



# Bicycle and Pedestrian Transportation Plan Update

Draft

October 2025

# **Table of Contents**

# **ACKNOWLEDGEMENTS**

# LIST OF ACRONYMS



# **0. EXECUTIVE SUMMARY**

| 0.1 Purpose and Vision          | 11 |
|---------------------------------|----|
| 0.2 Existing Bicycle Facilities | 12 |
| 0.3 Community Engagement        | 15 |
| 0.4 Recommendations             | 16 |
| 0.5 Project Prioritization      | 22 |



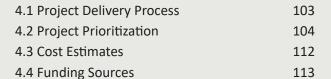
# 1. INTRODUCTION

| 1.1 Purpose                                     | 26 |
|-------------------------------------------------|----|
| 1.2 Plan Organization                           | 26 |
| 1.3 Benefits and Barriers to Walking and Biking | 27 |
| 1.4 Vision, Objectives, and Performance         |    |
| Measures                                        | 28 |
| 1.5 Setting                                     | 31 |
| 1.6 Relationship to Other Documents             | 35 |
| 1.7 Public Outreach Summary                     | 37 |



# 2. EXISTING FACILITIES

| 2.1 Existing Pedestrian Facilities   | 43 |
|--------------------------------------|----|
| 2.2 Existing Bicycle Facilities      | 45 |
| 2.3 Walking and Biking Activity      | 49 |
| 2.4 Barriers to Walking and Biking   | 52 |
| 2.5 Bicycle Level of Traffic Stress  | 56 |
| 2.6 Collision Analysis               | 59 |
| 2.7 Shared Micromobility and E-bikes | 65 |




# 3. RECOMMENDATIONS

| 3.1 Bicycle Network Corridor Criteria          |    |  |
|------------------------------------------------|----|--|
| 3.2 Recommended Bicycle Network                |    |  |
| and Facilities                                 | 71 |  |
| 3.3 Recommended Bicycle Support Facilities     | 81 |  |
| 3.4 Pedestrian District Guidelines and Toolbox | 87 |  |
| 3.5 Policies and Programs                      | 94 |  |



# 4. IMPLEMENTATION AND FUNDING





# 5. CONCLUSION

# **APPENDICES**



# LIST OF MAPS

| Figure 1: Existing Activity Generators                                        | 33  |
|-------------------------------------------------------------------------------|-----|
| Figure 2: Walk and Bike Sheds for Major Transit Stops                         | 34  |
| Figure 3: Existing Bicycle Facilities Map                                     | 47  |
| Figure 4: Existing Bicycle Parking Location                                   | 48  |
| Figure 5: Demand for Walking and Biking Improvements                          | 51  |
| Figure 6: Linear Barriers                                                     | 53  |
| Figure 7: Transit Barrier Study Areas                                         | 55  |
| Figure 8: Segment LTS Results                                                 | 57  |
| Figure 9: Intersection LTS Results                                            | 58  |
| Figure 10: Total Number of Pedestrian Collisions by Year and Severity         | 61  |
| Figure 11: Total Number of Bicycle Collisions by Year and Severity            | 61  |
| Figure 12: Pedestrian Collisions by Severity (2018 – 2022)                    | 62  |
| Figure 13: Bicycle Collision by Severity (2018 – 2022)                        | 63  |
| Figure 14: Bicycle and Pedestrian High Injury Network                         | 64  |
| Figure 15: Recommended Bicycle Network                                        | 72  |
| Figure 16: Recommended Bicycle Facility Map – Complete Vision Bicycle Network | 79  |
| Figure 17: Recommended Bicycle Facility Map – Low-Stress Bicycle Network      | 80  |
| Figure 18: Recommended Pedestrian District Location                           | 89  |
| Figure 19: Near-Term Improvement Projects                                     | 110 |

# LIST OF TABLES

| Table 1: Performance Measures                                                    | 29  |
|----------------------------------------------------------------------------------|-----|
| Table 2: Potential Performance Measures                                          | 30  |
| Table 3: Palo Alto Demographic Indicators                                        | 32  |
| Table 4: Existing Bicycle Network in 2012 vs 2025                                | 46  |
| Table 5: Collision Data Summary (2018-2022)                                      | 61  |
| Table 6: Primary Network Development Criteria                                    | 70  |
| Table 7: Summary of Proposed Bicycle Projects (Complete Vision: Bicycle Network) | 78  |
| Table 8: Prioritization Factors and Evaluation Criteria                          | 104 |
| Table 9: Near-Term Bicycle Projects                                              | 105 |
| Table 10: Priority Intersection and Crossing Projects                            | 107 |
| Table 11: Other Priority Projects                                                | 109 |
| Table 12: Planning Level Cost Estimates for Bicycle Projects                     | 112 |

