 | 0.040665 | 1.2430990 |
| 578057.424.             | 578057.42  | 4140045.5 | 1.33/388033 | 0.04/581 | 1.3849698 |
| 578065.424.             | 578065.42  | 4140005.5 | 0.941311776 | 0.029684 | 0.9709953 |
| 578065.424              | 578065.42  | 4140021.5 | 1.1451/8886 | 0.038051 | 1.1832303 |
| 578065.424:             | 578065.42  | 4140029.5 | 1.271188629 | 0.043678 | 1.3148662 |
| 578065.424:             | 578065.42  | 4140037.5 | 1.416874381 | 0.050645 | 1.4675196 |
| 578065.424:             | 578065.42  | 4140045.5 | 1.587366842 | 0.059469 | 1.6468358 |
| 578065.424:             | 578065.42  | 4140053.5 | 1.789972857 | 0.070958 | 1.8609312 |
| 578073.424:             | 578073.42  | 4139989.5 | 0.883884477 | 0.027968 | 0.9118522 |
| 578073.424:             | 578073.42  | 4140029.5 | 1.467108621 | 0.052836 | 1.5199451 |
| 578073.424:             | 578073.42  | 4140037.5 | 1.646340403 | 0.061726 | 1.708066  |
| 578073.424:             | 578073.42  | 4140045.5 | 1.857422542 | 0.073055 | 1.9304774 |
| 578081.424:             | 578081.42  | 4139981.5 | 0.896037485 | 0.029159 | 0.9251964 |
| 578081.424:             | 578081.42  | 4139989.5 | 0.983338806 | 0.032562 | 1.0159005 |
| 578081.424:             | 578081.42  | 4139997.5 | 1.083211418 | 0.036597 | 1.1198088 |
| 578081.424:             | 578081.42  | 4140005.5 | 1.197841276 | 0.041416 | 1.2392572 |
| 578081.424:             | 578081.42  | 4140021.5 | 1.485365135 | 0.054386 | 1.5397515 |
| 578081 424              | 578081 //2 | 4140029 5 | 1 667334098 | 0.063261 | 1 7305952 |

| 578172.95414005 | 578172.95 | 4140057.3              | 0.0398426   | 0.0500664 |
|-----------------|-----------|------------------------|-------------|-----------|
| 578172.9541400€ | 578172.95 | 4140065.3              | 0.0404165   | 0.0502608 |
| 578172.95414007 | 578172.95 | 4140073.3              | 0.040599    | 0.0500116 |
| 578172.95414008 | 578172.95 | 4140081.3              | 0.0403277   | 0.0492773 |
| 578172.95414008 | 578172.95 | 4140089.3              | 0.0396312   | 0.0481192 |
| 578172.95414009 | 578172.95 | 4140097.3              | 0.0384251   | 0.0464654 |
| 578172.9541401( | 578172.95 | 4140105.3              | 0.0366425   | 0.0442591 |
| 578172.95414011 | 578172.95 | 4140113.3              | 0.0342557   | 0.0414784 |
| 578172.95414012 | 578172.95 | 4140121.3              | 0.0310605   | 0.0379151 |
| 578180.9541400€ | 578180.95 | 4140065.3              | 0.0331755   | 0.0416123 |
| 578180.95414007 | 578180.95 | 4140073.3              | 0.0328309   | 0.0409138 |
| 578180.95414008 | 578180.95 | 4140081.3              | 0.032168    | 0.0398648 |
| 578180.95414008 | 578180.95 | 4140089.3              | 0.0311554   | 0.0384732 |
| 578180.95414009 | 578180.95 | 4140097.3              | 0.0297557   | 0.0367104 |
| 578180.9541401( | 578180.95 | 4140105.3              | 0.0279424   | 0.0345521 |
| 578180.95414011 | 578180.95 | 4140113.3              | 0.0257217   | 0.0320059 |
| 578188.95414007 | 578188.95 | 4140073.3              | 0.0265277   | 0.0335161 |
| 578188.95414008 | 578188.95 | 4140081.3              | 0.0256754   | 0.0323589 |
| 578188.95414008 | 578188.95 | 4140089.3              | 0.0245676   | 0.030938  |
| 578188.95414009 | 578188.95 | 4140097.3              | 0.0232034   | 0.0292743 |
| 578188.9541401( | 578188.95 | 4140105.3              | 0.0215977   | 0.0273841 |
| 578188,95414011 | 578188.95 | 4140113.3              | 0.0197944   | 0.0253111 |
| 578196.95414008 | 578196.95 | 4140081.3              | 0.0206494   | 0.0264794 |
| 578196.95414008 | 578196.95 | 4140089.3              | 0.0195983   | 0.0251729 |
| 578196 95414000 | 578196.95 | 4140097 3              | 0.0183973   | 0.0237282 |
| 578196 9541401( | 578196.95 | 4140105 3              | 0.0170759   | 0.0221764 |
| 578204 95414000 | 578204 95 | 4140097 3              | 0.0148756   | 0.019601  |
| 578001 4241400  | 578001 42 | 4140037.5              | 0.001407528 | 0.010001  |
| 578001.4241400  | 578001.42 | 4140037.5              | 0.007325    | 0.0204413 |
| 578009 4241400  | 578009.42 | 4140045.5              | 0.0077555   | 0.0213305 |
| 578009.42414002 | 578009.42 | 4140025.5              | 0.0083023   | 0.023455  |
| 578009 4241400  | 578009.42 | 4140045 5              | 0.0095832   | 0.0245057 |
| 578017 /2/1/002 | 578017 42 | 4140045.5              | 0.0055852   | 0.0200207 |
| 578017.42414002 | 578017.42 | 4140025.5              | 0.0108554   | 0.0204004 |
| 578025 4241400  | 578025 42 | 4140037.5              | 0.0115774   | 0.0316201 |
| 578025.42414002 | 578025.42 | 4140021.5              | 0.0123377   | 0.0310201 |
| 578022.42414002 | 578023.42 | 4140023.5              | 0.0132705   | 0.0342231 |
| 578033.42414001 | 578033.42 | 4140013.5              | 0.0141990   | 0.0344478 |
| 578033.42414002 | 578041 42 | 4140021.5              | 0.0151003   | 0.037485  |
| 578041.42414001 | 578041.42 | 4140013.5              | 0.0103707   | 0.0401324 |
| 578049 42414002 | 578049.42 | 4140021.5              | 0.0182808   | 0.0440134 |
| 578049.42414000 | 578049.42 | 4140005.5              | 0.0180107   | 0.0421030 |
| 578049.42414001 | 578049.42 | 4140013.5              | 0.0201819   | 0.0402430 |
| 578049.42414002 | 576049.42 | 4140021.5              | 0.0219381   | 0.0509947 |
| 578049.42414002 | 578043.42 | 4140029.5              | 0.0239170   | 0.0304348 |
| 578057.4241599: | 576057.42 | 4139997.5<br>414000E E | 0.0200208   | 0.0433374 |
| 578057.42414000 | 576057.42 | 4140003.5<br>4140012 E | 0.0218047   | 0.0473930 |
| 578057.42414001 | 576057.42 | 4140013.5              | 0.0236203   | 0.0524925 |
| 578057.42414002 | 578057.42 | 4140021.5              | 0.0201087   | 0.0581458 |
| 578057.42414002 | 576057.42 | 4140029.5<br>4140027 E | 0.0287101   | 0.004/110 |
|                 | 578057.42 | 4140037.5              | 0.0317128   | 0.0724143 |
| 578057.42414004 | 576057.42 | 4140045.5<br>414000E E | 0.0351800   | 0.0613332 |
| 578065.42414000 | 578065.42 | 4140005.5              | 0.0253200   | 0.0530264 |
| 578065.42414002 | 578065.42 | 4140021.5              | 0.0307605   | 0.00515   |
| 578065.42414002 | 578065.42 | 4140029.5              | 0.0341169   | 0.0727293 |
| 578065.4241400: | 578065.42 | 4140037.5              | 0.0379943   | 0.0815827 |
| 578065.42414004 | 578065.42 | 4140045.5              | 0.0425313   | 0.092051  |
| 570003.42414005 | 5/0005.42 | 4120000 5              | 0.04/92/3   | 0.1040149 |
| 5/80/5.42413998 | 5/80/3.42 | 4133383.5              | 0.0240577   | 0.04/9593 |
| 5/80/3.42414002 | 5/80/3.42 | 4140029.5              | 0.0400006   | 0.0801288 |
| 5/80/3.4241400: | 5/80/3.42 | 4140037.5              | 0.0449281   | 0.0900178 |
| 5/80/3.42414004 | 5/80/3.42 | 4140045.5              | 0.0507509   | 0.1016652 |
| 578081.42413998 | 5/8081.42 | 4139981.5              | 0.0246253   | 0.04/1588 |
| 5/8081.42413998 | 5/8081.42 | 4139989.5              | 0.02/0459   | 0.0516967 |
| 5/8081.42413999 | 5/8081.42 | 4139997.5              | 0.0298217   | 0.0568661 |
| 578081.4241400( | 5/8081.42 | 4140005.5              | 0.033016    | 0.062//16 |
| 5/8081.42414002 | 5/8081.42 | 4140021.5              | 0.0410706   | 0.07/4368 |
| 578081.42414002 | 578081.42 | 4140029.5              | 0.0462001   | 0.0866069 |

| 578081.42                                                                                                                                                | 4140037.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.882090894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.074473                                                                                                                                                                       | 1.9565635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 578089.42                                                                                                                                                | 4139981.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.980375149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.033563                                                                                                                                                                       | 1.0139384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578089.42                                                                                                                                                | 4139989.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.079314403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.037693                                                                                                                                                                       | 1.117007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 578089.42                                                                                                                                                | 4139997.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.191940326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.042562                                                                                                                                                                       | 1.2345024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578089.42                                                                                                                                                | 4140005.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.321747249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.048405                                                                                                                                                                       | 1.3701527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578089.42                                                                                                                                                | 4140013.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.473192524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.055542                                                                                                                                                                       | 1.5287346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578089.42                                                                                                                                                | 4140021.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.650504618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.064337                                                                                                                                                                       | 1.7148421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578089.42                                                                                                                                                | 4140029.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.859790977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.075393                                                                                                                                                                       | 1.9351839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578097.42                                                                                                                                                | 4139989.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.164960199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.043362                                                                                                                                                                       | 1.2083225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578097.42                                                                                                                                                | 4139997.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.289898376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04931                                                                                                                                                                        | 1.3392084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578097.42                                                                                                                                                | 4140005.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.433194856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.056427                                                                                                                                                                       | 1.4896219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578097.42                                                                                                                                                | 4140013.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.600574093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.065195                                                                                                                                                                       | 1.6657688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578097.42                                                                                                                                                | 4140021.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.797188955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076161                                                                                                                                                                       | 1.8733503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578105.42                                                                                                                                                | 4140005.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.522409823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.065789                                                                                                                                                                       | 1.5881988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578105.42                                                                                                                                                | 4140013.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.701049501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076765                                                                                                                                                                       | 1.7778142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578172.95                                                                                                                                                | 4140089.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.346329261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010197                                                                                                                                                                       | 1.3565258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578172.95                                                                                                                                                | 4140097.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.304921931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.009306                                                                                                                                                                       | 1.314228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 578172.95                                                                                                                                                | 4140105.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.244391492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008534                                                                                                                                                                       | 1.2529251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578172.95                                                                                                                                                | 4140113.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.163853635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00786                                                                                                                                                                        | 1.1717141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578172.95                                                                                                                                                | 4140121.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.05652359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.007269                                                                                                                                                                       | 1.0637927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578180.95                                                                                                                                                | 4140065.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.130202131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.012419                                                                                                                                                                       | 1.1426208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578180.95                                                                                                                                                | 4140073.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.118012857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.011231                                                                                                                                                                       | 1.1292442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578180.95                                                                                                                                                | 4140081.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.094999699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010212                                                                                                                                                                       | 1.1052121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578180.95                                                                                                                                                | 4140089.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.060311232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.009332                                                                                                                                                                       | 1.0696433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578180.95                                                                                                                                                | 4140097.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.012756416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008566                                                                                                                                                                       | 1.0213224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578180.95                                                                                                                                                | 4140105.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.95147835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.007894                                                                                                                                                                       | 0.9593728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578180.95                                                                                                                                                | 4140113.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.876698149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.007304                                                                                                                                                                       | 0.8840019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578188.95                                                                                                                                                | 4140073.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.904576351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01023                                                                                                                                                                        | 0.9148062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578188.95                                                                                                                                                | 4140081.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.875527825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.009358                                                                                                                                                                       | 0.8848863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578188.95                                                                                                                                                | 4140089.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.837878084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008601                                                                                                                                                                       | 0.8464794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578188.95                                                                                                                                                | 4140097.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.791711597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.007936                                                                                                                                                                       | 0.7996479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578188.95                                                                                                                                                | 4140105.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.737534407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.007349                                                                                                                                                                       | 0.744883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 578188.95                                                                                                                                                | 4140113.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.67681501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006827                                                                                                                                                                       | 0.6836423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578196.95                                                                                                                                                | 4140081.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.705370043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00864                                                                                                                                                                        | 0.7140104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578196.95                                                                                                                                                | 4140089.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.669788967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00798                                                                                                                                                                        | 0.6777689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578196.95                                                                                                                                                | 4140097.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.629228889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.007396                                                                                                                                                                       | 0.636625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 578196.95                                                                                                                                                | 4140105.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.584684648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.006877                                                                                                                                                                       | 0.591562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 578204.95                                                                                                                                                | 4140097.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50994457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006932                                                                                                                                                                       | 0.5168762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578001.42                                                                                                                                                | 4140037.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.300555973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008015                                                                                                                                                                       | 0.3085709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578001.42                                                                                                                                                | 4140045.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 311007178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 000050                                                                                                                                                                       | 0 3193633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.51100/1/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008356                                                                                                                                                                       | 0.5155055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578009.42                                                                                                                                                | 4140029.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.352634105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008356                                                                                                                                                                       | 0.3619002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578009.42<br>578009.42                                                                                                                                   | 4140029.5<br>4140037.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.352634105<br>0.36844514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.008356<br>0.009266<br>0.009742                                                                                                                                               | 0.3619002<br>0.3781876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 578009.42<br>578009.42<br>578009.42                                                                                                                      | 4140029.5<br>4140037.5<br>4140045.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.352634105<br>0.36844514<br>0.385161478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.008356<br>0.009266<br>0.009742<br>0.010254                                                                                                                                   | 0.3619002<br>0.3781876<br>0.395415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 578009.42<br>578009.42<br>578009.42<br>578017.42                                                                                                         | 4140029.5<br>4140037.5<br>4140045.5<br>4140029.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136                                                                                                                        | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 578009.42<br>578009.42<br>578009.42<br>578017.42<br>578017.42                                                                                            | 4140029.5<br>4140037.5<br>4140045.5<br>4140029.5<br>4140037.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079                                                                                                            | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 578009.42<br>578009.42<br>578009.42<br>578017.42<br>578017.42<br>578025.42                                                                               | 4140029.5<br>4140037.5<br>4140045.5<br>4140029.5<br>4140037.5<br>4140021.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155                                                                                                | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 578009.42<br>578009.42<br>578009.42<br>578017.42<br>578017.42<br>578025.42<br>578025.42                                                                  | 4140029.5<br>4140037.5<br>4140045.5<br>4140029.5<br>4140037.5<br>4140021.5<br>4140029.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355<br>0.521998582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155<br>0.014155                                                                                    | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709<br>0.5361535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 578009.42<br>578009.42<br>578009.42<br>578017.42<br>578017.42<br>578025.42<br>578025.42<br>578033.42                                                     | 4140029.5<br>4140037.5<br>4140045.5<br>4140029.5<br>4140037.5<br>4140021.5<br>4140029.5<br>4140013.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355<br>0.521998582<br>0.549213381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155<br>0.014155<br>0.015032                                                                        | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709<br>0.5361535<br>0.5642455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 578009.42<br>578009.42<br>578009.42<br>578017.42<br>578017.42<br>578025.42<br>578025.42<br>578033.42                                                     | 4140029.5<br>4140037.5<br>4140045.5<br>4140029.5<br>4140037.5<br>4140021.5<br>4140029.5<br>4140013.5<br>4140021.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355<br>0.521998582<br>0.549213381<br>0.589233549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155<br>0.014155<br>0.015032<br>0.01634                                                             | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709<br>0.5361535<br>0.5642455<br>0.6055737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 578009.42<br>578009.42<br>578009.42<br>578017.42<br>578017.42<br>578025.42<br>578025.42<br>578033.42<br>578033.42                                        | 4140029.5<br>4140037.5<br>4140045.5<br>4140029.5<br>4140037.5<br>4140021.5<br>4140029.5<br>4140013.5<br>4140021.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355<br>0.521998582<br>0.549213381<br>0.589233549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155<br>0.014155<br>0.015032<br>0.01634                                                             | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709<br>0.5361535<br>0.5642455<br>0.6055737<br>0.6701424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 578009.42<br>578009.42<br>578009.42<br>578017.42<br>578017.42<br>578025.42<br>578025.42<br>578033.42<br>578033.42<br>578041.42                           | 4140029.5<br>4140037.5<br>4140045.5<br>4140029.5<br>4140037.5<br>4140021.5<br>4140029.5<br>4140013.5<br>4140013.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355<br>0.521998582<br>0.549213381<br>0.589233549<br>0.651637045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155<br>0.014155<br>0.015032<br>0.01634<br>0.018506                                                 | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709<br>0.5361535<br>0.5642455<br>0.6055737<br>0.6701434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 578009.42<br>578009.42<br>578009.42<br>578017.42<br>578025.42<br>578025.42<br>578033.42<br>578033.42<br>578041.42                                        | 4140029.5<br>4140037.5<br>4140029.5<br>4140021.5<br>4140021.5<br>4140029.5<br>4140013.5<br>4140013.5<br>4140013.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355<br>0.521998582<br>0.549213381<br>0.589233549<br>0.651637045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155<br>0.014155<br>0.015032<br>0.01634<br>0.018506<br>0.020391                                     | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709<br>0.5361535<br>0.5642455<br>0.6055737<br>0.6701434<br>0.7254943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 578009.42<br>578009.42<br>578017.42<br>578017.42<br>578025.42<br>578025.42<br>578033.42<br>578033.42<br>578041.42<br>578041.42<br>578049.42              | 4140029.5<br>4140037.5<br>4140029.5<br>4140021.5<br>4140021.5<br>4140029.5<br>4140013.5<br>4140013.5<br>4140013.5<br>4140013.5<br>4140021.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355<br>0.521998582<br>0.549213381<br>0.589233549<br>0.651637045<br>0.705103783<br>0.706123097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155<br>0.014155<br>0.015032<br>0.01634<br>0.018506<br>0.020391<br>0.020518                         | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709<br>0.5361535<br>0.5642455<br>0.6055737<br>0.6701434<br>0.7254943<br>0.7266406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 578009.42<br>578009.42<br>578017.42<br>578017.42<br>578025.42<br>578025.42<br>578033.42<br>578033.42<br>578041.42<br>578041.42<br>578049.42              | 4140029.5<br>4140037.5<br>4140029.5<br>4140021.5<br>4140021.5<br>4140021.5<br>4140021.5<br>4140013.5<br>4140021.5<br>4140021.5<br>414005.5<br>4140013.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355<br>0.521998582<br>0.549213381<br>0.589233549<br>0.651637045<br>0.705103783<br>0.706123097<br>0.767954504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155<br>0.014155<br>0.015032<br>0.01634<br>0.018506<br>0.020391<br>0.020518<br>0.022737             | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709<br>0.5361535<br>0.5642455<br>0.6055737<br>0.6701434<br>0.7254943<br>0.7266406<br>0.790692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 578009.42<br>578009.42<br>578017.42<br>578017.42<br>578025.42<br>578025.42<br>578033.42<br>578033.42<br>578041.42<br>578041.42<br>578049.42<br>578049.42 | 4140029.5<br>4140037.5<br>4140029.5<br>4140021.5<br>4140021.5<br>4140021.5<br>4140021.5<br>4140021.5<br>4140021.5<br>414005.5<br>4140013.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.352634105<br>0.36844514<br>0.385161478<br>0.429022852<br>0.452624567<br>0.490216355<br>0.521998582<br>0.549213381<br>0.589233549<br>0.651637045<br>0.705103783<br>0.706123097<br>0.767954504<br>0.837484215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.008356<br>0.009266<br>0.009742<br>0.010254<br>0.01136<br>0.012079<br>0.013155<br>0.014155<br>0.015032<br>0.01634<br>0.018506<br>0.020391<br>0.020518<br>0.022737<br>0.025366 | 0.3619002<br>0.3781876<br>0.395415<br>0.4403825<br>0.4647034<br>0.5033709<br>0.5361535<br>0.5642455<br>0.6055737<br>0.6701434<br>0.7254943<br>0.7266406<br>0.790692<br>0.8628506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                          | 578089.42<br>578089.42<br>578089.42<br>578089.42<br>578089.42<br>578089.42<br>578089.42<br>578097.42<br>578097.42<br>578097.42<br>578097.42<br>578097.42<br>578097.42<br>578105.42<br>578105.42<br>578172.95<br>578172.95<br>578172.95<br>578172.95<br>578172.95<br>578172.95<br>578180.95<br>578180.95<br>578180.95<br>578180.95<br>578180.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578188.95<br>578196.95<br>578196.95<br>578196.95<br>578204.95<br>578001.42 | 578081112111000113578089.424139981.5578089.424139997.5578089.424140013.5578089.424140021.5578089.424140021.5578089.424140029.5578097.424139989.5578097.424139997.5578097.424140013.5578097.424140013.5578097.424140013.5578097.424140013.5578097.424140013.5578097.424140013.5578097.424140013.5578105.424140013.5578105.424140013.5578172.95414007.3578172.95414007.3578172.95414005.3578180.95414007.3578180.954140081.3578180.95414007.3578180.95414007.3578180.95414007.3578180.95414007.3578180.95414007.3578188.954140081.3578188.954140081.3578188.954140081.3578188.954140081.3578188.954140081.3578188.954140081.3578196.954140081.3578196.954140081.3578196.954140081.3578196.954140081.3578196.954140081.3578196.954140081.3578196.954140081.3578196.954140081.3578196.954140081.3578196.954140081.3578196.954140081.3578196.95 | 578081112111093131100000000000000000000000000000000000                                                                                                                         | 578089.424139981.50.9803751490.033563578089.424139989.51.0793144030.037693578089.424139997.51.1919403260.042562578089.424140015.51.3217472490.048405578089.424140015.51.4731925240.055542578089.42414002.51.6505046180.064337578089.42414002.51.6595046180.064337578089.42414002.51.6595046180.04362578097.424139987.51.2898983760.04931578097.424139997.51.2898983760.04931578097.42414005.51.4331948560.056427578097.42414005.51.5224098230.065789578105.42414005.51.5224098230.065789578105.42414007.31.3049219310.009306578172.95414007.31.2443914920.008534578172.95414005.31.1302021310.012419578180.95414005.31.1302021310.012419578180.95414007.31.1180128570.01231578180.95414007.30.951478350.007804578180.95414007.30.951478350.007304578180.95414007.30.951478350.007304578180.95414007.30.7375344070.007304578180.95414008.30.6697808670.00736578180.95414008.30.6697808670.00736578188.95414008.30.6697889670.00736578188.9 |