### **LIST OF IMAGES**

| Image 1: Palo Alto Demographic Indicators                    | 31 |
|--------------------------------------------------------------|----|
| Image 2: Four Phases of Engagement                           | 37 |
| Image 3: Virtual Visioning Workshop held on January 31, 2024 | 38 |
| Image 4: Bike Palo Alto Event held on October 1, 2023        | 38 |
| Image 5: Bicycle Network Development Workshop                | 39 |
| Image 6: Community Walking Tour                              | 39 |
| Image 7: Types of Bicycle Facilities                         | 45 |
| Image 8: Relationship between LTS and Comfort                | 56 |
| Image 9: Existing Bike Route on Oregon Avenue                | 73 |
| Image 10: Existing Sharrow Pavement Marking                  | 73 |
| Image 11: Existing Restricted Hours Bicycle Lane             | 73 |
| Image 12: Updated Bicycle Facility Types                     | 74 |
| Image 13: Bicycle Facility Types                             | 74 |
| Image 14: Bicycle Facility Selection Approach                | 77 |
| Image 15: Bicycle Parking Types - Short-Term                 | 81 |
| Image 16: Placement and Spacing Requirements                 | 82 |
| Image 17: Types of Wayfinding Signs                          | 83 |
| Image 18: Existing Signs in Palo Alto                        | 84 |
| Image 19: Recommended Crossing and Intersection Improvements | 88 |
| Image 20: University Avenue Pedestrian District              | 90 |
| Image 21: California Avenue Pedestrian District              | 91 |
| Image 22: Midtown Pedestrian District                        | 92 |
|                                                              |    |

# **APPENDICES**

| A I :    | Λ.Ι  |           | D:     |
|----------|------|-----------|--------|
| Appendix | A: L | iterature | Keview |

Appendix B: Phase 1 – Visioning Community Engagement Summary

Appendix C: Phase 2 – Needs & Concerns Community Engagement Summary

Appendix D: Phase 3 - Recommended Project & Programs Community Engagement Summary

Appendix E: Bicycle Parking Data Collection Summary

Appendix F: Future Activity Levels and Benefits Analysis Memorandum

Appendix G: Major Barriers Analysis Memorandum

Appendix H: Bicycle Level of Traffic Stress Memorandum

Appendix I: Collision and Safety Analysis Memorandum

Appendix J: E-Bikes and Shared Micromobility Memorandum

Appendix K: Network Corridor Criteria and Development Approach

Appendix L: List of Projects

Appendix M: Pedestrian District Guidelines

Appendix N: Policy and Program Recommendations

Appendix O: Project Prioritization Framework

Appendix P: List of Funding Sources



The BPTP Update is grant funded by the Metropolitan Transportation Commission's (MTC) Transportation Development Act 3 program.

### **ACKNOWLEDGEMENTS**

The City of Palo Alto would like to express our gratitude to the residents, community leaders, community-based organizations, agencies, and other stakeholders who have helped shape the 2026 Bicycle and Pedestrian Transportation Plan. We appreciate your continued support and commitment to promoting Palo Alto as a healthy, safe, and vibrant community.

#### **2025-2026 City Council**

Ed Lauing, Mayor
Vicki Veenker, Vice Mayor
George Lu
Greer Stone
Julie Lythcott-Haims
Keith Reckdahl
Patrick Burt

### 2025-2026 Planning & Transportation Commission

Allen Akin, Chair Bryna Chang, Vice Chair Bart Hechtman Carolyn Templeton Forest Peterson Kevin Ji Todd James

Bruce Arthur, Chair

### **Pedestrian and Bicycle Advisory Committee**

Alan Wachtel
Art Liberman
Bill Zaumen
Cedric de la Beaujardiere
Eric Nordman
Jane Rosten
Kathy Durham
Ken Joye
Paul Goldstein

Nicole Rodia. Vice Chair

Penny Ellson Robert Neff Steve Rock

### **City/School Transportation Safety Committee**

Lt. Ben Becchetti, PAPD Lt. Kara Apple, PAPD Lara Anthony, PTAC SRTS Liaison Rachel Vazquex-Reina, PTAC SRTS Liaison Leslie Crane, PAUSD Mike Jacobs, PAUSD Eric Holm, PAUSD

#### 2025-2026 Parks and Recreation Commission

Nellis Freeman, Chair
Jeff Greenfield, Vice Chair
Amanda Brown
Anne Warner Cribbs
Bing Wei
Shani Kleinhaus
Yudy Deng