| 578081.42414003    | 578081.42 | 4140037.5 | 0.052286  | 0.0973272 |
|--------------------|-----------|-----------|-----------|-----------|
| 578089.42413998    | 578089.42 | 4139981.5 | 0.0272108 | 0.0500619 |
| 578089.42413998    | 578089.42 | 4139989.5 | 0.0300045 | 0.05491   |
| 578089.42413999    | 578089.42 | 4139997.5 | 0.033195  | 0.060385  |
| 578089.42414000    | 578089.42 | 4140005.5 | 0.0368871 | 0.0666318 |
| 578089.42414001    | 578089.42 | 4140013.5 | 0.0412151 | 0.073831  |
| 578089.42414002    | 578089.42 | 4140021.5 | 0.0463096 | 0.0821456 |
| 578089.42414002    | 578089.42 | 4140029.5 | 0.0523608 | 0.0918088 |
| 578097.42413998    | 578097.42 | 4139989.5 | 0.0327305 | 0.0573705 |
| 578097.42413999    | 578097.42 | 4139997.5 | 0.036336  | 0.0630857 |
| 578097.42414000    | 578097.42 | 4140005.5 | 0.0404916 | 0.0695494 |
| 578097.42414001    | 578097.42 | 4140013.5 | 0.0453746 | 0.0769756 |
| 578097.42414002    | 578097.42 | 4140021.5 | 0.0511494 | 0.0855409 |
| 578105.42414000    | 578105.42 | 4140005.5 | 0.0435313 | 0.0713044 |
| 578105.42414001    | 578105.42 | 4140013.5 | 0.0488481 | 0.078774  |
| 578172.95414008    | 578172.95 | 4140089.3 | 0.0396312 | 0.0481192 |
| 578172.95414009    | 578172.95 | 4140097.3 | 0.0384251 | 0.0464654 |
| 578172.9541401(    | 578172.95 | 4140105.3 | 0.0366425 | 0.0442591 |
| 578172.95414011    | 578172.95 | 4140113.3 | 0.0342557 | 0.0414784 |
| 578172.95414012    | 578172.95 | 4140121.3 | 0.0310605 | 0.0379151 |
| 578180.9541400€    | 578180.95 | 4140065.3 | 0.0331755 | 0.0416123 |
| 578180.95414007    | 578180.95 | 4140073.3 | 0.0328309 | 0.0409138 |
| 578180.95414008    | 578180.95 | 4140081.3 | 0.032168  | 0.0398648 |
| 578180.95414008    | 578180.95 | 4140089.3 | 0.0311554 | 0.0384732 |
| 578180.95414009    | 578180.95 | 4140097.3 | 0.0297557 | 0.0367104 |
| 578180.9541401(    | 578180.95 | 4140105.3 | 0.0279424 | 0.0345521 |
| 578180.95414011    | 578180.95 | 4140113.3 | 0.0257217 | 0.0320059 |
| 578188.95414007    | 578188.95 | 4140073.3 | 0.0265277 | 0.0335161 |
| 578188.95414008    | 578188.95 | 4140081.3 | 0.0256754 | 0.0323589 |
| 578188.95414008    | 578188.95 | 4140089.3 | 0.0245676 | 0.030938  |
| 578188.95414009    | 578188.95 | 4140097.3 | 0.0232034 | 0.0292743 |
| 578188.9541401(    | 578188.95 | 4140105.3 | 0.0215977 | 0.0273841 |
| 578188.95414011    | 578188.95 | 4140113.3 | 0.0197944 | 0.0253111 |
| 578196.95414008    | 578196.95 | 4140081.3 | 0.0206494 | 0.0264794 |
| 578196.95414008    | 578196.95 | 4140089.3 | 0.0195983 | 0.0251729 |
| 578196.95414009    | 578196.95 | 4140097.3 | 0.0183973 | 0.0237282 |
| 578196.9541401(    | 578196.95 | 4140105.3 | 0.0170759 | 0.0221764 |
| 578204.95414009    | 578204.95 | 4140097.3 | 0.0148756 | 0.019601  |
| 578001.42414003    | 578001.42 | 4140037.5 | 0.007528  | 0.0204415 |
| 578001.42414004    | 578001.42 | 4140045.5 | 0.0077335 | 0.0215383 |
| 578009.42414002    | 578009.42 | 4140029.5 | 0.0089023 | 0.023495  |
| 578009.42414003    | 578009.42 | 4140037.5 | 0.0092375 | 0.0249857 |
| 578009.42414004    | 578009.42 | 4140045.5 | 0.0095832 | 0.0266207 |
| 5/801/.42414002    | 578017.42 | 4140029.5 | 0.0108594 | 0.0284064 |
| 578017.42414003    | 578017.42 | 4140037.5 | 0.0113774 | 0.0305147 |
| 578025.42414002    | 578025.42 | 4140021.5 | 0.0125377 | 0.0316201 |
| 578025.42414002    | 578025.42 | 4140029.5 | 0.0132709 | 0.0342251 |
| 578033.42414001    | 578033.42 | 4140013.5 | 0.0141996 | 0.0344478 |
| 578033.42414002    | 578033.42 | 4140021.5 | 0.0151603 | 0.037485  |
| 578041.42414001    | 578041.42 | 4140013.5 | 0.0169707 | 0.0401524 |
| 578041.4241400     | 578041.42 | 4140021.5 | 0.0182868 | 0.0440134 |
| 5780/19 / 2/11/00/ | 5780/0 /2 | /1/0005 5 | 0.0186107 | 0.0421024 |
| 578040 42414000    | 570049.42 | 4140042 5 | 0.0100107 | 0.0462456 |
| 578049.4241400     | 5/8049.42 | 4140013.5 | 0.0201819 | 0.0402456 |
| 578049.42414002    | 578049.42 | 4140021.5 | 0.0219381 | 0.0509947 |
| 578049.42414002    | 578049.42 | 4140029.5 | 0.0239176 | 0.0564948 |

#### 4335 & 4345 El Camino Real Construction Health Risk Assessment

Maximum Individual Non-Cancer Impact Calculations - Sensitive Receptors (Maximum Impacted Senior Residential Receptor) (IMPACT AT ALL OTHER LOCATIONS ON THE PROJECT SITE WOULD BE LESS THAN SHOWN

| Receptor Group        | Pollutant |          | CONC     | WFrac    | CONC <sub>WF</sub> | н     |            | ALIM | BN | CVS | DEV  | ENDC | EYE | HEM  | IMMUN | KIDN | NS | REPRO | RESP     | SK |
|-----------------------|-----------|----------|----------|----------|--------------------|-------|------------|------|----|-----|------|------|-----|------|-------|------|----|-------|----------|----|
| Project:<br>MEL - Max | DPM       | 5.00E+00 | 2.18E-01 | 1.00E+00 | 2.18E-01           | 0.044 |            | -    | -  | -   | -    | -    | -   | -    | -     | -    | -  | -     | 4.36E-02 | -  |
| -                     |           |          |          |          |                    |       | Total Risk |      |    |     | -    |      |     | -    |       |      |    | -     | 0.044    |    |
|                       |           |          |          |          |                    |       | Threshold  |      |    |     | 1.00 |      |     | 1.00 |       |      |    | 1.00  | 1.00     |    |
|                       |           |          |          |          |                    |       | Over?      |      |    |     | NO   |      |     | NO   |       |      |    | NO    | NO       |    |

Maximum Non-cancer Chronic Hazards / Toxicological Endpoints\*

Notes:

1. CARB, "Consolidated Table of OEHHA/ARB Approved Risk Assessment Health Values," "OEHHA/ARB Approved Chronic Reference Exposure Levels and Target Organs," "OEHHA/ARB Approved Acute Reference Exposure Levels and Target Organs,"

and "OEHHA/ARB Approved 8-Hour Reference Exposure Levels and Target Organs," http://www.arb.ca.gov/toxics/healthval/healthval.htm. Tables last updated: May 8, 2018. Downloaded: 08/14/18.

Source: ESA, 2020

Where:

| me | ie.                |                                                                                      | Key to TOX | icological Ellupolitis |       |                    |       |                     |
|----|--------------------|--------------------------------------------------------------------------------------|------------|------------------------|-------|--------------------|-------|---------------------|
|    | CONC <sub>WF</sub> | Pollutant Concentration ( $\mu$ g/m <sup>3</sup> ) multiplied by the weight fraction | ALIM       | Alimentary Tract       | EYE   | Eye                | NS    | Nervous System      |
|    | CREL               | Chronic Reference Exposure Level                                                     | BN         | Bone                   | HEM   | Hematologic System | REPRO | Reproductive System |
|    | HI                 | Hazard Index                                                                         | CVS        | Cardiovascular System  | IMMUN | Immune System      | RESP  | Respiratory System  |
|    | MEI                | Maximally Exposed Individual                                                         | DEV        | Developmental System   | KIDN  | Kidney             | SK    | Skin                |
|    | WFrac              | Weight fraction of speciated component                                               | ENDC       | Endocrine System       |       |                    |       |                     |
|    |                    |                                                                                      |            |                        |       |                    |       |                     |

\* Kow to Toxicological Endpoints

| XY                  | Х        | Y       | DEMO    | SITE               | HAUL    | DEMO_D  | SITE_D  | HAUL_D  |
|---------------------|----------|---------|---------|--------------------|---------|---------|---------|---------|
| 578048.554140246.42 | 578048.6 | 4140246 | 4.63589 | 5.9624             | 0.65278 | 4.91364 | 6.79459 | 0.66888 |
| 578066.414140268    | 578066.4 | 4140268 | 2.20523 | 3.27344            | 0.49413 | 2.20396 | 3.45462 | 0.50234 |
| 578068.454140241.25 | 578068.5 | 4140241 | 3.43917 | 5.50191            | 0.64879 | 3.54588 | 6.17596 | 0.66797 |
| 578054.694140253.42 | 578054.7 | 4140253 | 3.52657 | 4.87898            | 0.59014 | 3.66451 | 5.3881  | 0.6026  |
| 578061.934140261.73 | 578061.9 | 4140262 | 2.64328 | 3.86179            | 0.53023 | 2.68309 | 4.15023 | 0.5401  |
| 578046.974140254.6  | 578047   | 4140255 | 3.96992 | 5.09115            | 0.59588 | 4.13727 | 5.66675 | 0.60768 |
| 5780634140234.38    | 578063   | 4140234 | 4.44201 | 6.76033            | 0.72206 | 4.75161 | 7.86951 | 0.74754 |
| 578076.524140257.17 | 578076.5 | 4140257 | 2,23153 | 3.60758            | 0.53271 | 2.20028 | 3.82878 | 0.54347 |
| 578071.934140251.73 | 578071.9 | 4140252 | 2.65233 | 4.24834            | 0.57051 | 2.65943 | 4.60506 | 0.58372 |
| 578071.934140271.73 | 578071.9 | 4140272 | 1.90955 | 2.87777            | 0.47204 | 1.87906 | 2.99057 | 0.47932 |
| 578057.74140269.42  | 578057.7 | 4140269 | 2.46179 | 3.47406            | 0.49773 | 2.50271 | 3.69805 | 0.50543 |
| 578081,934140221,73 | 578081.9 | 4140222 | 3 83163 | 7 38747            | 0 78536 | 4 05591 | 8 89182 | 0 8222  |
| 578081.934140231.73 | 578081.9 | 4140232 | 3 14795 | 5 85693            | 0.69033 | 3 20528 | 6 67738 | 0 71463 |
| 578081 934140251 73 | 578081.9 | 4140252 | 2 21905 | 3 76984            | 0 55261 | 2 17859 | 4 01232 | 0 56476 |
| 578081 934140261 73 | 578081.9 | 4140262 | 1 90042 | 3 08405            | 0.50261 | 1 84649 | 3 20565 | 0.50470 |
| 578066 734140278 97 | 578066 7 | A140202 | 1 8/100 | 2 67257            | 0.30205 | 1 8257  | 2 76729 | 0.31103 |
| 578000.734140278.57 | 578001.0 | A1/0272 | 2 2502  | 6 65106            | 0.44000 | 2 2/270 | 7 8521/ | 0.45504 |
| 578001 02/1/0221 72 | 578001.0 | A1/0222 | 2 66107 | 5 16074            | 0.74547 | 2 64785 | 5 76752 | 0.7702  |
| 578051.554140251.75 | 578091.9 | 4140232 | 2.00107 | 3.10074<br>4.0007E | 0.00073 | 2.04703 | J.70752 | 0.00100 |
| 578051.554140241.75 | 578091.9 | 4140242 | 1 69420 | 4.00075            | 0.39172 | 1 6266  | 4.57051 | 0.00037 |
| 578081.504140270.42 | 578081.0 | 4140270 | 2 60222 | 2.03000            | 0.40009 | 2 7422  | 2.09212 | 0.47570 |
| 578101.954140211.75 | 578101.9 | 4140212 | 3.00232 | 7.55711            | 0.70010 | 3.7422  | 9.55005 | 0.82017 |
| 578101.934140221.75 | 578101.9 | 4140222 | 2.79104 | 5.71595<br>4.42142 | 0.70012 | 2.03340 | 4 90214 | 0.72014 |
| 578101.954140251.75 | 578101.9 | 4140252 | 2.20001 | 4.42142            | 0.02761 | 2.24714 | 4.60214 | 0.04007 |
| 5/8101.934140241./3 | 578101.9 | 4140242 | 1.90645 | 3.49305            | 0.50800 | 1.84948 | 3.05125 | 0.58171 |
| 5/8101.934140251./3 | 5/8101.9 | 4140252 | 1.63/81 | 2.82697            | 0.51867 | 1.56383 | 2.8/79  | 0.52832 |
| 5/8114.354140204.8/ | 578114.4 | 4140205 | 3.78815 | 7.32978            | 0.78342 | 3.80108 | 9.58479 | 0.81849 |
| 5/8111.934140211./3 | 578111.9 | 4140212 | 3.1/249 | 6.24546            | 0.73153 | 3.21102 | 7.59865 | 0.76172 |
| 5/8111.934140221./3 | 5/8111.9 | 4140222 | 2.45697 | 4.72569            | 0.65801 | 2.45927 | 5.28101 | 0.67969 |
| 5/8111.934140231./3 | 5/8111.9 | 4140232 | 1.99408 | 3.70092            | 0.59817 | 1.95931 | 3.9094  | 0.61386 |
| 5/8111.934140241./3 | 5/8111.9 | 4140242 | 1.6758  | 2.95574            | 0.54656 | 1.01530 | 3.02392 | 0.5581  |
| 5/8121.934140201./3 | 5/8121.9 | 4140202 | 3.79028 | 6.76586            | 0.77157 | 3.70553 | 8.75435 | 0.8023  |
| 5/8121.934140211./3 | 5/8121.9 | 4140212 | 2.84803 | 5.05317            | 0.68832 | 2.7967  | 5.8145  | 0.71184 |
| 5/8121.934140221./3 | 5/8121.9 | 4140222 | 2.21925 | 3.89426            | 0.62489 | 2.1/385 | 4.19011 | 0.64268 |
| 5/8121.934140231./3 | 5/8121.9 | 4140232 | 1.79404 | 3.09302            | 0.57158 | 1.74105 | 3.19068 | 0.585   |
| 5/8121.934140241./3 | 5/8121.9 | 4140242 | 1.50052 | 2.50191            | 0.52579 | 1.43/41 | 2.5227  | 0.536   |
| 5/8133.384140194.38 | 5/8133.4 | 4140194 | 3.99783 | 6.28921            | 0.77465 | 3.78446 | 8.1//38 | 0.80001 |
| 5/8131.934140201./3 | 5/8131.9 | 4140202 | 3.35544 | 5.36/32            | 0.72276 | 3.18527 | 6.31/56 | 0.74547 |
| 5/8131.934140211./3 | 5/8131.9 | 4140212 | 2.58379 | 4.127              | 0.65361 | 2.46509 | 4.47648 | 0.6/183 |
| 5/8131.934140221./3 | 5/8131.9 | 4140222 | 2.03442 | 3.24847            | 0.59689 | 1.94679 | 3.36592 | 0.61123 |
| 5/8131.934140231./3 | 5/8131.9 | 4140232 | 1.64532 | 2.60432            | 0.54882 | 1.5/214 | 2.6333  | 0.56004 |
| 5/8141.934140201./3 | 578141.9 | 4140202 | 2.98277 | 4.32987            | 0.68101 | 2.7662  | 4.75199 | 0.69808 |
| 578141.934140211.73 | 578141.9 | 4140212 | 2.35005 | 3.40095            | 0.62165 | 2.18954 | 3.53142 | 0.63585 |
| 5/8141.934140221./3 | 578141.9 | 4140222 | 1.8/522 | 2./192/            | 0.5/11/ | 1.75833 | 2.74176 | 0.58283 |
| 5/8141.934140231./3 | 5/8141.9 | 4140232 | 1.51858 | 2.21488            | 0.52759 | 1.43031 | 2.19663 | 0.5372  |
| 5/8151.934140221./3 | 5/8151.9 | 4140222 | 1./1413 | 2.30921            | 0.54729 | 1.5831  | 2.27502 | 0.55704 |
| 5/8169.1/4140166.31 | 5/8169.2 | 4140166 | 3.85455 | 7.39583            | 0.78917 | 3.77013 | 8.70029 | 0.804   |
| 578175.314140159.08 | 578175.3 | 4140159 | 3.81812 | 7.84557            | 0.80585 | 3.81031 | 8.98287 | 0.82052 |
| 5/81/1.9341401/1./3 | 5/81/1.9 | 41401/2 | 3.431/5 | 5.98297            | 0.74024 | 3.28127 | 6.58212 | 0.75276 |
| 578171.934140181.73 | 578171.9 | 4140182 | 2.96506 | 4.48348            | 0.68231 | 2./3852 | 4.66616 | 0.69332 |
| 578181.934140151.73 | 578181.9 | 4140152 | 3./10/8 | /.8/238            | 0.81962 | 3.76819 | 8./1/24 | 0.83416 |
| 578181.934140161.73 | 578181.9 | 4140162 | 3.34667 | 6.34127            | 0.75545 | 3.29102 | 6.8316  | 0.76739 |
| 5781804140184.63    | 578180   | 4140185 | 2.54479 | 3.66173            | 0.63986 | 2.3185  | 3.64694 | 0.64881 |
| 578181.934140191.73 | 578181.9 | 4140192 | 2.22151 | 2.97585            | 0.6019  | 1.99065 | 2.90005 | 0.60992 |
| 578191.934140141.73 | 578191.9 | 4140142 | 3.48071 | 7.36374            | 0.83284 | 3.58952 | 7.83601 | 0.84712 |
| 578191.934140151.73 | 578191.9 | 4140152 | 3.20327 | 6.23428            | 0.77012 | 3.22565 | 6.58791 | 0.78185 |
| 578191.934140161.73 | 578191.9 | 4140162 | 2.90645 | 5.16062            | 0.71402 | 2.83444 | 5.307   | 0.72362 |
| 578191.934140191.73 | 578191.9 | 4140192 | 1.97851 | 2.61711            | 0.57745 | 1.76319 | 2.4957  | 0.58419 |
| 578191.934140201.73 | 578191.9 | 4140202 | 1.69372 | 2.09363            | 0.5409  | 1.4911  | 1.97721 | 0.54693 |
| 578191.934140211.73 | 578191.9 | 4140212 | 1.43919 | 1.70177            | 0.50791 | 1.2646  | 1.59762 | 0.51361 |
| 578201.934140141.73 | 578201.9 | 4140142 | 3.02774 | 5.87007            | 0.78445 | 3.10106 | 6.11142 | 0.79601 |

| 578201.934140151.73 | 578201.9 | 4140152 | 2.79678  | 5.06501              | 0.72907            | 2.79397  | 5.20071  | 0.73859                    |
|---------------------|----------|---------|----------|----------------------|--------------------|----------|----------|----------------------------|
| 578201.934140161.73 | 578201.9 | 4140162 | 2.54747  | 4.27768              | 0.67896            | 2.46633  | 4.27253  | 0.68687                    |
| 578201.934140171.73 | 578201.9 | 4140172 | 2.29067  | 3.53275              | 0.63409            | 2.14373  | 3.42491  | 0.64089                    |
| 578201.934140191.73 | 578201.9 | 4140192 | 1.77231  | 2.31503              | 0.55672            | 1.57245  | 2.17143  | 0.56237                    |
| 578201.934140201.73 | 578201.9 | 4140202 | 1.53239  | 1.87885              | 0.52341            | 1.34218  | 1.75056  | 0.52874                    |
| 578211.934140161.73 | 578211.9 | 4140162 | 2.25258  | 3.60484              | 0.6493             | 2.16635  | 3.52912  | 0.65601                    |
| 578211.934140191.73 | 578211.9 | 4140192 | 1.59604  | 2.05878              | 0.53899            | 1.41099  | 1.90633  | 0.54384                    |
| 578108.954140089.28 | 578109   | 4140089 | 35.98382 | 101.3351             | 4.9101             | 36.62944 | 170.7344 | 5.84715                    |
| 578108.954140097.28 | 578109   | 4140097 | 35 34512 | 105 6125             | 4 27949            | 35 81798 | 210 7552 | 4 92832                    |
| 578116 954140081 28 | 578117   | 4140081 | 28 60206 | 86 18642             | 4 68663            | 28 32263 | 118 2258 | 5 56005                    |
| 578116 95/1/0089 28 | 570117   | 11/0020 | 28.00200 | 02 02822             | 4.00000            | 20.32203 | 120 1052 | 1 62075                    |
| 578116 95/1/0007 28 | 570117   | 414000J | 20.03524 | 07 /0806             | 2 5/20/            | 27.03273 | 16/ 199/ | 2 05 2 21                  |
| 570110.554140057.20 | 570117   | 4140007 | 27.02070 | 77.45050             | 2 11204            | 20.44703 | 105 1007 | 2 /1602                    |
| 578110.554140105.28 | 578117   | 4140103 | 23.43    | 70 20100             | 1 52677            | 24.00031 | 06 02440 | 5.41033                    |
| 578124.554140075.28 | 576125   | 4140075 | 23.19004 | 70.50109             | 2 01102            | 22.30100 | 00.02449 | 3.57419                    |
| 576124.954140061.26 | 576125   | 4140081 | 22.79120 | 70.03946             | 2.91102            | 21.95//1 | 90.750Z7 | 4.40159                    |
| 578124.954140089.28 | 578125   | 4140089 | 22.01278 | 82.12501             | 3.4052             | 21.04297 | 112.3004 | 3.78232                    |
| 5/8124.954140097.28 | 578125   | 4140097 | 20.89822 | 86.31317             | 2.98694            | 19.88489 | 128.3878 | 3.25/61                    |
| 5/8124.954140105.28 | 5/8125   | 4140105 | 19.52452 | 88.57033             | 2.63725            | 18.58843 | 148.1323 | 2.84104                    |
| 578124.954140113.28 | 578125   | 4140113 | 17.97629 | 87.98223             | 2.33895            | 17.30633 | 1/3.1131 | 2.50207                    |
| 578124.954140121.28 | 578125   | 4140121 | 16.38113 | 83.8399              | 2.08435            | 16.1/86/ | 205.9593 | 2.22343                    |
| 578132.954140065.28 | 578133   | 4140065 | 19.14429 | 56.70887             | 4.43295            | 18.28954 | 66.14755 | 5.24668                    |
| 578132.954140073.28 | 578133   | 4140073 | 18.80573 | 61.56996             | 3.8101             | 17.82275 | 73.30252 | 4.3416                     |
| 578132.954140081.28 | 578133   | 4140081 | 18.22591 | 66.17563             | 3.31284            | 17.13727 | 81.17716 | 3.67343                    |
| 578132.954140089.28 | 578133   | 4140089 | 17.42873 | 70.37844             | 2.90775            | 16.27819 | 90.13778 | 3.16131                    |
| 578132.954140105.28 | 578133   | 4140105 | 15.32139 | 76.16421             | 2.28294            | 14.35863 | 112.9741 | 2.42607                    |
| 578132.954140113.28 | 578133   | 4140113 | 14.15382 | 76.64636             | 2.04043            | 13.51436 | 128.3308 | 2.15733                    |
| 578132.954140121.28 | 578133   | 4140121 | 13.00321 | 74.49116             | 1.83347            | 12.82461 | 148.0759 | 1.93469                    |
| 578132.954140129.28 | 578133   | 4140129 | 11.92006 | 69.03353             | 1.65583            | 12.23341 | 174.3913 | 1.74698                    |
| 578140.954140057.28 | 578141   | 4140057 | 16.05697 | 45.89996             | 4.36566            | 15.16585 | 51.6616  | 5.15938                    |
| 578140.954140065.28 | 578141   | 4140065 | 15.76046 | 49.32962             | 3.73912            | 14.76897 | 56.07803 | 4.25839                    |
| 578140.954140073.28 | 578141   | 4140073 | 15.31135 | 52.689               | 3.24792            | 14.22901 | 60.81179 | 3.5993                     |
| 578140.954140081.28 | 578141   | 4140081 | 14.71517 | 55.89833             | 2.85085            | 13.56828 | 65.97307 | 3.09632                    |
| 578118.524140112.89 | 578118.5 | 4140113 | 22.31544 | 95.04166             | 2.66916            | 21.79629 | 218.8775 | 2.89333                    |
| 578140.954140113.28 | 578141   | 4140113 | 11.40585 | 63.49067             | 1.8087             | 10.91005 | 94.275   | 1.89689                    |
| 578140.954140121.28 | 578141   | 4140121 | 10.56527 | 62.09822             | 1.63631            | 10.47984 | 104.8612 | 1.71372                    |
| 578140.954140129.28 | 578141   | 4140129 | 9.80499  | 58.11078             | 1.48886            | 10.08911 | 118.5613 | 1.55814                    |
| 578140.954140137.28 | 578141   | 4140137 | 9.05421  | 50.81226             | 1.35867            | 9.59477  | 135.8925 | 1.42055                    |
| 578148.954140049.28 | 578149   | 4140049 | 13.67742 | 37.50312             | 4.33736            | 12.80458 | 41.12141 | 5.10632                    |
| 578148.954140057.28 | 578149   | 4140057 | 13.42792 | 39.89739             | 3.70896            | 12.47297 | 43.90982 | 4.21222                    |
| 578148.954140065.28 | 578149   | 4140065 | 13.05444 | 42.17688             | 3.2114             | 12.02613 | 46.75507 | 3.55406                    |
| 578148.954140073.28 | 578149   | 4140073 | 12.57578 | 44.31955             | 2.81169            | 11.49059 | 49.71672 | 3.05225                    |
| 578111.194140102.62 | 578111.2 | 4140103 | 31.77407 | 104.3751             | 3.70906            | 31.81611 | 223.7196 | 4.17154                    |
| 578136.744140133.62 | 578136.7 | 4140134 | 10.36412 | 60.29771             | 1.49334            | 10.85485 | 159.5289 | 1.56874                    |
| 578148.954140121.28 | 578149   | 4140121 | 8.7566   | 48.57356             | 1.47787            | 8.76348  | 72.02152 | 1.53893                    |
| 578148.954140129.28 | 578149   | 4140129 | 8.2033   | 44.88711             | 1.35285            | 8.47341  | 76.5205  | 1.40739                    |
| 578148.954140137.28 | 578149   | 4140137 | 7.64986  | 38.41425             | 1.24095            | 8.06781  | 80.57239 | 1.29043                    |
| 578156.954140041.28 | 578157   | 4140041 | 11.7605  | 30.85514             | 4.3007             | 10.94177 | 33,13639 | 5.04892                    |
| 578156.954140049.28 | 578157   | 4140049 | 11 57726 | 32 57552             | 3 69437            | 10 684   | 34 9581  | 4 18001                    |
| 578156.954140057.28 | 578157   | 4140057 | 11 28252 | 34 14394             | 3 20052            | 10 32271 | 36 70649 | 3 53138                    |
| 578156.954140065.28 | 578157   | 4140065 | 10 90598 | 35 57391             | 2 80211            | 9 89036  | 38 42395 | 3 03482                    |
| 578156 954140073 28 | 578157   | 4140073 | 10 4526  | 36 80438             | 2.00211            | 9 41246  | 40 10679 | 2 64188                    |
| 578156 954140073.28 | 578157   | 4140113 | 7 85532  | 38 10/5              | 1 //7279           | 7 66/09  | 40.10075 | 1 52822                    |
| 578156 954140113.28 | 578157   | A1A0121 | 7.05552  | 26 0/192             | 1 2/2/7            | 7.00405  | 47.42240 | 1 20759                    |
| 578156 954140121.28 | 578157   | 4140121 | 6 05725  | 22 1/221             | 1 22086            | 7 21265  | 47.77031 | 1 29/61                    |
| 578150.554140125.28 | 578157   | 4140129 | 10 0/122 | 32.44221<br>36 77365 | 7.23200            | 1.21303  | +1.04/00 | 1.20401<br>A 101 <i>4C</i> |
| 578164.954140041.28 | 578105   | 4140041 | 10.04133 | 20.//305             | 3.03449<br>2.10101 | 9.23     | 20.14910 | 4.15140                    |
| 578164.954140049.28 | 578165   | 4140049 | 9.82375  | 27.88092             | 3.18191            | 8.94/52  | 29.2502/ | 3.50447                    |
| 578164.954140057.28 | 578165   | 4140057 | 9.53/45  | 28.85308             | 2.79209            | ö.bU349  | 30.25926 | 3.01868                    |
| 578164.954140065.28 | 578165   | 4140065 | 9.1901/  | 29.65601             | 2.468/2            | 8.22046  | 31.1/10/ | 2.632/9                    |
| 578164.954140073.28 | 578165   | 4140073 | 8.78953  | 30.23201             | 2.19833            | 7.827    | 31.96301 | 2.32031                    |
| 578164.954140081.28 | 578165   | 4140081 | 8.35211  | 30.53477             | 1.96999            | /.45868  | 32.61239 | 2.06337                    |
| 578164.954140105.28 | 578165   | 4140105 | 7.058    | 29.53103             | 1.47089            | 6.74002  | 33.28248 | 1.52268                    |