### **City of Palo Alto Team**

Ria Hutabarat Lo, Chief Transportation Official
Philip Kamhi, Chief Transportation Official, Former
Sylvia Star-Lack, Transportation Planning Manager
Ozzy Arce, Senior Transportation Planner & Project Manager
Charlie Coles
Katie Heuser
Rose Mesterhazy
Ana Lopez

#### Consultant

Kittelson & Associates Mobycon

Page left blank intentionally

### **LIST OF ACRONYMS**

AAA All Ages and Abilities

AB Assembly Bill

**BPTP** Bicycle and Pedestrian Transportation Plan

CIP Capital Improvement Program

**Caltrans** California Department of Transportation

CIP Capital Improvement Projects

**CSAP** Comprehensive Safety Action Plan

**CSTSC** City/School Transportation Safety Committee

**DIB** Design Information Bulletin

**DP** Director's Policy

**E-Bike** Electric Bike

**EPC** Equity Priority Community

FHWA Federal Highway Administration

**HIN** High-Injury Network

IIJA Infrastructure Investment and Jobs Act

ITE Institute of Transportation Engineers

**KSI** Killed or Seriously Injured

LEVEL of Traffic Stress





MPH Miles per Hour

MTC Metropolitan Transportation Commission

**NACTO** National Association of City Transportation Officials

NRSS National Roadway Safety Strategy

PABAC Pedestrian and Bicycle Advisory Committee

PAPD Palo Alto Polic Department

PAUSD Palo Alto Unified School District

PCF Primary Collision Factor
PDO Property Damage Only
PTA Parent-Teacher Association
PTAC Palo Alto Council of PTAs

PTC Planning and Transportation Commission

SB Senate Bill

SRTS Safe Routes to School

SS4A Safe Streets and Roads for All

**US DOT** United States Department of Transportation

VMT Vehicle Miles Traveled

VTA Santa Clara Valley Transportation Authority







The City of Palo Alto (City) last updated its Bicycle and Pedestrian Transportation Plan (BPTP) in 2012. An update to BPTP is necessary to maintain funding eligibility, respond to evolving community needs, account for recent trends in cycling and technology, and align with current planning and design standards. The City undertook a comprehensive effort to update the BPTP by analyzing the existing walking and bicycling conditions, engaging the community, and incorporating the best practices in multimodal transportation planning.

# 0.1 Purpose and Vision

The 2026 BPTP serves as a comprehensive action plan for the City to provide improved bicycle and pedestrian facilities for its residents, employees, and visitors. The purpose of the 2026 BPTP is to gather meaningful input from the community, evaluate progress since the 2012 plan, and update the City's approach to policies, programs, and infrastructure that support walking and biking.

To guide the 2026 BPTP Update, a vision statement and set of objectives were created based on strong community input gathered during the visioning workshop and early engagement activities. The resulting vision statement is

We envision a city where sustainable, safe, efficient, equitable, and enjoyable transportation thrives. Together, we will create a comfortable and connected street and trail network that supports walking, biking, and rolling for people of all ages and abilities. We continue to be a leader in Safe Routes to School and invest more in active transportation infrastructure, education, and encouragement programs.

All Ages and Abilities facilities are designed to serve everyone—not just confident adult riders who have historically been the primary focus of street design. An All Ages and Abilities network provides safe and comfortable travel for children, seniors, women, people with disabilities, people of color, low-income users, bike share riders, and individuals carrying goods.

# **0.2 Existing Bicycle Facilities**

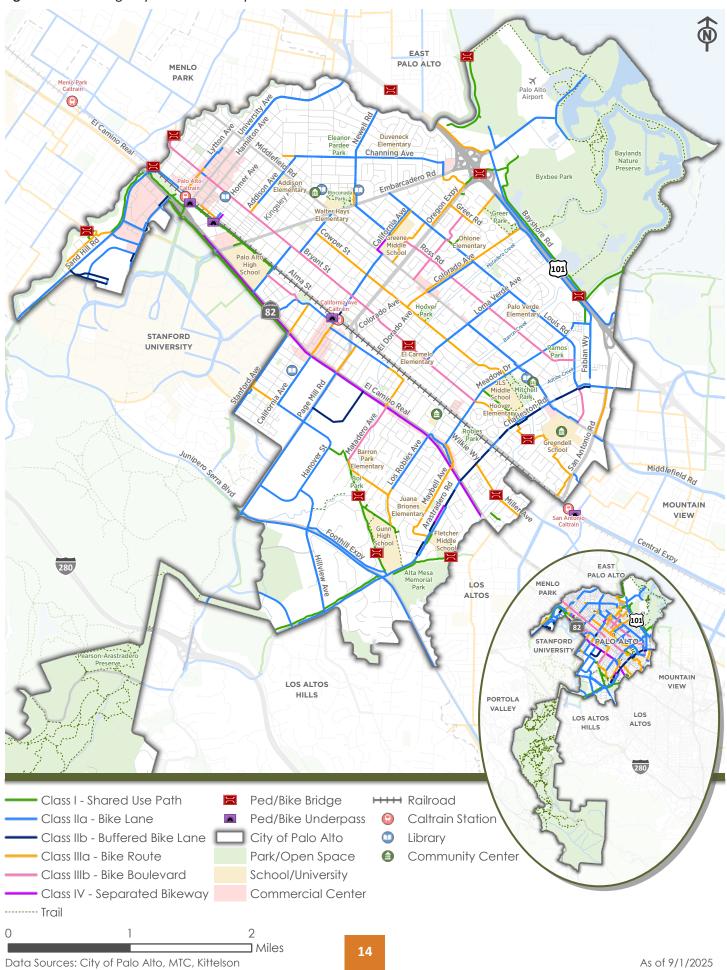
The California Department of Transportation (Caltrans) defines four classes of bicycle facilities: Class I, II, III, and IV, as illustrated in **Image EX 1**. In addition to these statewide classifications, the City of Palo Alto uses further sub-classifications: Class IIa – standard bike lanes, Class IIb – buffered bike lanes, Class IIIa – bike routes, and Class IIIb – bike boulevards.