| 578164.954140113.28  | 578165   | 4140113  | 6.66922           | 28.23369 | 1.34819  | 6.59198  | 32.69189 | 1.39351  |
|----------------------|----------|----------|-------------------|----------|----------|----------|----------|----------|
| 578164.954140121.28  | 578165   | 4140121  | 6.30068           | 26.01693 | 1.24097  | 6.42416  | 31,31616 | 1,28096  |
| 578164 954140129 28  | 578165   | 4140129  | 5 96079           | 22 73807 | 1 14577  | 6 20326  | 28 96386 | 1 18261  |
| 578172 05/1/00/0 28  | 578105   | 11/00/0  | 9.30073<br>8 2702 | 22.73007 | 2 76071  | 7 52115  | 20.30300 | 2 00/1   |
| 576172.354140043.26  | 570173   | 4140043  | 0.5705            | 23.30/92 | 2.70971  | 7.55115  | 24.10095 | 2.9941   |
| 578172.934140057.28  | 5/61/5   | 4140057  | 0.11455           | 24.15542 | 2.45/55  | 7.22905  | 24.07045 | 2.01956  |
| 5/81/2.954140065.28  | 5/81/3   | 4140065  | 7.81313           | 24.50623 | 2.19179  | 6.91394  | 25.04519 | 2.31259  |
| 578172.954140073.28  | 578173   | 4140073  | 7.47053           | 24.63487 | 1.96771  | 6.60919  | 25.25704 | 2.0598   |
| 578172.954140081.28  | 578173   | 4140081  | 7.10299           | 24.48398 | 1.77682  | 6.34164  | 25.28033 | 1.84915  |
| 578172.954140089.28  | 578173   | 4140089  | 6.73665           | 24.0713  | 1.61343  | 6.13241  | 25.1078  | 1.67212  |
| 578172.954140097.28  | 578173   | 4140097  | 6.38129           | 23.3458  | 1.47253  | 5.97659  | 24.67541 | 1.52185  |
| 578172.954140105.28  | 578173   | 4140105  | 6.04508           | 22.2669  | 1.3503   | 5.85541  | 23.91378 | 1.39297  |
| 578172.954140113.28  | 578173   | 4140113  | 5.73248           | 20.8179  | 1.24379  | 5.73764  | 22.7529  | 1.28123  |
| 578172.954140121.28  | 578173   | 4140121  | 5.44025           | 18.87442 | 1.15022  | 5.58935  | 21.0951  | 1.18314  |
| 578180.954140065.28  | 578181   | 4140065  | 6.69606           | 20.10294 | 1.96505  | 5.8875   | 20.00216 | 2.0568   |
| 578180.954140073.28  | 578181   | 4140073  | 6.41512           | 19,90702 | 1.77717  | 5.66762  | 19.85306 | 1.84955  |
| 578180.954140081.28  | 578181   | 4140081  | 6 10867           | 19 51471 | 1 61595  | 5 48191  | 19 56022 | 1 67389  |
| 578180 95/11/0089 28 | 578181   | 11/10089 | 5 80789           | 18 9072/ | 1 47664  | 5 3/3/1  | 19.00022 | 1 52446  |
| 570100.054140005.20  | 570101   | 4140007  | 5.00705           | 10.00724 | 1 255/2  | 5.34341  | 10 10000 | 1 20614  |
| 576160.354140097.28  | 570101   | 4140097  | 5.51900           | 10.00205 | 1.55545  | 5.24050  | 17 52522 | 1.39014  |
| 578180.954140105.28  | 578181   | 4140105  | 5.24588           | 10.90314 | 1.24917  | 5.14988  | 17.52522 | 1.28469  |
| 578180.954140113.28  | 5/8181   | 4140113  | 4.98759           | 15.61453 | 1.15569  | 5.04471  | 16.36851 | 1.18686  |
| 578188.954140073.28  | 578189   | 4140073  | 5.54651           | 16.07099 | 1.6187   | 4.92429  | 15.65108 | 1.6/6/6  |
| 578188.954140081.28  | 578189   | 4140081  | 5.3045            | 15.5613  | 1.48082  | 4.80601  | 15.23125 | 1.52909  |
| 578188.954140089.28  | 578189   | 4140089  | 5.05599           | 14.89417 | 1.36101  | 4.71478  | 14.69072 | 1.40124  |
| 578188.954140097.28  | 578189   | 4140097  | 4.81829           | 14.06942 | 1.25579  | 4.64188  | 14.01781 | 1.29019  |
| 578188.954140105.28  | 578189   | 4140105  | 4.59251           | 13.09624 | 1.1628   | 4.56612  | 13.20804 | 1.19273  |
| 578188.954140113.28  | 578189   | 4140113  | 4.37846           | 12.00164 | 1.08031  | 4.46749  | 12.27394 | 1.10641  |
| 578196.954140081.28  | 578197   | 4140081  | 4.62706           | 12.5016  | 1.3672   | 4.25477  | 12.02553 | 1.40644  |
| 578196.954140089.28  | 578197   | 4140089  | 4.42443           | 11.8679  | 1.2627   | 4.19473  | 11.51947 | 1.29608  |
| 578196.954140097.28  | 578197   | 4140097  | 4.23095           | 11.14177 | 1.17031  | 4.13939  | 10.9387  | 1.19923  |
| 578196.954140105.28  | 578197   | 4140105  | 4.04817           | 10.34134 | 1.08822  | 4.07271  | 10.28963 | 1.11359  |
| 578204.954140097.28  | 578205   | 4140097  | 3 75039           | 8 99742  | 1 09681  | 3 71862  | 8 77063  | 1 12155  |
| 578001 424140037 45  | 578001 4 | 4140037  | 10 24898          | 4 49841  | 1 26823  | 8 64494  | 3 59484  | 1 22692  |
| 578001.424140045.45  | 578001.4 | 4140045  | 10.24050          | 1 61969  | 1 32222  | 9 21167  | 3 6859/  | 1 20202  |
| 578009 424140049.45  | 578009.4 | 11/0020  | 11 50176          | 5 22221  | 1 /662   | 10 0201/ | 1 22255  | 1 /0697  |
| 578005.424140025.45  | 578009.4 | 4140023  | 12 40901          | 5.52221  | 1 54150  | 10.03914 | 4.33233  | 1.40007  |
| 578009.424140057.45  | 578009.4 | 4140037  | 12.49091          | 5.52102  | 1.04100  | 11 74005 | 4.49007  | 1.49557  |
| 578009.424140045.45  | 578009.4 | 4140045  | 13.52210          | 5./2585  | 1.02245  | 11.74905 | 4.05554  | 1.594    |
| 578017.424140029.45  | 578017.4 | 4140029  | 13.92653          | 6.49155  | 1./9/4/  | 12.52922 | 5.3979   | 1./3823  |
| 5/801/.42414003/.45  | 5/801/.4 | 4140037  | 15.1887           | 6.79902  | 1.91127  | 13.69466 | 5.65683  | 1.8/09/  |
| 578025.424140021.45  | 578025.4 | 4140021  | 15.14512          | 7.49432  | 2.08149  | 14.22174 | 6.38806  | 2.02301  |
| 578025.424140029.45  | 578025.4 | 4140029  | 16.63067          | 7.92979  | 2.23978  | 15.66335 | 6.7689   | 2.20292  |
| 578033.424140013.45  | 578033.4 | 4140013  | 16.07036          | 8.48608  | 2.37859  | 15.79714 | 7.4307   | 2.34031  |
| 578033.424140021.45  | 578033.4 | 4140021  | 17.7184           | 9.0567   | 2.58556  | 17.48356 | 7.9486   | 2.57511  |
| 578041.424140013.45  | 578041.4 | 4140013  | 18.39857          | 10.1356  | 2.92832  | 18.99439 | 9.15459  | 2.96544  |
| 578041.424140021.45  | 578041.4 | 4140021  | 20.41836          | 10.91616 | 3.22646  | 21.18589 | 9.89642  | 3.31676  |
| 578049.424140005.45  | 578049.4 | 4140005  | 18.6456           | 11.11233 | 3.24656  | 20.04607 | 10.32975 | 3.34488  |
| 578049.424140013.45  | 578049.4 | 4140013  | 20.6859           | 12.04458 | 3.59783  | 22.35401 | 11.24335 | 3.76237  |
| 578049.424140021.45  | 578049.4 | 4140021  | 23.06125          | 13.08479 | 4.01381  | 25.06253 | 12.27586 | 4.27256  |
| 578049.424140029.45  | 578049.4 | 4140029  | 25.85542          | 14.25482 | 4.51412  | 28.27682 | 13.45398 | 4.90767  |
| 578057.424139997.45  | 578057.4 | 4139997  | 18.50089          | 11.95502 | 3.53081  | 20.57258 | 11.43148 | 3.69334  |
| 578057.424140005.45  | 578057.4 | 4140005  | 20.4694           | 13.01043 | 3.92159  | 22.87243 | 12.49566 | 4.16204  |
| 578057.424140013.45  | 578057.4 | 4140013  | 22.75604          | 14.20516 | 4.38735  | 25.55926 | 13.71282 | 4.73615  |
| 578057.424140021.45  | 578057.4 | 4140021  | 25.42681          | 15.5592  | 4,94697  | 28.71688 | 15,10982 | 5.44869  |
| 578057 424140029 45  | 578057.4 | 4140029  | 28 56853          | 17 09868 | 5 62751  | 32 45854 | 16 72233 | 6 34774  |
| 578057.424140025.45  | 578057.4 | 4140025  | 20.00000          | 18 863/8 | 6 46036  | 36 0/220 | 18 60272 | 7 50026  |
| 578057 /2/140037.45  | 578057.4 | 4140045  | 36 70061          | 20.00040 | 7 57001  | 10 27/00 | 20.00373 | 0 0510   |
| 578057.424140045.45  | 578057.4 | 4140045  | 21 00445          | 15 10000 | 1.52694  | 42.3/409 | 20.02033 | 5.0013   |
| 578005.424140005.45  | 578065.4 | 4140005  | 21.98445          | 10.24050 | 4.09093  | 25.303/4 | 10,20222 | 5.12261  |
| 578065.424140021.45  | 578065.4 | 4140021  | 27.29382          | 18.31659 | 6.02101  | 31.69445 | 18.39223 | 6.84179  |
| 578065.424140029.45  | 578065.4 | 4140029  | 30.64544          | 20.29719 | 6.91126  | 35./5247 | 20.53703 | 8.06624  |
| 578065.424140037.45  | 578065.4 | 4140037  | 34.59468          | 22.57962 | 8.01377  | 40.55993 | 23.05807 | 9.6689   |
| 578065.424140045.45  | 578065.4 | 4140045  | 39.30222          | 25.2421  | 9.40998  | 46.32162 | 26.06513 | 11.84844 |
| 578065.424140053.45  | 578065.4 | 4140053  | 44.99116          | 28.3966  | 11.22798 | 53.3227  | 29.71698 | 14.99287 |

| 578073.424139989.45 | 578073.4 | 4139989 | 18.97    | 14.34712 | 4.42543             | 22.12324             | 14.54317 | 4.78691     |
|---------------------|----------|---------|----------|----------|---------------------|----------------------|----------|-------------|
| 578073 424140029 45 | 578073 4 | 4140029 | 31 84851 | 23 77779 | 8 3605              | 37 65914             | 24 83377 | 10 09025    |
| 578073 424140023 45 | 578072 / | A1/0027 | 25 78622 | 26 67705 | 0.5005              | 12 11562             | 29.12051 | 12 27016    |
| 576075.424140057.45 | 578073.4 | 4140037 | 33.76023 | 20.07795 | 9.70705<br>11 EE072 | 42.41502             | 20.12931 | 15 27241    |
| 578073.424140045.45 | 5/80/3.4 | 4140045 | 40.40904 | 30.09495 | 11.55973            | 48.00423             | 32.10598 | 15.37241    |
| 578081.424139981.45 | 578081.4 | 4139981 | 17.8841  | 14.6/918 | 4.61391             | 21.07099             | 15.26039 | 5.01425     |
| 578081.424139989.45 | 578081.4 | 4139989 | 19.5645  | 16.11559 | 5.15235             | 23.08577             | 16.81955 | 5.67644     |
| 578081.424139997.45 | 578081.4 | 4139997 | 21.46431 | 17.7611  | 5.79093             | 25.3588              | 18.61772 | 6.48442     |
| 578081.424140005.45 | 578081.4 | 4140005 | 23.61608 | 19.65263 | 6.55338             | 27.9264              | 20.70282 | 7.483       |
| 578081.424140021.45 | 578081.4 | 4140021 | 28.86274 | 24.41219 | 8.60574             | 34.15109             | 26.03472 | 10.37242    |
| 578081.424140029.45 | 578081.4 | 4140029 | 32.06961 | 27.43581 | 10.01003            | 37.93029             | 29.49049 | 12.55625    |
| 578081.424140037.45 | 578081.4 | 4140037 | 35.74777 | 31.0149  | 11.78406            | 42.24488             | 33.66148 | 15.62463    |
| 578089.424139981.45 | 578089.4 | 4139981 | 18.13616 | 16.20408 | 5.31083             | 21.45329             | 17.30608 | 5.86118     |
| 578089 424139989 45 | 578089 / | /120080 | 19 76666 | 17 85030 | 5 96/23             | 22 26015             | 10 1/258 | 6 68004     |
| E78080 424120007 4E | 570000.4 | 4120007 | 21 57000 | 10 7/700 | 6 72474             | 25.50515<br>2E A06A6 | 21 25200 | 7 60205     |
| 570005.424135557.45 | 578089.4 | 4133337 | 21.37901 | 19.74790 | 7.0000              | 23.40040             | 21.23203 | 7.00595     |
| 578089.424140005.45 | 578089.4 | 4140005 | 23.60744 | 21.93089 | 7.05930             | 27.83701             | 23./11/8 | 8.94323     |
| 578089.424140013.45 | 578089.4 | 4140013 | 25.88618 | 24.48638 | 8.78862             | 30.45519             | 26.61613 | 10.56856    |
| 578089.424140021.45 | 578089.4 | 4140021 | 28.4419  | 27.48958 | 10.18034            | 33.36451             | 30.07075 | 12.73841    |
| 578089.424140029.45 | 578089.4 | 4140029 | 31.30862 | 31.04934 | 11.92968            | 36.594               | 34.23026 | 15.78053    |
| 578097.424139989.45 | 578097.4 | 4139989 | 19.55597 | 19.45465 | 6.86137             | 22.95349             | 21.34128 | 7.82222     |
| 578097.424139997.45 | 578097.4 | 4139997 | 21.23044 | 21.58342 | 7.80249             | 24.82796             | 23.75812 | 9.08945     |
| 578097.424140005.45 | 578097.4 | 4140005 | 23.06223 | 24.03387 | 8.92865             | 26.85198             | 26.56221 | 10.70968    |
| 578097.424140013.45 | 578097.4 | 4140013 | 25.08077 | 26.90827 | 10.31599            | 29.04951             | 29.88025 | 12.87586    |
| 578097.424140021.45 | 578097.4 | 4140021 | 27,29545 | 30,30039 | 12.05127            | 31,42348             | 33,84262 | 15.91759    |
| 578105 424140005 45 | 578105 4 | 4140005 | 22 04268 | 25 77569 | 10 41001            | 25 13556             | 28 97032 | 12 96873    |
| 578105 424140003.45 | 578105.4 | A1/0012 | 22.04200 | 20.77505 | 12 1/67/            | 25.15550             | 20.57052 | 16 02727    |
| 578103.424140013.45 | 578103.4 | 4140013 | 23.75127 | 20.00000 | 1 4 6 0 7 1         | ZU.00499             | 32.3903  | 1 5 4 1 4 5 |
| 578172.954140089.28 | 5/61/5   | 4140089 | 0.28840  | 21.06522 | 1.409/1             | 5.65560              | 22.0300  | 1.54145     |
| 578172.954140097.28 | 5/81/3   | 4140097 | 5.96839  | 20.26649 | 1.3466              | 5.69746              | 22.09477 | 1.40652     |
| 578172.954140105.28 | 578173   | 4140105 | 5.66613  | 19.17375 | 1.23968             | 5.58991              | 21.23787 | 1.29085     |
| 578172.954140113.28 | 578173   | 4140113 | 5.38499  | 17.8186  | 1.14738             | 5.48196              | 20.05702 | 1.19145     |
| 578172.954140121.28 | 578173   | 4140121 | 5.12159  | 16.21781 | 1.06721             | 5.34437              | 18.51212 | 1.10534     |
| 578180.954140065.28 | 578181   | 4140065 | 6.26547  | 18.15978 | 1.78171             | 5.6023               | 18.4485  | 1.89033     |
| 578180.954140073.28 | 578181   | 4140073 | 6.00518  | 17.91836 | 1.62606             | 5.40233              | 18.28239 | 1.71147     |
| 578180.954140081.28 | 578181   | 4140081 | 5.72653  | 17.42157 | 1.48351             | 5.23462              | 17.92132 | 1.55289     |
| 578180.954140089.28 | 578181   | 4140089 | 5.45471  | 16.73816 | 1.35969             | 5.11175              | 17.4082  | 1.41713     |
| 578180.954140097.28 | 578181   | 4140097 | 5.19467  | 15.86456 | 1.25158             | 5.02071              | 16.72022 | 1.30015     |
| 578180.954140105.28 | 578181   | 4140105 | 4,94708  | 14,79768 | 1,1561              | 4,93762              | 15.82974 | 1,19805     |
| 578180.954140113.28 | 578181   | 4140113 | 4,71213  | 13,56743 | 1.07211             | 4.83796              | 14,73517 | 1.10868     |
| 578188 954140073 28 | 578189   | 4140073 | 5 21907  | 1/ 5589/ | 1 / 9267            | 1 71603              | 1/ /8305 | 1 56051     |
| 570100.554140075.20 | 570100   | A1A0001 | 1 0005   | 14.05154 | 1 27260             | 4.71005              | 14.00066 | 1 42017     |
| 570100.554140001.20 | 578185   | 4140001 | 4.9900   | 12 25051 | 1.57509             | 4.01130              | 12 52220 | 1.42917     |
| 578188.954140089.28 | 578189   | 4140089 | 4.77408  | 13.55951 | 1.20441             | 4.55046              | 13.33330 | 1.51120     |
| 5/8188.95414009/.28 | 578189   | 4140097 | 4.5589   | 12.54088 | 1.16812             | 4.46436              | 12.87542 | 1.20822     |
| 578188.954140105.28 | 578189   | 4140105 | 4.35317  | 11.61308 | 1.08238             | 4.3924               | 12.10448 | 1.11/42     |
| 578188.954140113.28 | 578189   | 4140113 | 4.1564   | 10.61665 | 1.00632             | 4.29642              | 11.24193 | 1.03715     |
| 578196.954140081.28 | 578197   | 4140081 | 4.38272  | 11.33675 | 1.27049             | 4.09749              | 11.15712 | 1.31639     |
| 578196.954140089.28 | 578197   | 4140089 | 4.19834  | 10.71252 | 1.17488             | 4.04319              | 10.66827 | 1.21425     |
| 578196.954140097.28 | 578197   | 4140097 | 4.02155  | 10.01884 | 1.09012             | 3.99099              | 10.12004 | 1.1242      |
| 578196.954140105.28 | 578197   | 4140105 | 3.85346  | 9.28484  | 1.01488             | 3.9264               | 9.52423  | 1.04491     |
| 578204.954140097.28 | 578205   | 4140097 | 3.5787   | 8.17962  | 1.02422             | 3.59296              | 8.18294  | 1.05356     |
| 578001.424140037.45 | 578001.4 | 4140037 | 9.12451  | 4.0191   | 1.10328             | 7.97908              | 3.33383  | 1.09849     |
| 578001.424140045.45 | 578001.4 | 4140045 | 9.70139  | 4.10733  | 1.14385             | 8.49605              | 3.40598  | 1.1505      |
| 578009.424140029.45 | 578009.4 | 4140029 | 10.34723 | 4,7648   | 1.27546             | 9.27094              | 4.01978  | 1.25807     |
| 578009 424140037 45 | 578009 4 | 4140037 | 11 10573 | 4 91849  | 1 32936             | 9 97068              | 4 1509   | 1 32541     |
| 578009.424140037.45 | 578009.4 | 4140045 | 11 0/27  | 5 07251  | 1 20262             | 10 7/768             | 4 28218  | 1 /0/68     |
| 578005.424140045.45 | 578009.4 | 4140045 | 12 4446  | 5.07551  | 1.59202             | 11 54712             | 4.20310  | 1 540400    |
| 578017.424140029.45 | 578017.4 | 4140029 | 12.4446  | 5./994   | 1.00701             | 12.54/13             | 4.99452  | 1.54201     |
| 578017.424140037.45 | 578017.4 | 4140037 | 13.49155 | 6.04148  | 1.63/61             | 12.55686             | 5.21158  | 1.642/2     |
| 578025.424140021.45 | 578025.4 | 4140021 | 13.63758 | 6.71908  | 1.81442             | 13.16765             | 5.92166  | 1.80526     |
| 578025.424140029.45 | 578025.4 | 4140029 | 14.89286 | 7.07304  | 1.93284             | 14.43411             | 6.2484   | 1.94656     |
| 578033.424140013.45 | 578033.4 | 4140013 | 14.60104 | 7.63977  | 2.08765             | 14.71381             | 6.90504  | 2.09755     |
| 578033.424140021.45 | 578033.4 | 4140021 | 16.01948 | 8.11425  | 2.2471              | 16.21931             | 7.35734  | 2.28607     |
| 578041.424140013.45 | 578041.4 | 4140013 | 16.80537 | 9.12601  | 2.57161             | 17.75042             | 8.50083  | 2.65325     |
| 578041.424140021.45 | 578041.4 | 4140021 | 18.56164 | 9.77943  | 2.80346             | 19.72493             | 9.15229  | 2.93568     |
|                     |          |         |          |          |                     |                      |          |             |

| 578049.424140005.45 | 578049.4 | 4140005 | 17.20059 | 10.05789 | 2.87033 | 18.86453 | 9.62449  | 3.01017 |
|---------------------|----------|---------|----------|----------|---------|----------|----------|---------|
| 578049.424140013.45 | 578049.4 | 4140013 | 19.00802 | 10.85158 | 3.15563 | 20.97773 | 10.43772 | 3.35772 |
| 578049.424140021.45 | 578049.4 | 4140021 | 21.09408 | 11.72661 | 3.4892  | 23.44215 | 11.34824 | 3.78265 |
| 578049.424140029.45 | 578049.4 | 4140029 | 23.52701 | 12.6986  | 3.90049 | 26.34841 | 12.37715 | 4.35502 |
|                     |          |         |          |          |         |          |          |         |

# Appendix E

**Cultural Resources Evaluations** 

 State of California & The Resources Agency
 Primary #

 DEPARTMENT OF PARKS AND RECREATION
 HRI #

 PRIMARY RECORD
 Trinomial

 NRHP Status Code
 Other

 Review Code
 Reviewer
 Date

 Page 1 of 17
 \*Resource Name or #: Massage Envy Spa and Peninsula Piano Brokers

P1. Other Identifier:

#### \*P2. Location: D Not for Publication 🗵 Unrestricted

- \*a. County: Santa Clara and (P2c, P2e, and P2b or P2d. Attach a Location Map as necessary.)
- \*b. USGS 7.5' Quad Palo Alto Date 1997 T 6S; R 3W; Sec 12; Mount Diablo B.M.
- c. Address: <u>4333-4335 El Camino Real</u> City: <u>Palo Alto</u> Zip: <u>94306</u>
- d. UTM: (Give more than one for large and/or linear resources) Zone 10, S 578073 mE/ E 4140212 mN

e. Other Locational Data: (e.g., parcel #, directions to resource, elevation, decimal degrees, etc., as appropriate)

<u>37.4054° -122.1178°; APN 148-09-010</u>

\*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries)

This property is located on the southern edge of Palo Alto, along the border with Mountain View, in the Monroe Park neighborhood<sup>1</sup>. The neighborhood is roughly bounded by El Camino Real on the southwest, Adobe Creek on the northwest, and the Mountain View City Limits on the northeast and southeast. The property is bounded to the southeast by Cesano Court and on the southwest by El Camino Real. Across Cesano Court to the southeast is the Country Inn Motel (4345 El Camino Real, Pao Alto). To the north is an apartment complex (440 Cesano Court); across the street on El Camino Real is a 3-story hotel (4320 El Camino Real, Los Altos) and kitty-corner is a gas station (4350 El Camino Real, Los Altos). The area is dominated by commercial and multi-family housing area along El Camino Real, with primarily 1950s era single-family homes behind. See Continuation Sheet.



\*Attachments: Image: Building, Structure, and Object Record Image: Continuation Sheet

\*Required information.

None

<sup>&</sup>lt;sup>1</sup> https://www.paloaltoonline.com/news/show\_photo.php?main\_id=15145&type=p&media\_id=17880&section\_id=1
DPR 523A (9/2013) \*Rec

 State of California & The Resources Agency
 Primary #

 DEPARTMENT OF PARKS AND RECREATION
 HRI#

 BUILDING, STRUCTURE, AND OBJECT RECORD

\*Resource Name or # <u>4333-4335 El Camino Massage Envy Spa and Peninsula Piano Brokers</u> \*NRHP Status Code **6Z** Page 2 of 17

- B1. Historic Name: <u>Cesano's Liquors</u>
- B2. Common Name: Massage Envy Spa and Peninsula Piano Brokers
- B3. Original Use: Office Retail
- B4. Present Use: Office Retail
- \*B5. Architectural Style: Mansard
- \*B6. Construction History: (Construction date, alterations, and date of alterations)

See Continuation Sheet.

\*B7. Moved?  $\square$  No  $\square$  Yes  $\square$  Unknown Date:  $\underline{N/A}$  Original Location:  $\underline{N/A}$ 

- \*B8. Related Features: None
- B9a. Architect: <u>Unknown</u> b. Builder: <u>Unknown</u>
- \*B10. Significance: Theme N/A Area N/A

 Period of Significance N/A Property Type N/A Applicable Criteria N/A 

See Continuation Sheet.

- B11. Additional Resource Attributes: (List attributes and codes) N/A
- \*B12. References:
  - See footnotes.
- B13. Remarks:
- \*B14. Evaluator: Douglas Bright, Urban Programmers \*Date of Evaluation: July 2024



| State of California - The Resources Agency | Primary# |
|--------------------------------------------|----------|
| DEPARTMENT OF PARKS AND RECREATION         | F        |

HRI # Trinomial

### **CONTINUATION SHEET**

| Property | Name: |
|----------|-------|
| Page     | of    |

Page 3 of 17 \*Resource Name or #: Massage Envy Spa and Peninsula Piano Brokers

### \*P3a. Description (Continued):

The property contains 2 units with a total lot square footage of 17,424 and building area of 6,565 square feet.<sup>1</sup> It is a tilt-up (Pre-cast Concrete) construction is a small office retail building, with a fairly typical design for its time.

The building can be stylistically divided into three sections, each with contrasting styles.

The south corner's (housing the business, Massage Envy Spa) architectural style is Mansard, which was a popular style for retail office buildings of the 1960s and 1970s. The second story of this corner is hidden behind a steeply sloping roof that extends to the first floor. Above the mansard and extending nearly level to the central "L" shaped section, is a flat roof with two skylights. The entry has a deeply recessed entry and large wood sliding windows. The mansard roof itself is clad with cedar shingles. The first floor is clad in T1-11 siding.

The middle "L" section wraps around the northwest and northeast portion of the south corner described above. As mentioned, it has a flat roof. There are four HVAC units and a skylight. The walls are clad in stucco, punctuated with three vertical bands of wood containing six windows, with 9 lites each. The second-floor windows appear to be double-hung, while the lower floor is fixed. There is a second-floor entrance on the southwest elevation accessed by a metal railed staircase.

The northwest side of the building (4333 El Camino Real, housing the business "Peninsula Piano Brokers") has a non-descript rectangular floorplan with a flat roof on the rear addition and a hipped roof with an HVAC unit on the front. It has no exterior ornamentation except for a mural of a piano on the northwestern elevation. The walls are concrete, painted white. The front entrance consists of a large canvas awning over two doors separated by a strip of the concrete wall. The doors are flanked by large picture windows. The back half of this section was added sometime between 1966 and 1980.

The building is fronted at various locations along the sidewalk with landscaping with flowers, trees, mulch, and shrubs. There is an approximately 20-space parking lot behind the building, accessed via Cesano Court.

<sup>&</sup>lt;sup>1</sup> City of Palo Alto Assessor's Records

Primary# HRI # Trinomial

### **CONTINUATION SHEET**

Property Name: \_\_\_\_ Page \_\_\_\_ of \_\_\_\_

Page 4 of 17

\*Resource Name or #: Massage Envy Spa and Peninsula Piano Brokers



Photograph 2 4333-4335 E; Camino Real View: Front – South side Camera facing North Date:1/2/2025



Photograph 2. 4333-4335 El Camino Real View: Rear side Camera facing west Date: 10-14-2024



Photograph 3 4333-4335 El Camino Real View West Sicee Camera facing easttDate: 1/1/2025

Primary# HRI # Trinomial

### **CONTINUATION SHEET**

Property Name: \_\_\_\_ Page \_\_\_\_ of \_\_\_\_



Photograph 4 4333-43335 El Camino Real View: East side Camera facing west Date: 1/2/2025 5

### \*B6. Construction History (Continued):

In 1929, property owners Frank D. Phillips and Mary C. Phillips relinquished some land from this parcel to the State of California for street widening. This property was transferred from

James Cesano and Clotilda Cesano to Cesano, Inc. on 1/30/1959. Based on aerial photographs, the building was heavily altered sometime between 1982 and 1987. Cesano Court was constructed sometime between 1968 and 1980.

Available records for the Property at the City of Palo Alto Building Department were reviewed in January-February 2024. Records indicate the property was constructed in 1966. Topographic maps<sup>2</sup> dated in 1937, 1943, 1944, 1955, 1956, 1962, 1963, 1965, 1966, 1969, 1974, 1995, 2012, 2015, 2018, and 2021 were reviewed. No built resources were recorded on these maps for this property. However, Cesano Court first appears on the 2012 map. Historical aerial photographs<sup>3</sup> dated in 1948, 1956, 1958, 1960, 1968, 1980, 1987,

Page 5 of 17 \*Resource Name or #: Massage Envy Spa and Peninsula Piano Brokers

988, 1991, 1993, 1998, 2002, 2004, 2005, 2009, 2010, 2014, 2016, 2018, and 2020 were reviewed. The property was indicated to have been occupied by a farmhouse from at least 1948 until at most 1968. At this point, all but the north corner of the building appears to have been constructed. By 1980, the present for was achieved. Cesano Court was constructed sometime between 1968 and 1980.<sup>4</sup>

Primary# HRI # Trinomial

### **CONTINUATION SHEET**

Property Name: \_\_\_\_

Page \_\_\_\_ of \_\_\_

\*B10. Significance (Continued):

### El Camino Real and Southern Palo Alto Development History

The City of Palo Alto is known to have been inhabited by indigenous peoples for thousands of years prior to the arrival of Europeans. Archaeological excavations have shown that the area was inhabited as far back as 2400 BC, during the late Archaic period. During the late Archaic period, prehistoric peoples lived widely throughout the region in small groups.

El Camino Real extends over 600 miles from San Diego in the south to Sonoma in the north. It has a romanticized attachment to the collection of parallel trails that once connected the 21 Franciscan missions between these two points. However, the modern route itself was never the single or even primary route taken by travelers between these missions.

In the late 19th and early 20th centuries, California decided to create a unified highway system. As part of this system, the California Highway Commission (which later became the California Department of Transportation, or Caltrans) was assigned responsibility in 1911 for El Camino Real. They paved the road in 1912-1913 from the Daly City at the

northern end of San Mateo County down into San Jose. This was followed by a building boom in the 1920s and 1930s that spawned many roadside motels, restaurants, and other businesses as the road became very popular with travelers between San Francisco, San Jose, and points south. Although originally called "County Road", it was changed to "El Camino Real" by 1927.

However, as automobile use increased, congestion became a problem and in the 1960s, U.S. Highway 101 was built to the east as a means of alleviating the traffic problem. While this did relieve traffic congestion, it did change the character of the businesses along the road by reducing the number of hotels and diners, while increasing the number of strip malls, office buildings, and grocery stores. As a result, the setting of the El Camino Real corridor near this property has changed drastically since its construction. The road has been widened; concrete medians, streetlights, and sidewalk furniture have been updated; and surrounding businesses and orchards have been razed and new developments built in their place.

<sup>&</sup>lt;sup>2</sup> https://www.historicaerials.com/viewer

<sup>&</sup>lt;sup>3</sup> Ibid.

<sup>&</sup>lt;sup>4</sup> <u>https://historicaerials.com/viewer</u>

| State of California - The Resources Ag | gency Primary#                                            |  |
|----------------------------------------|-----------------------------------------------------------|--|
| DEPARTMENT OF PARKS AND RECREAT        | TION HRI #                                                |  |
|                                        | Trinomial                                                 |  |
| <b>CONTINUATION SHEET</b>              |                                                           |  |
| Property Name:                         |                                                           |  |
| Page of                                |                                                           |  |
| Page 6 of 17 *Resource                 | e Name or #: Massage Envy Spa and Peninsula Piano Brokers |  |

This property is located in the Monroe Park neighborhood of Palo Alto which is named for L.G. Monroe, the original property owner (and president of the Rio del Mar Country Club and Aptos Land and Water Company<sup>5</sup>) of the land that was developed into the Monroe Park subdivision<sup>6</sup>. This community dates back to 1926 and has continuously developed over the years since<sup>7</sup>.

### Development History of 4333-4335 El Camino Real

Research and public outreach also yielded little information. According to Santa Clara County Assessor records, the property was heavily remodeled from the ground up in 1966. Prior to construction the property was occupied by a farmhouse, that may have had an attached storefront, with agricultural land and smaller structures to the rear.<sup>8</sup> This 1966 remodel was paid for by the Cesano Family and represented the start of "Cesano's Liquors" at this location.

Below you will find the permit history of this property (this includes pre-1966 permits for the farmhouse that was at this location before it was heavily remodeled:

| Permit | Date       | Repair                              | Amount   |
|--------|------------|-------------------------------------|----------|
| 7232   | 1/14/1948  | Unspecified alterations             | \$ 6,000 |
| 13397  | 7/20/1955  | Remove wall                         | \$ 1,000 |
| 14284  | 3/13/1956  | Enclose porch                       | \$ 800   |
| 26133  | 10/10/1966 | Remodel store (Bob Birdsall Contr.) | \$ 8,000 |
| 27270  | 2/2/1968   | Remove front for highway widenings  | \$ 2,000 |
| 31065  | 8/14/1972  | Unspecified                         | \$ 1,500 |

<sup>&</sup>lt;sup>5</sup> https://www.newspapers.com/article/santa-cruz-sentinel-monroe-dies/6450557/

<sup>&</sup>lt;sup>6</sup> https://www.cityofpaloalto.org/Departments/Community-Services/Open-Space-Parks/Neighborhood-Parks/Monroe-Park

<sup>&</sup>lt;sup>7</sup> https://www.neighborhoods.com/monroe-park-palo-alto-ca

<sup>&</sup>lt;sup>8</sup> https://historicaerials.com/viewer

| State of California - The Resources Agency | Primary#  |
|--------------------------------------------|-----------|
| DEPARTMENT OF PARKS AND RECREATION         | HRI #     |
|                                            | Trinomial |
| CONTINUATION SHEET                         |           |
| Property Name:                             |           |
| Page of                                    |           |
|                                            |           |

Page 7 of 17

\*Resource Name or #: <u>Massage Envy Spa and Peninsula Piano Brokers</u>

James Cesano Sr. was the owner of the property across the street (Country Inn) in 1953. James Cesano Sr. was born on December 27, 1893, and died in June 1973<sup>9</sup>. James Cesano Sr. (the original owner) was born in Italy about 1894 and lived at 2424 San Bruno Ave., San Francisco where both Tilda and James worked as grocery clerks<sup>10</sup>. He moved to the Menlo Park/Palo Alto area with his wife, Tilda (also from Italy), and children, Mary, and James Jr. in 1943. Cesano's Liquors was operated for many years by James Cesano Sr.'s son, James "Jim" Cesano. It is currently owned by James Cesano III<sup>11</sup>. James "Jim" Cesano, was born in San Francisco on October 18, 1933, and lived on San Bruno Ave with his family until they moved to the Menlo Park/Palo Alto area in 1943. Jim attended Central Elementary and later St. Clare's in Santa Clara graduating in 1947. Jim went on to graduate from Bellarmine Preparatory in 1951 and then Santa Clara University in 1954. Upon graduation Jim served in the United States Marine Corps where he attained the rank of Captain. After his service he owned and operated several family businesses on the family property in South Palo Alto including Cesano's Liquors until his retirement.<sup>12</sup>

Bill Cesano is owner of Avalanche Enterprises (of Palo Alto or San Jose) who ran Destino Spa since 2001.<sup>1314</sup> The Destino Spa operated at 4335 El Camino Real but is now closed. It is now called Massage Envy Spa. This property also houses Classic Kitchens and Baths, Stephano Homes, and Peninsula Music and Repair.

James Cesano Jr.'s obituary states that his family moved from San Bruno Ave, San Francisco (living there from at least 1933) to Menlo Park/Palo Alto area in 1943. The family operated several businesses in South Palo Alto including Cesano's Liquors (4333 El Camino Real – now "Peninsula Piano Brokers"). He was not prominent, but other family members include his parents Gerolomo (James – and potentially original owner of the Inn) and Clotilda. His sons are Bill (Billy) of San Jose and Chris of Vancouver, WA, his sister Mary

<sup>&</sup>lt;sup>9</sup> https://www.sysoon.com/deceased/james-cesano-237

<sup>&</sup>lt;sup>10</sup> https://www.ancestry.com/imageviewer/collections/2442/images/m-t0627-00302-00123?ssrc=&backlabel=Return&pId=71503053

<sup>&</sup>lt;sup>11</sup> https://opencorporates.com/companies/us\_ca/0363514

<sup>&</sup>lt;sup>12</sup> https://www.svdp.org/james-jim-cesano-longtime-vincentian-passes/

<sup>&</sup>lt;sup>13</sup> https://www.linkedin.com/in/bill-cesano-8583436/

<sup>&</sup>lt;sup>14</sup> https://www.buildzoom.com/contractor/avalanche-enterprises-ca

| State of California - The Resources Agency |  |
|--------------------------------------------|--|
| DEPARTMENT OF PARKS AND RECREATION         |  |

Primary# HRI # Trinomial

### **CONTINUATION SHEET**

| Property | Name: |
|----------|-------|
| Page     | of    |

Page 8 of 17

\*Resource Name or #: <u>Massage Envy Spa and Peninsula Piano Brokers</u>

Rena Gretz (Bill) of Palo Alto.<sup>15</sup>

In 1966, when the property was substantially remodeled into its current form, this road was the main thoroughfare through San Mateo County. It has been largely superseded as a regional highway by U. S. Highway 101, which parallels El Camino Real to the east<sup>16</sup>.

### 4333-4337 EL CAMINO COMMERCIAL BUILDING TENANTS

| 4333 El Camino Real | Peninsula Piano Brokers (1991, 1994, 1999, 2001, 2004 2017),              |
|---------------------|---------------------------------------------------------------------------|
|                     | Peninsula Music & Repair (2014),                                          |
|                     | Manpower Health (1994, 1999), 1965)                                       |
|                     | Manpower Technical Services (1970, 1975, 1986),                           |
|                     | Instep the Shoe Store (1978),                                             |
|                     | Cesanos Liquors (1950, 1955),                                             |
| 4335 El Camino Real | Classic Kitchens of Palo Alto (1994, 1999, 2001, 2004, 2009, 2014, 2017), |
|                     | Destino Spa (2004, 2009, 2017),                                           |
|                     | Stephano Massage Envy Spa (2014, 2017),                                   |
| 4337 El Camino Real | Homes (2004, 2009, 2014, 2017),                                           |
|                     | Cesanos Liquors (1975, 1986),                                             |
|                     | Big Bear Market Gro (1960),                                               |
|                     | Leader market Inc. (1955)                                                 |
|                     | Occupant Unknown (2014),                                                  |
| T he address 4337   | is no longer used.                                                        |

### Historic Significance

The property at 4333-4335 El Camino Real is not listed as a California Historical Landmark, or in the National Register of Historic Places (NRHP) or California Register of Historical Resources (CRHR). Additionally, the property is not included in the City of Palo Alto Master List of Structures on the Historic Inventory, City of Palo Alto Historic District Map, and Cultural Resources Chapter in the Comprehensive Plan. In addition, this property does not contain resources recognized by City Council resolution or in the California Office of Historic Preservation (OHP) 2023 Built Environment Resource Directory (BERD).

As a result of this study, the property at 4333-4335 El Camino Real has been determined to not be eligible for the CRHR as it does not rise to the level of significance on a local, state, or national level. The application of the California Register Criteria is detailed below.

Primary# HRI # Trinomial

### CONTINUATION SHEET

Property Name: \_\_\_ Page \_\_\_\_ of \_\_\_\_

Page 9 of 17

\*Resource Name or #: Massage Envy Spa and Peninsula Piano Brokers

### Application of California Register of Historical Resources Criteria

<u>- Criterion 1: Associated with events that have made a significant contribution to the broad</u> patterns of local or regional history or the cultural heritage of California or the United <u>States.</u>

The retail office building at 4333-4335 El Camino Real does not appear to be connected to any broad pattern of local, regional, state, or national history in relation to rise of automobile tourism. 4333-4335 El Camino Real is not significant for its association with the development of El Camino Real in Santa Clara County. The property is a minor office building with no significant ties to El Camino Real or the City of Palo Alto beyond that of simple location. Therefore, the property at 4333-4335 El Camino Real does not appear significant under Criterion 1.

## - Criterion 2: Associated with the lives of persons important to local, California or national history.

The building at 4333-4335 El Camino Real was constructed by an unknown builder and designed by an unknown architect. Research did not yield any significant persons as owner or occupants, and as such, is not associated with the lives of any local, regional, state-wide, or nationally significant person. The owners/developers and early operator, the Cesanos, were moderately successful businessmen for several decades, but do not appear to have had significant impacts upon the liquor store trade, or overall business trends in Palo Alto. They were typical of local working-class proprietors in this area who operated the small-scale inns that dominated the local economy at the time of this building's 1966 extensive remodel into a liquor store. Review of the later tenants shows that they were also small businesses that have not had a n important influence on the commercial history of Palo Alto. The short street that bears the family name is typical of retaining the original landowner's family name when subdividing for new uses.

Therefore, the property at 4333-4335 El Camino Real does not appear significant under Criterion 2.

<sup>&</sup>lt;sup>15</sup> https://www.legacy.com/us/obituaries/mercurynews/name/james-cesano-obituary?id=8477301&fhid=20272 and https://www.svdp.org/james-jim-cesano-longtime-vincentian-passes/

<sup>&</sup>lt;sup>16</sup> El Camino Real DPR (1999) by William Kostura of Caltrans District 4

| State of California - The Ro<br>DEPARTMENT OF PARKS A | esources Agency<br>ND RECREATION | Primary#<br>HRI #                                  |
|-------------------------------------------------------|----------------------------------|----------------------------------------------------|
|                                                       |                                  | Trinomial                                          |
| CONTINUATION                                          | SHEET                            |                                                    |
| Property Name:                                        |                                  |                                                    |
| Page of                                               |                                  |                                                    |
| Page 10 of 17                                         | *Resource Name o                 | or #: Massage Envy Spa and Peninsula Piano Brokers |

<u>- Criterion 3: Embodies the distinctive characteristics of a type, period, region, or method of construction or represents the work of a master or possesses high artistic values.</u> The building at 4333-4335 El Camino Real was constructed in 1966 and drastically remodeled in the early 1980s by an unknown builder. The property consists of one building designed in the Mansard style and used for retail office space. The property is one of multiple small retail office buildings in Santa Clara County along El Camino Real and does not appear to be the earliest or a significant example. The property is characteristic of many small retail office buildings throughout California, and it is neither a significant example of the property type, period, or method of construction. Additionally, as a Mansard style property, it is neither the earliest example nor representative of distinctive characteristics of the, at times, almost ubiquitous style in California. The property also does not appear uncommon in Santa Clara County or Palo Alto. The architect and builder are unknown, and thus, the property does not represent the work of a master. Therefore, the property at 4333-4335 El Camino Real does not appear significant under Criterion 3.

## - Criterion 4: Has yielded, or has the potential to yield, information important to the prehistory or history of the local area, California, or the nation.

The property at 4333-4335 El Camino Real has not been evaluated for historic archaeological resources. However, the built resources has not yielded, nor does have the potential to yield, historically important information. It should be noted that the landform age dates back to the Late Holocene (4200-2200 years ago); and the soil has a moderate and high sensitivity for buried and surface archaeological deposits, respectively.

### City of Palo Alto Historic property designation criteria. Municipal Code Section 16.49.020

### 16.49.020 Definitions.

Throughout this chapter, the following definitions shall apply:

(a) "Downtown area" means that area of the University Avenue business district subject to Chapter 18.48 of Title 18 of the Palo Alto Municipal Code (the Zoning Code) and all zones within the geographical boundaries shown on the maps incorporated into Chapter 18.48, including planned community and public facility districts.

(b) "Historic categories" means those categories established to define and categorize the historic structures/sites on the historic inventory. Those categories are as follows:

 State of California - The Resources Agency
 Primary#

 DEPARTMENT OF PARKS AND RECREATION
 HRI #

 Trinomial
 Trinomial

 CONTINUATION SHEET
 Page

Page 11 of 17 \*Resource Name or #: Massage Envy Spa and Peninsula Piano Brokers

Category 1: "Exceptional building" means any building or group of buildings of preeminent national or state importance, meritorious work of the best architects or an outstanding example of the stylistic development of architecture in the United States. An exceptional building has had either no exterior modifications or such minor ones that the overall appearance of the building is in its original character.

Category 2: "Major building" means any building or group of buildings of major regional importance, meritorious works of the best architects or an outstanding example of an architectural style or the stylistic development of architecture in the state or region. A major building may have some exterior modifications, but the original character is retained.

Category 3 or 4: "Contributing building" means any building or group of buildings which are good local examples of architectural styles and which relate to the character of a neighborhood grouping in scale, materials, proportion or other factors. A contributing building may have had extensive or permanent changes made to the original design, such as inappropriate additions, extensive removal of architectural details, or wooden facades resurfaced in asbestos or stucco.

(c) "Historic district" means a collection of buildings in a geographically definable area possessing a significant concentration or continuity of buildings unified by past events, or aesthetically by plan or physical development. A district should have integrity of design, setting, materials, workmanship and association. The collective value of a historic district taken together may be greater than the value of each individual building. All structures/sites within a historic district are categorized as significant on the historic inventory.

(d) "Historic inventory" means the current edition of the Palo Alto Historical and Architectural Resources Report and Inventory, and the master list of categories for those structures or sites.

(e) "Historic structure/site" means any structure or site within the city which has been identified as having historic or architectural significance and has been placed on the historic inventory of the city of Palo Alto, including structures and sites within categories 1, 2, 3 or 4, and all structures within historic districts.

(f) "Significant building" means any building, group of buildings or site categorized on the historic inventory as number one or number two and all structures within historic districts.

(Ord. 3721 § 1 (part), 1986)

Primary# HRI # Trinomial

### CONTINUATION SHEET

Property Name: \_ Page

Page 12 of 17

\*Resource Name or #: Massage Envy Spa and Peninsula Piano Brokers

### 16.49.040 Designation of historic structures/sites.

(b) Criteria for Designation. The following criteria, along with the definitions of historic categories and districts in Section <u>16.49.020</u>, shall be used as criteria for designating additional historic structures/sites or districts to the historic inventory:

(1) The structure or site is identified with the lives of historic people or with important events in the city, state or nation;

(2) The structure or site is particularly representative of an architectural style or way of life important to the city, state or nation;

(3) The structure or site is an example of a type of building which was once common, but is now rare;

(4) The structure or site is connected with a business or use which was once common, but is now rare;

(5) The architect or building was important;

(6) The structure or site contains elements demonstrating outstanding attention to architectural design, detail, materials or craftsmanship.

(Ord. 5494 § 3, 2020: Ord. 3721 § 1 (part), 1986)

The Massage Envy Spa and Peninsula Piano Brokers building at 4333-4335 El Camino Real does not fit within any of the categories listed in 16.49.020.

This property is not an exceptional building displaying significant architectural qualities and was not designed by a significant architect. It is not part of a historic district and is not listed in the Palo Alto Historic Resources Inventory. The designation criteria, much like the California Register of Historical Resources criteria, requires the building to be associated with persons important in the City, the State or the Nation. The owners/developers and early operator, the Cesanos, were moderately successful businessmen for several decades, but do not appear to have had significant impacts upon the liquor store trade, or overall business trends in Palo Alto. They were typical of local working-class proprietors in this area who operated the small-scale inns that dominated the local economy at the time of this building's 1966 extensive remodel into a liquor store.

The short street that bears the family name is typical of retaining the original landowner's family name when subdividing for new uses. This practice is current today and does not make the family or the street significant (1 and 2). The Massage Envy Spa and Peninsula Piano Brokers building is a common style building that is not rare and continues to be

#### DPR 523L (9/2013)

| State of California - The Resources Agency | Primary#  |
|--------------------------------------------|-----------|
| DEPARTMENT OF PARKS AND RECREATION         | HRI #     |
|                                            | Trinomial |
| CONTINUATION SHEET                         |           |
| Property Name:                             |           |
| Page                                       |           |
| Page 13 of 17 *                            |           |

quite common in the area today. The use, liquor store/massage salon/piano store (3), are also business types that continue today (4). Criteria 5 and 6 identify buildings of significant architecture or the work of a significant architect, neither of which applies.

**Conclusion:** The Massage Envy Spa and Peninsula Piano Brokers building at 4333-4335 El Camino Real does not meet any of the criteria used by the City of Palo to identify and designate significant historical resources. Buildings not designated significant would not be accepted under a local program as historic resources as defined by CEQA.

| State of California - The Resources Agency |  |
|--------------------------------------------|--|
| DEPARTMENT OF PARKS AND RECREATION         |  |

Primary# HRI # Trinomial

### **CONTINUATION SHEET**

Property Name: \_ Page

Page 14 of 17

\*Resource Name or #: <u>Massage Envy Spa and Peninsula Piano Brokers</u>



Figure 1 - 1945 Thomas Brothers Map<sup>17</sup>



Figure 2 - 1959 Thomas Brothers Map

<sup>&</sup>lt;sup>17</sup> Thomas Brothers Map of Palo Alto-Mountain View-Sunnyvale-Menlo Park-Atherton-Los Altos and Vicinity. List

Primary# HRI # Trinomial

### **CONTINUATION SHEET**

Property Name: \_\_\_\_\_ Page

Page15 of 17



| State of California - The Resources Agency |  |
|--------------------------------------------|--|
| DEPARTMENT OF PARKS AND RECREATION         |  |

Primary# HRI # Trinomial

### **CONTINUATION SHEET**

Property Name: \_\_ Page

Page 16 of 17

\*Resource Name or #: <u>Massage Envy Spa and Peninsula Piano Brokers</u>



Figure 4 - Cesano's Liquors Match Striker/Cover

| State of California - The Resources Agency<br>DEPARTMENT OF PARKS AND RECREATION | Primary#<br>HRI # |
|----------------------------------------------------------------------------------|-------------------|
|                                                                                  | Trinomial         |
| CONTINUATION SHEET                                                               |                   |
| Property Name:                                                                   |                   |
| Page                                                                             |                   |
|                                                                                  |                   |



\*Resource Name or #: <u>Massage Envy Spa and Peninsula Piano Brokers</u>



Figure 5 - Assessor's Parcel Map

Primary # HRI #

Trinomial

### NRHP Status Code

Other Review Code

Reviewer

Date

Listings

#### Page <u>1</u> of <u>21</u>

#### \*Resource Name or #: Country Inn

### P1. Other Identifier:

#### \*P2. Location: 🗵 Unrestricted

\*a. County: Santa Clara and (P2c, P2e, and P2b or P2d. Attach a Location Map as necessary.)

- \*b. USGS 7.5' Quad <u>Palo Alto</u> Date <u>1997</u> T <u>65</u>; R <u>3W</u>; Sec <u>12</u>; <u>Mount Diablo</u> B.M.
- c. Address: <u>4345 El Camino Real</u> City: <u>Palo Alto</u> Zip: <u>94306</u>
- d. UTM: (Give more than one for large and/or linear resources) Zone <u>10</u>, <u>S 578096</u> mE/ <u>E 4140137</u> mN
- e. Other Locational Data: <u>37.4047° -122.1176°; APN 148-09-011</u>

#### \*P3a. Description:

This property is located at 4345 El Camino Real (California State Route 82, Post Mile 22.328) on the southern edge of Palo Alto, along the border with Mountain View and Los Altos, in the Monroe Park neighborhood<sup>1</sup>. The neighborhood is roughly bounded by El Camino Real on the southwest, Adobe Creek on the northwest, and the Mountain View City Limits on the northeast and southeast. The property is bounded to the northwest and northeast by Cesano Court; on the southwest by El Camino Real, and the southeast by MV Apartments (700 W. El Camino Real, Mountain View). Across Cesano Court to the northwest is a two-story office building (4335 El Camino Real); to the north is an apartment complex (440 Cesano Court); across the street on El Camino Real is a gas station (4350 El Camino Real, Los Altos) and kitty-corner is a 3-story hotel (4320 El Camino Real, Los Altos). The lot is 43,035 square feet<sup>2</sup>. See Continuation Sheet.



None \*Attachments: IMBuilding, Structure, and Object Record IMContinuation Sheet

<sup>&</sup>lt;sup>1</sup> https://www.paloaltoonline.com/news/show photo.php?main id=15145&type=p&media id=17880&section id=1

<sup>&</sup>lt;sup>2</sup> https://opengis.cityofpaloalto.org/parcelreports/

Primary# HRI # Trinomial

### **CONTINUATION SHEET**

Property Name: \_\_\_\_COUNTRY INN\_ 4345 El Camino Real, Palo Alto, CA\_\_\_\_ Page \_2\_\_ of \_21\_\_\_

P3 Description cont.



Rear two-story wing and swimming pool



View looking at the center parking and landscaped area.



Center landscaped area and motel sign

DPR 523L (9/2013

 State of California & The Resources Agency
 Primary #

 DEPARTMENT OF PARKS AND RECREATION
 HRI#

 BUILDING, STRUCTURE, AND OBJECT RECORD

\*Resource Name or #: Country Inn \*NRHP Status Code 62

Page  $\underline{3}$  of  $\underline{21}$ 

- B1. Historic Name: Country Inn
- B2. Common Name: Country Inn
- B3. Original Use: Motel B4. Present Use: Motel
- **\*B5.** Architectural Style: Minimal Traditional
- \*B6. Construction History: (Construction date, alterations, and date of alterations)

See Continuation Sheet.

\*B7. Moved? No Yes Unknown Date: N/A Original Location: N/A
\*B8. Related Features: None
B9a. Architect: Unknown b. Builder: Unknown
\*B10. Significance: Theme N/A Area N/A
Period of Significance N/A Property Type N/A Applicable Criteria N/A

See Continuation Sheet.

B11. Additional Resource Attributes: (List attributes and codes) N/A

### \*B12. References:

- See footnotes.
- The Grand Boulevard Initiative, "El Camino Real/Monterey Highway: The Well-Travelled Road," http://www.grandboulevard.net/about-us/history-of-el-camino.html
- Santa Clara Valley Transportation Authority, El Camino Real Bus Rapid Transit Project Draft Environmental Impact Report/Environmental Assessment (October 2014)
- J. P. Sinclair, "Bay Area Report 1964" California Highways and Public Works (May-June 1964).
- Kevin Starr, Golden Dreams: California in an Age of Abundance, 1950-1963 (New York: Oxford University Press, 2009).
- B13. Remarks:
- \*B14. Evaluator: Douglas Bright, Urban Programmers \*Date of Evaluation: January-February 2024



Primary# HRI #

Trinomial

### CONTINUATION SHEET

Property Name: \_ Page \_\_\_\_ of \_\_\_\_

Page 4 of 22

\*Resource Name or #: Country Inn

### \*P3a. Description (Continued):

The property contains 27 units with a total square footage of 18,128<sup>1</sup>. The area is dominated by commercial and multi-family housing area along El Camino Real, with primarily 1950s era single-family homes behind. It is a fairly typical motor court style with a U-shaped drive around a central courtyard. The Country inn is designed in an "L" plan with a row of single-story, attached units on the southeast lot line, with a two-story attached unit addition on the northeast lot line, behind a swimming pool. A parking lot is located inside this "L" plan and is nearly bisected by a courtyard area with mature trees and patio furniture. The Country Inn sign is located in this courtyard area, adjacent to the sidewalk along El Camino Real. The office and managers unit is located in the front of the property along El Camino Real. The units have a continuous roof that is covered with grey concrete tiles. The office and managers unit has a hip roof that transitions to a gabled design for the rest of the attached single-story units. When this roof reaches the two-story addition at the northeast portion of the building, the roof transitions briefly to a shed roof at the northeast corner before immediately becoming a gable once more for the remainder of the addition. Exposed rafters are present along the fascia.

Each unit of the single-story portion has a front door and 2-lite sliding sash window on the front façade. The interior of the windows have shutters. The units of the 2-story addition have 1/4-1/2-1/4 slider windows with interior shutters.

The buildings are clad in board and batten siding with exterior brick wainscotting. The pool area, located at the junction of the single-story unit and 2-story addition, is separated from the parking lot and Cesano Court lot line with a brick planter surmounted by a steel fence, punctuated with two metal gates.

### \*B6. Construction History (Continued):

In 1929, property owners Frank D. Phillips and Mary C. Phillips relinquished some land from this parcel to the State of California for street widening. This property was transferred from James Cesano and Clotilda Cesano to Cesano, Inc. on 1/30/1959.<sup>2</sup> Available records for the Property at the City of Palo Alto Building Department were reviewed in January-February 2024. Records indicate the property was constructed in 1953. 1956 saw the construction of a pool on the property.

Topographic maps<sup>3</sup> dated in 1937, 1943, 1944, 1955, 1956, 1962, 1963, 1965, 1966, 1969, 1974, 1995, 2012, 2015, 2018, and 2021 were reviewed. No built resources were recorded on these maps for this property. However, Cesano Court first appears on the 2012 map. Historical aerial photographs<sup>4</sup> dated in 1948, 1956, 1958, 1960, 1968, 1980, 1987,

<sup>&</sup>lt;sup>1</sup> https://www.propertyshark.com/mason/Property/37870387/4345-El-Camino-Real-Palo-Alto-CA-94306/

<sup>&</sup>lt;sup>2</sup> Book 4307 page 540

<sup>&</sup>lt;sup>3</sup> https://www.historicaerials.com/viewer

<sup>&</sup>lt;sup>4</sup> Ibid.

| State of California - The Resources A<br>DEPARTMENT OF PARKS AND RECREA | Agency Primary#<br>ATION HRI #   |           |   |
|-------------------------------------------------------------------------|----------------------------------|-----------|---|
| CONTINUATION SHEET                                                      |                                  | Trinomial |   |
| Property Name:<br>Page of                                               |                                  |           | - |
| Page 5 of 22                                                            | *Resource Name or #: Country Inn |           |   |

1988, 1991, 1993, 1998, 2002, 2004, 2005, 2009, 2010, 2014, 2016, 2018, and 2020 were reviewed. The property was indicated to have been vacant in 1948. In 1956, the one-story portion of the property was in existence. In 1960, the property was shown to contain the pool and the two-story addition.

#### \*B10. Significance (Continued):

In 1953, when the Country Inn was built at 4345 El Camino Real, this road was the main thoroughfare through San Mateo County. It has been largely superseded as a regional highway by U. S. Highway 101, which parallels El Camino Real to the east<sup>5</sup>. Founded by Italian immigrant Gerolomo "James" Cesano, the descendants of James Cesano still own and operate the motel.<sup>6</sup>

James Cesano Jr's obituary states that his family moved from San Bruno Ave, San Francisco (living there from at least 1933) to Menlo Park/Palo Alto area in 1943. The family operated businesses in South Palo Alto. He was not prominent, but other family members include his parents Gerolomo (James – and potentially original owner of the Inn) and Clotilda. His sons are Bill (Billy) of San Jose and Chris of Vancouver, WA., his sister Mary Rena Gretz (Bill) of Palo Alto.<sup>7</sup>

El Camino Real was the main thoroughfare through San Mateo County. It has been largely superseded as a regional highway by U. S. Highway 101, which parallels El Camino Real to the east<sup>8</sup>.

The Monroe Park neighborhood is named for L.G. Monroe, the original property owner (and president of the Rio del Mar Country Club and Aptos Land and Water Company<sup>9</sup>) of the land that was developed into the Monroe Park subdivision<sup>10</sup>. This community dates back to 1926 and has continuously developed over the years since<sup>11</sup>. Cesano Court was constructed sometime between 1968 and 1980.<sup>12</sup>

#### El Camino Real and Southern Palo Alto Development History

<sup>&</sup>lt;sup>5</sup> El Camino Real DPR (1999) by William Kostura of Caltrans District 4

<sup>&</sup>lt;sup>6</sup> https://paloaltocountryinn.com/about-us/

<sup>&</sup>lt;sup>7</sup> https://www.legacy.com/us/obituaries/mercurynews/name/james-cesano-obituary?id=8477301&fhid=20272 and https://www.svdp.org/james-jim-cesano-longtime-vincentian-passes/

<sup>&</sup>lt;sup>8</sup> El Camino Real DPR (1999) by William Kostura of Caltrans District 4

<sup>&</sup>lt;sup>9</sup> https://www.newspapers.com/article/santa-cruz-sentinel-monroe-dies/6450557/

<sup>&</sup>lt;sup>10</sup> https://www.cityofpaloalto.org/Departments/Community-Services/Open-Space-Parks/Neighborhood-Parks/Monroe-Park

<sup>&</sup>lt;sup>11</sup> https://www.neighborhoods.com/monroe-park-palo-alto-ca

<sup>12</sup> https://historicaerials.com/viewer

| State of California - The Resources Agency | Primary#         |  |
|--------------------------------------------|------------------|--|
| DEPARTMENT OF PARKS AND RECREATION         | HRI #            |  |
| v                                          |                  |  |
| CONTINUATION SHEET                         | Trinomial        |  |
|                                            |                  |  |
| Property Name:                             |                  |  |
| Page of                                    |                  |  |
| Page 6 of 22 *Percurso Namo                | or # Country Inn |  |
| rage o or 22 Resource Name                 |                  |  |

The City of Palo Alto is known to have been inhabited by indigenous peoples for thousands of years prior to the arrival of Europeans. Archaeological excavations have shown that the area was inhabited as far back as 2400 BC, during the late Archaic period. During the late Archaic period, prehistoric peoples lived widely throughout the region in small groups.

El Camino Real extends over 600 miles from San Diego in the south to Sonoma in the north. It has a romanticized attachment to the collection of parallel trails that once connected the 21 Franciscan missions between these two points. However, the modern route itself was never the single or even primary route taken by travelers between these missions.

In the late 19th and early 20th centuries, California decided to create a unified highway system. As part of this system, the California Highway Commission (which later became the California Department of Transportation, or Caltrans) was assigned responsibility in 1911 for El Camino Real. They paved the road in 1912-1913 from the Daly City at the northern end of San Mateo County down into San Jose. This was followed by a building boom in the 1920s and 1930s that spawned many roadside motels, restaurants, and other businesses as the road became very popular with travelers between San Francisco, San Jose, and points south. Although originally called "County Road", it was changed to "El Camino Real" by 1927.

However, as automobile use increased, congestion became a problem and in the 1960s, U.S. Highway 101 was built to the east as a means of alleviating the traffic problem. While this did relieve traffic congestion, it did change the character of the businesses along the road by reducing the number of hotels and diners, while increasing the number of strip malls, office buildings, and grocery stores. As a result, the setting of the El Camino Real corridor near this property has changed drastically since its construction. The road has been widened (claiming property frontage of the subject parcel); concrete medians, streetlights, and sidewalk furniture have been updated; and surrounding businesses and orchards have been razed and new developments built in their place.

#### Motels, 1920-1965<sup>13</sup>

The typical layouts of motels have changed over its development history. The illustration below provides an overview of the most popular ones:

<sup>13</sup> https://en.wikipedia.org/wiki/Motel



The first motels emerged in the 1920s to capture the business of a new type of customer: the motorist. The first iterations were mostly "cottage (later called "motor") courts" that often provided a gas station and general store for visitors. Often, tents were rented as an option or when there were no vacancies left.<sup>14</sup> Continuing through the 1930s, these motor courts were often styled after cottages that mimicked the local architectural styles but were almost always very modest. The office (and usually home of the owner) was often a larger home at the front of the property.<sup>15</sup>

During the Great Depression, conventional hotels virtually ceased to be built, but motor courts were still going strong. This was because financing incentives from the Federal

<sup>&</sup>lt;sup>14</sup> Warren James Belasco, Americans on the Road: From Autocamp to Motel, 1910-1945 (Baltimore: Johns Hopkins University Press, 1979 [1997]), 130; Liebs, Main Street to Miracle Mile, 169-174.

<sup>&</sup>lt;sup>15</sup> John A. Jakle, Keith A. Sculle and Jefferson S. Rogers, The Motel in America (Baltimore: Johns Hopkins University Press, 1996), 18; Liebs, Main Street to Miracle Mile, 174-178.

| State of California - The Resources Agency |  |
|--------------------------------------------|--|
| DEPARTMENT OF PARKS AND RECREATION         |  |

Primary# HRI #

Trinomial

### CONTINUATION SHEET

Property Name: \_ Page \_\_\_\_ of \_\_\_\_

Page 8 of 21

#### \*Resource Name or #: Country Inn

Housing Administration were available for constructing cottages costing less than \$2,000.<sup>16</sup> Even at the lowest point of the Great Depression, in 1933, the periodical "Architectural Record" wrote "the construction of 'shacks' for autoists has been the single growing and highly active division of the building industry during the depression years."<sup>17</sup>

By the late 1930s, Streamline Moderne was beginning to supplant vernacular cottage styles in popularity. In 1935 the "Architectural Record" captured this zeitgeist by featuring a portfolio of motels with these designs. 1937, the "Tourist Court Journal" began as the first trade publication focused solely on motels. The editorial lean of this journal was the promotion of the new Streamline Moderne look, including white stucco walls, for new construction and remodeling, as a means of attracting motorists with a futuristic look. It was termed, "The Motor Court Moderne."<sup>18</sup> Although Streamline Moderne was quite popular in the late 1930s, vernacular architecture (especially with a historicist flair) did not go away and was commonplace throughout this period.<sup>19</sup>

Design suggestions not only came from trade journals. In the early 1930s, the U.S. Small Business Administration offered booklets for guidance in establishing a motel. The booklets were intended to help inexperienced mom and pop proprietors with not only designs, but with practicalities such as where to locate vending machines, and traffic circulation suggestions.

During WWII, a scarcity of building materials prompted the evolution of motor courts into abandoning separate cottages in favor of sharing walls with adjoining units. This style proved popular with business owners as it was continued after the war as well and new motor courts with detached units became quite rare. To retain some of the lost greenery, small porches and flower boxes were often added. This led to a marketing shift away from advertising the bucolic allure of cottages in nature and replaced it with a home-away-from-home suburban residential appeal. Merging the cottages into a row of units also inspired the addition of a second stories with exterior walkways that began to appear in the late 1940s. This era also saw the introduction of more amenities including on-site laundry services and swimming pools. By the 1950s, swimming pools especially became very common. During the 1950s, the number of motels in the nation grew from 20,000 to 60,000.

This rapidly evolving design to an attached linear arrangement was occasionally present in pre-war motels, but after it came to dominate new construction, it began to draw the attention of professional architects and journals. The first of these studies was published in

<sup>&</sup>lt;sup>16</sup> Liebs, Main Street to Miracle Mile, 178-179.

<sup>&</sup>lt;sup>17</sup> Quoted in Liebs, Main Street to Miracle Mile, 179.

<sup>&</sup>lt;sup>18</sup> Liebs, Main Street to Miracle Mile, 179.

<sup>&</sup>lt;sup>19</sup> Ibid.

| State of California - The Resources Agency |
|--------------------------------------------|
| DEPARTMENT OF PARKS AND RECREATION         |

Primary# HRI #

Trinomial

### CONTINUATION SHEET

Property Name: \_ Page \_\_\_\_ of \_\_\_\_

Page 9 of 21

#### \*Resource Name or #: Country Inn

the "Progressive Architecture" periodical in 1955. The article examined the various layouts and provided case-studies and representative building schematics.<sup>20</sup> Some of the popular trends included a central courtyard or swimming pool surrounded by units one row deep, with parking along the outer perimeter. The unites had two exterior doors, one to access the vehicle, and one to access the central pedestrian-only area.<sup>21</sup> Above all, the article emphasized the importance of newness, bold street-facing design, and cleanliness.<sup>22</sup> The bold street-facing design was best accomplished with a "billboard of distinctive shape and texture."<sup>23</sup> The strange, otherworldliness of the Googie style met this need perfectly.

By the mid-1950s motels began to sport the whimsical Googie style to their office and street-facing porte-cochère, and incorporate neon lettering into their signage, but the utilitarian and unornamented designs of the post-war period prevailed elsewhere.<sup>24</sup> Because the design of the rest of these motels were often bland and uninspired, they lost much of the charm of the original pre-war motor courts. One historian complained that "utilitarian and functional imagery began edging out the quaint and the streamlined".<sup>25</sup> The reason for this was a combination of demand outstripping the ability of builders to dedicate the time and energy required for the attention to detail necessary, the high cost of materials due to the heavy demand for construction in the 1950s, and the countervailing pressure of mid-century modernism (International) style that stressed the removal of unnecessary ornamentation. As a result, owners typically opted for eye-catching design for the façade, and saving money and time by adopting a stripped-down International Style for the units in the rear. In major metropolitan areas during this time, some motels began to feature large, often luxurious, units in up to 3-story complexes surrounding a courtyard.<sup>26</sup>

It was during this time, between the end of World War II and the mid-1950s within Santa Clara County, that "mom and pop" motels sprang up along the major thoroughfares, including U.S. Highway 101 and El Camino Real and attracted customers flashy neon signs, on-site or nearby dining options, in-unit air-conditioning, and swimming pools. Upper scale ones also offered more exotic amenities, including shuffleboard, cocktail lounges, dancing, and putting greens. However, chain motels began to supplant these independent businesses beginning in the mid-1950s.<sup>27</sup>

<sup>&</sup>lt;sup>20</sup> Geoffrey Baker and Bruno Funaro, Motels (New York: Reinhold Publishing Company, 1955), passim.

<sup>&</sup>lt;sup>21</sup> Baker and Funaro, Motels, passim; Jakle, Sculle and Rogers, The Motel in America, 45.

<sup>&</sup>lt;sup>22</sup> Baker and Funaro, Motels, 1, 5-6, 12.

<sup>&</sup>lt;sup>23</sup> Ibid., 140.

<sup>&</sup>lt;sup>24</sup> Ibid., 182-183.

<sup>&</sup>lt;sup>25</sup> Liebs, Main Street to Miracle Mile, 178-179.

<sup>&</sup>lt;sup>26</sup> Ralph Edward Newlan and Laura Caffrey. "Historic-age Motels in Texas from the 1950s to the 1970s: An Annotated Guide to Selected Studies" (Texas Department of Transportation, 2011)

<sup>&</sup>lt;sup>27</sup> Heather M. David. "Motel San Jose" (Sourisseau Academy, 2016.)
| State of California - The Resources Agency     | Primary#  |  |
|------------------------------------------------|-----------|--|
| DEFARIMENT OF FARNS AND RECREATION             |           |  |
| CONTINUATION SHEET                             | Trinomial |  |
| Property Name:                                 |           |  |
| Page of                                        |           |  |
| Page 10 of 22 *Resource Name or #: Country Inn |           |  |

The corporatization of motels began in 1952 with the first Holiday Inn. In 1953, the first Howard Johnson's was opened. By the late 1960s corporate chain motels would dominate the market and build several multi-story motels that smaller, independently owned motels often could not compete with. These chain motels later began to hybridize their motels with hotels by adding an interior corridor between the units, severing the direct link between the automobile and the unit's exterior door. The chains also adopted cost-cutting measures such as standardizing their signage and other architectural details inside and out across the country.<sup>28</sup> Because of this corporatization, the motel began to lose any architectural innovation it once had, as the independently owned and designed motels were crowded out by the chain motels. The rapid rise of this corporatization can be illustrated by the fact that in 1962 fewer than two percent of the country's motels were part of a chain. By 1987 that number had risen to 67 percent and nearly all new motel construction since then has been initiated by motel chains.<sup>29</sup>

One final development during the 1960s was the introduction of the "motor inn." These motels were often independently owned, contained multiple stories, and included onsite dining, banquet halls, meeting rooms, and cocktail lounges. However, like the chain motels, their styles were normally uninspired with standardized designs.<sup>30</sup>

## **Development History of 4345 El Camino Real**

According to Santa Clara County Assessor records, the property was constructed in 1953. Prior to construction the property was a vacant lot<sup>31</sup>. It has operated since then with little change to the buildings or site. James Cesano Sr. was founder and owner beginning with the construction of the property in 1953. James Cesano Sr. was born on December 27, 1893, and died in June 1973<sup>32</sup>. James Cesano Sr. (the original owner) was born in Italy about 1894 and lived at 2424 San Bruno Ave., San Francisco where both Tilda and James worked as grocery clerks<sup>33</sup>. He moved to the Menlo Park/Palo Alto area with his wife, Tilda (also from Italy), and children, Mary, and James Jr. in 1943. Prior to this motel enterprise, the family operated several businesses in South Palo Alto including Cesano's Liquors (4333 El Camino Real – now "Peninsula Piano Brokers").<sup>34</sup> The current owner is James Cesano

<sup>&</sup>lt;sup>28</sup> Liebs, Main Street to Miracle Mile, 185-187.

<sup>&</sup>lt;sup>29</sup> Jakle, Sculle and Rogers, The Motel in America, 150.

<sup>&</sup>lt;sup>30</sup> Jakle, Sculle and Rogers, The Motel in America, 49.

<sup>&</sup>lt;sup>31</sup> https://historicaerials.com/viewer

<sup>&</sup>lt;sup>32</sup> https://www.sysoon.com/deceased/james-cesano-237

<sup>&</sup>lt;sup>33</sup> https://www.ancestry.com/imageviewer/collections/2442/images/m-t0627-00302-

<sup>00123?</sup>ssrc=&backlabel=Return&pId=71503053

<sup>&</sup>lt;sup>34</sup> https://www.legacy.com/us/obituaries/mercurynews/name/james-cesano-obituary?id=8477301&fhid=20272 and https://www.svdp.org/james-jim-cesano-longtime-vincentian-passes/

Primary# HRI #

Trinomial

# CONTINUATION SHEET

Property Name: \_ Page \_\_\_\_ of \_\_\_\_

Page 11 of 21

\*Resource Name or #: Country Inn

Sr's grandson, also named James Cesano<sup>35</sup>. James Cesano Jr's obituary states that his family moved from San Bruno Ave, San Francisco (living there from at least 1933) to Menlo Park/Palo Alto area in 1943. The family operated businesses in South Palo Alto. He was not prominent, but other family members include his parents Gerolomo (James – and potentially original owner of the Inn) and Clotilda. His sons are Bill (Billy) of San Jose and Chris of Vancouver, WA., his sister Mary Rena Gretz (Bill) of Palo Alto.<sup>36</sup>

The Cesano's motel competed with the famous Rickey's Studio Inn at 4219 El Camino Real and were a few blocks away from the locally famous Dinah's Shack (Which Rickey's Studio Inn's Owner and prominent businessman, John Herman Rickey, purchased after a fire destroyed the original structure in 1942. The original motel only had 11 units - with kitchenettes and tv. No pool (see 1953 postcard reverse). The pool and two-story addition with 18 units was added sometime between 1953-1959. By the late 1950s it had 29 units with kitchens, TVs, and phones and billed itself as "Palo Alto's Most Pleasant Luxury Motel (see late 1950s postcard reverse) and a pool (see front of postcard). In the 1974 postcard, they advertised Kitchens, heated pool, air conditioning, telephone, and TV. The central courtyard was original to the 1953 design. The large, mature trees within the courtyard appear to be original as well. The original design of the property was set back from the main road by several meters, with no sidewalk, making the courtyard seem to be an island surrounded driveways. This central courtyard is a common component of 1950s era motels. The Inn sign was originally between the street and the office but was relocated to the edge of the courty and at some point after the construction of the 18-unit addition. This was likely required due to what appears to have been a widening of El Camino Real that necessitated the relocation of the sign. The windows are new (though the layout is the same), but the railing, exterior wainscot, roof supports, and siding are original. A ramp was installed in front of the entrance at some point after the construction of the 18-unit addition.

James Cesano Jr's obituary states that his family moved from San Bruno Ave, San Francisco (living there from at least 1933) to Menlo Park/Palo Alto area in 1943. The family operated businesses in South Palo Alto. He was not prominent, but other family members include his parents Gerolomo (James – and potentially original owner of the Inn) and Clotilda. His sons are Bill (Billy) of San Jose and Chris of Vancouver, WA., his sister Mary Rena Gretz (Bill) of Palo Alto.<sup>37</sup>

<sup>&</sup>lt;sup>35</sup> https://opencorporates.com/companies/us\_ca/0363514

<sup>&</sup>lt;sup>36</sup> https://www.legacy.com/us/obituaries/mercurynews/name/james-cesano-obituary?id=8477301&fhid=20272 and https://www.svdp.org/james-jim-cesano-longtime-vincentian-passes/

<sup>&</sup>lt;sup>37</sup> https://www.legacy.com/us/obituaries/mercurynews/name/james-cesano-obituary?id=8477301&fhid=20272 and https://www.svdp.org/james-jim-cesano-longtime-vincentian-passes/

Primary# HRI #

Trinomial

# CONTINUATION SHEET

Property Name: \_\_\_\_ Page \_\_\_\_ of \_\_\_\_\_

Page 12 of 22

\*Resource Name or #: Country Inn

The property at 4345 El Camino Real is not listed as a California Historical Landmark, or in the National Register of Historic Places (NRHP) or California Register of Historical Resources (CRHR). Additionally, the property is not included in the City of Palo Alto Master List of Structures on the Historic Inventory, City of Palo Alto Historic District Map, and Cultural Resources Chapter in the Comprehensive Plan. In addition, this property does not contain resources recognized by City Council resolution or in the California Office of Historic Preservation (OHP) 2023 Built Environment Resource Directory (BERD).

As a result of this study, the property at 4345 El Camino Real (Country Inn) has been determined to not be eligible for the CRHR as it does not rise to the level of significance on a local, state, or national level. The application of the California Register Criteria is detailed below.

## Application of California Register of Historical Resources Criteria

[the National Register of Historical Resources-the Federal Register NRHP has criteria similar to but more stringent than the California Register of Historical Resources]

- Criterion 1 (A): Associated with events that have made a significant contribution to the broad patterns of local or regional history or the cultural heritage of California or the United States.

The Country Inn at 4345 El Camino Real does not appear to be connected to any broad pattern of local, regional, state, or national history in relation to rise of automobile tourism. 4345 El Camino Real is not significant for its association with the development of El Camino Real in Santa Clara County. The property is a minor roadside motel with no significant ties to El Camino Real or the City of Palo Alto beyond that of simple location. Therefore, the property at 4345 El Camino Real does not appear significant under Criterion 1.

# - Criterion 2(B): Associated with the lives of persons important to local, California or national history.

The Country Inn at 4345 El Camino Real was constructed by an unknown builder for James Cesano. The owners/developers and early operator, the Cesanos, were moderately successful businessmen for several decades, but do not appear to have had significant impacts upon the motel industry or other businesses they operated. trade, or overall business trends in Palo Alto. They were typical of local working-class proprietors in this area who operated the small-scale inns that dominated the local economy at the time of this building's 1966 extensive remodel into a liquor store. Review of the later tenants shows that they were also small businesses that have not had a n important influence on the commercial history of Palo Alto.

Primary# HRI #

Trinomial

# CONTINUATION SHEET

Property Name: \_\_ Page \_\_\_\_ of \_\_\_\_

Page 13 of 22

\*Resource Name or #: Country Inn

The short street that bears the family name is typical of retaining the original landowner's family name when subdividing for new uses

Research did not yield any significant persons as owner or occupants, and as such, is not associated with the lives of any local, regional, state-wide, or nationally significant person. The property is not known to be associated with any persons of historic significance. Therefore, the property at 4345 El Camino Real does not appear significant under Criterion 2.

- Criterion 3(C): Embodies the distinctive characteristics of a type, period, region, or method of construction or represents the work of a master or possesses high artistic values.Page

The Country Inn at 4345 El Camino Real was constructed in 1953 and 1960 by an unknown builder for James Cesano. The property consists of one building designed in the Minimal Traditional style and used as a motel. The property is one of multiple motels/hotels in Santa Clara County along El Camino Real and does not appear to be the earliest or a significant example. The property is characteristic of many motels throughout California, and it is neither a significant example of the property type, period, or method of construction. Additionally, as a Minimal Traditional style property, it is neither the earliest example nor representative of distinctive characteristics of the, at times, almost ubiquitous style in California. The property also does not appear uncommon in Santa Clara County or Palo Alto. The architect and builder are unknown, and thus, the property does not represent the work of a master. Therefore, the property at 4345 El Camino Real does not appear significant under Criterion 3.

# - Criterion 4(D): Has yielded, or has the potential to yield, information important to the prehistory or history of the local area, California, or the nation.

The property at 4345 El Camino Real has not been evaluated for historic archaeological resources. However, the built resources has not yielded, nor does have the potential to yield, historically important information. It should be noted that the landform age dates back to the Late Holocene (4200-2200 years ago); and the soil has a moderate and high sensitivity for buried and surface archaeological deposits, respectively.

# City of Palo Alto Historic property designation criteria. Municipal Code Section 16.49.020 16.49.020 Definitions.

Throughout this chapter, the following definitions shall apply:

(a) "Downtown area" means that area of the University Avenue business district subject to Chapter 18.48 of Title 18 of the Palo Alto Municipal Code (the Zoning Code) and all zones within the geographical boundaries shown on the maps incorporated into Chapter 18.48, including planned community and public facility districts.

(b) "Historic categories" means those categories established to define and categorize the historic structures/sites on the historic inventory. Those categories are as follows:

## DPR 523L (9/2013)

Primary# HRI #

Trinomial

## CONTINUATION SHEET

Property Name: \_\_\_\_ Page \_\_\_\_ of \_\_\_\_

Page 14 of 22

\*Resource Name or #: Country Inn

Category 1: "Exceptional building" means any building or group of buildings of

preeminent national or state importance, meritorious work of the best architects or an outstanding example of the stylistic development of architecture in the United States. An exceptional building has had either no exterior modifications or such minor ones that the overall appearance of the building is in its original character.

Category 2: "Major building" means any building or group of buildings of major regional importance, meritorious works of the best architects or an outstanding example of an architectural style or the stylistic development of architecture in the state or region. A major building may have some exterior modifications, but the original character is retained.

Category 3 or 4: "Contributing building" means any building or group of buildings which are good local examples of architectural styles and which relate to the character of a neighborhood grouping in scale, materials, proportion or other factors. A contributing building may have had extensive or permanent changes made to the original design, such as inappropriate additions, extensive removal of architectural details, or wooden facades resurfaced in asbestos or stucco.

(c) "Historic district" means a collection of buildings in a geographically definable area possessing a significant concentration or continuity of buildings unified by past events, or aesthetically by plan or physical development. A district should have integrity of design, setting, materials, workmanship and association. The collective value of a historic district taken together may be greater than the value of each individual building. All structures/sites within a historic district are categorized as significant on the historic inventory.

(d) "Historic inventory" means the current edition of the Palo Alto Historical and Architectural Resources Report and Inventory, and the master list of categories for those structures or sites.

(e) "Historic structure/site" means any structure or site within the city which has been identified as having historic or architectural significance and has been placed on the historic inventory of the city of Palo Alto, including structures and sites within categories 1, 2, 3 or 4, and all structures within historic districts.

(f) "Significant building" means any building, group of buildings or site categorized on the historic inventory as number one or number two and all structures within historic districts.

(Ord. 3721 § 1 (part), 1986)

## 16.49.040 Designation of historic structures/sites.

(b) Criteria for Designation. The following criteria, along with the definitions of historic categories and districts in Section <u>16.49.020</u>, shall be used as criteria for designating additional historic structures/sites or districts to the historic inventory:

(1) The structure or site is identified with the lives of historic people or with important **DPR 523L (9/2013)** 

Primary# HRI #

Trinomial

# CONTINUATION SHEET

Property Name: \_\_\_\_ Page \_\_\_\_ of \_\_\_\_

Page 15 of 22

\*Resource Name or #: Country Inn

vents in the city, state or nation;

(2) The structure or site is particularly representative of an architectural **style** or way of life important to the city, state or nation;

The structure or site is an example of a type of building which was once common, but is now rare;

(3) The structure or site is connected with a business or use which was once common, but is now rare;

(4) The architect or building was important;

(5) The structure or site contains elements demonstrating outstanding attention to architectural design, detail, materials or craftsmanship.

(Ord. 5494 § 3, 2020: Ord. 3721 § 1 (part), 1986)

The Country Inn at 4345 El Camino Real does not fit within any of the categories listed in **16.49.020**.

This property is not an exceptional building displaying significant architectural qualities and was not designed by a significant architect. It is not part of a historic district and is not listed in the Palo Alto Historic Resources Inventory. The designation criteria, much like the California Register of Historical Resources criteria, requires the building to be associated with persons important in the City, the State or the Nation. The owners/developers and early operator, the Cesanos, were moderately successful businessmen for several decades, but do not appear to have had significant impacts upon the motel industry, or overall business trends in Palo Alto. They were typical of local working-class proprietors in this area who operated the small-scale inns that dominated the local economy.

The short street that bears the family name is typical of retaining the original landowner's family name when subdividing for new uses. This practice is current today and does not make the family or the street significant (1 and 2). The Country Inn motel building is a common wood-frame style building that is not rare and continues to be quite common in the area today(3). The use, lodging, is a business type that continues today (4). Criteria 5 and 6 identify buildings of significant architecture or the work of a significant architect, neither of which applies.

**Conclusion:** The Country Inn building at 4345 El Camino Real does not meet any of the criteria used by the City of Palo to identify and designate significant historical resources. Buildings not designated significant would not be accepted under a local program as historic resources as defined by CEQA.

| State of California - The Resources Agency<br>DEPARTMENT OF PARKS AND RECREATION | Primary#<br>HRI # |  |
|----------------------------------------------------------------------------------|-------------------|--|
| CONTINUATION SHEET                                                               | Trinomial         |  |
| Property Name:<br>Page of                                                        |                   |  |
| Page 16 of 22 *Resource Name or #: Country Inn                                   |                   |  |



Figure 1 - 1945 Thomas Brothers Map<sup>38</sup>



Figure 2 - 1959 Thomas Brothers Map

DPR 523L (9/2013)

| State of California - The Resources Agency                                                                              | Primary#                         |  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| DEPARTMENT OF PARKS AND RECREATION                                                                                      | HRI #                            |  |
| `                                                                                                                       |                                  |  |
| CONTINUATION SHEET                                                                                                      | Trinomial                        |  |
| Property Name:<br>Page of                                                                                               |                                  |  |
| Page 17 of 22                                                                                                           | *Resource Name or #: Country Inn |  |
| <sup>38</sup> Thomas Brothers Map of Palo Alto-Mountain View-Sunnyvale-Menlo Park-Atherton-Los Altos and Vicinity. List |                                  |  |

DPR 523L (9/2013)

No. 10629.001

Primary# HRI #

Trinomial

# **CONTINUATION SHEET**

Property Name: \_\_\_\_\_ Page \_\_\_\_ of \_\_\_\_

Page 18 of 22

\*Resource Name or #: Country Inn



Figure 3 - January 15, 1964, Aerial Photograph

Primary# HRI #

# **CONTINUATION SHEET**

Trinomial

Property Name: \_ Page \_\_\_\_ of \_\_\_\_

Page 19 of 22

\*Resource Name or #: Country Inn



Figure 4 - Country Inn Postcard (1953)

15,356F COUNTRY INN MOTEL 4345 El Camino Real (U.S. Route 101) Phone Whitecliff 8-6479 11 Units with Kitchenettes and T V PLACE STAMP Modern in every Respect Near World Famed Rickey's and Dinah's Shack. Pub. by Adv. Pencil Co., Kansas City 2, Mo. HERE Post Card

Figure 5 - Country Inn Postcard (1953) (Reverse)

Primary# HRI #

Trinomial

# **CONTINUATION SHEET**

Property Name: \_\_\_\_ Page \_\_\_\_ of \_\_\_\_

Page 20 of 22

\*Resource Name or #: Country Inn



Figure 6 - Country Inn Postcard (late 1950s)

| 19505                                                                                                                                                                  |                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 4345 El Camino Real, Palo Alto, Calif.<br>Phone WH 8-9154<br>29 Units With Kitchens<br>TV and Phones. James Cesano, Owner.<br>"Palo Alto's Most Pleasant Luxury Motel" | PLACE<br>STAMP<br>HERE      |
| in the second                                                        | POSTCARD                    |
|                                                                                                                                                                        | Ing. Color 1                |
|                                                                                                                                                                        | Max Gossel                  |
|                                                                                                                                                                        | Pub. by                     |
| 25831-B                                                                                                                                                                | DEXTER<br>Very frace, s. c. |

Figure 7 - Country Inn Postcard (late 1950s) (Reverse)

Primary# HRI #

# **CONTINUATION SHEET**

Trinomial

Property Name: \_\_\_\_ Page \_\_\_\_ of \_\_\_\_

Page 21 of 22

\*Resource Name or #: Country Inn



Figure 8 - Country Inn Postcard (1974)

| 4345 El Camino Real Phone 948-9154<br>Palo Alto, Calif. 94306<br>Kitchens - Heated Pool - Air Conditioning<br>Telephone - TV - Courtesy Coffee<br>Located 4 Miles South of Stanford University<br>on Hwy. #82 | U.S.A.                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                                                                                                               | Permanent Sample        |
|                                                                                                                                                                                                               | DD NOT REMOVE FROM FILE |
|                                                                                                                                                                                                               | HINE ROSERTS            |

Figure 9 - Country Inn Postcard (1974) (Reverse)

Primary# HRI #

Trinomial

# **CONTINUATION SHEET**

Property Name: \_

Page \_\_\_\_ of \_\_\_\_

Page 22 of 22

\*Resource Name or #: Country Inn



Figure 10 - Assessor's Parcel Map



JulieAnn Murphy Rincon Consultants, Inc 66 Franklin Street, Suite 300 Oakland, CA 94607

Re: 4335-4345 El Camino Real Residential Project - 24-16517

The Northwest Information Center received your record search request for the project area referenced above, located on the Mountain View USGS 7.5' quad(s). The following reflects the results of the records search for the project area and a <sup>1</sup>/<sub>4</sub> mile radius:

| Resources within project area:                           | 0                                          |
|----------------------------------------------------------|--------------------------------------------|
| Resources within <sup>1</sup> / <sub>4</sub> mi. radius: | 1: P-43-003984                             |
| Reports within project area:                             | 2: S-034502 and S-041536                   |
| Reports within <sup>1</sup> / <sub>4</sub> mi. radius:   | 6: See the report digital database records |

| <b>Resource Database Printout (list):</b>         | $\boxtimes$ enclosed | $\Box$ not requested      | $\Box$ nothing listed      |
|---------------------------------------------------|----------------------|---------------------------|----------------------------|
| Resource Database Printout (details):             | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |
| Resource Digital Database Records:                | $\boxtimes$ enclosed | $\Box$ not requested      | $\Box$ nothing listed      |
| <u>Report Database Printout (list):</u>           | $\boxtimes$ enclosed | $\Box$ not requested      | $\Box$ nothing listed      |
| Report Database Printout (details):               | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |
| Report Digital Database Records:                  | $\boxtimes$ enclosed | $\Box$ not requested      | $\Box$ nothing listed      |
| Resource Record Copies:                           | $\boxtimes$ enclosed | $\Box$ not requested      | $\Box$ nothing listed      |
| Report Copies:                                    | $\boxtimes$ enclosed | $\Box$ not requested      | $\Box$ nothing listed      |
| <b>OHP Built Environment Resources Directory:</b> | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |
| Archaeological Determinations of Eligibility:     | $\Box$ enclosed      | $\Box$ not requested      | $\boxtimes$ nothing listed |
| CA Inventory of Historic Resources (1976):        | $\Box$ enclosed      | $\Box$ not requested      | $\boxtimes$ nothing listed |
| <u>Caltrans Bridge Survey:</u>                    | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |
| Ethnographic Information:                         | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |
| Historical Literature:                            | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |
| Historical Maps:                                  | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |
| Local Inventories:                                | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |
| GLO and/or Rancho Plat Maps:                      | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |
| Shipwreck Inventory:                              | $\Box$ enclosed      | $\boxtimes$ not requested | $\Box$ nothing listed      |

\*Notes:

\*\* Current versions of these resources are available on-line:

Caltrans Bridge Survey: <u>http://www.dot.ca.gov/hq/structur/strmaint/historic.htm</u> Soil Survey: <u>http://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateld=CA</u> Shipwreck Inventory: <u>http://www.slc.ca.gov/Info/Shipwrecks.html</u>

Please forward a copy of any resulting reports from this project to the office as soon as possible. Due to the sensitive nature of archaeological site location data, we ask that you do not include resource location maps and resource location descriptions in your report if the report is for public distribution. If you have any questions regarding the results presented herein, please contact the office at the phone number listed above.

The provision of CHRIS Data via this records search response does not in any way constitute public disclosure of records otherwise exempt from disclosure under the California Public Records Act or any other law, including, but not limited to, records related to archeological site information maintained by or on behalf of, or in the possession of, the State of California, Department of Parks and Recreation, State Historic Preservation Officer, Office of Historic Preservation, or the State Historical Resources Commission.

Due to processing delays and other factors, not all of the historical resource reports and resource records that have been submitted to the Office of Historic Preservation are available via this records search. Additional information may be available through the federal, state, and local agencies that produced or paid for historical resource management work in the search area. Additionally, Native American tribes have historical resource information not in the CHRIS Inventory, and you should contact the California Native American Heritage Commission for information on local/regional tribal contacts.

Should you require any additional information for the above referenced project, reference the record search number listed above when making inquiries. Requests made after initial invoicing will result in the preparation of a separate invoice.

Thank you for using the California Historical Resources Information System (CHRIS).

Sincerely,

Lindsey Willoughay

Lindsey Willoughby Researcher