Image EX 1: Types of Bicycle Facilities Class I Sidepath Roadway Travel Lanes Separation Class II Parking □ Bike Lane □ Travel □ Buffered Bike Lane □ Sidewalk Class III Sidewalk **Parking Shared Travel Lanes** Sidewalk Class IV Separated Bike Parking Separated Bike Sidewalk Travel Lanes Lane Lane Source: Caltrans, Toward an Active California, State Bicycle and Pedestrian Plan, 2017. 0. Executive Summary 12

**Figure EX 1** illustrates the existing bikeway network in Palo Alto and surrounding jurisdictions. In 2012, the City had 59.3 miles of bikeways. Since then, approximately 14 miles have been added, bringing the total to 73.5 miles as of 2025. Notably, there were no Class II buffered or Class IV separated (or protected) bikeway in 2012; today, the City boasts 3.3 miles of buffered bike lanes and 4.3 miles of separated bikeway. **Table EX 1** includes comparison between 2012 bicycle network mileage with existing network in 2025.

Table EX 1: Existing Bicycle Network in 2012 vs 2025

| FACILITY TYPE               | 2012 | 2025 |
|-----------------------------|------|------|
| Class I Multi-Use Path      | 13.9 | 11.7 |
| Class II Bike Lane          | 33.2 | 34.6 |
| Class II Buffered Bike Lane |      | 3.3  |
| Class III Shared Lane       | 8.0  | 12.6 |
| Class III Bicycle Boulevard | 4.2  | 7.1  |
| Class IV Separated Bikeway* |      | 4.3  |
| TOTAL                       | 59.3 | 73.5 |


Source: 2012 BPTP

Note: Includes the recently constructed El Camino Real separated bikeway.

2012 lane mile data is sourced from the 2012 BPTP; 2025 lane mileage is calculated using the 2025 roadway centerline file. The Class I length has not decreased between 2012 and 2025—differences are due only to the calculation method.



Figure EX 1: Existing Bicycle Facilities Map



# 0.3 Community Engagement

The 2026 BPTP was shaped by a four-phase community engagement process combining online tools, inperson events, and meetings with the City Council, committees, commissions, and focus groups. Outreach was promoted through City channels, community partners, and local events.



Gathered nearly 1,000 public comments through surveys, workshops, and events. Key themes included prioritizing student safety, closing network gaps, expanding separated bikeway, improving crossings of major barriers (Caltrain, US-101), and integrating micromobility.



# PHASE 2: NEEDS & CONCERNS

Involved walking and biking tours and workshops that identified priority corridors (El Camino Real, Middlefield Road, Embarcadero Road, San Antonio Road, Alma Street), the need for smoother transitions between facility types, and improved pedestrian environments on streets like University Avenue and California Avenue.



### PHASE 3:

# RECOMMENDED PROJECTS & PROGRAMS

Solicited feedback on draft projects through workshops, focus groups, and an interactive map (around 400 comments). Support was strong for safety improvements, pedestrian features, bike boulevards, quick-builds, and wayfinding, though projects on major arterials drew mixed reactions due to traffic and parking concerns.



### PHASE 4:

### **PLAN ADOPTION**

Presented the Draft Plan to committees, commissions, and City Council for review and approval.

Across all phases, safety (especially for students), network connectivity, high-quality separated facilities, and strong pedestrian-focused design emerged as top community priorities, alongside support for education, policy, and funding strategies.

### 0.4 Recommendations

### **Network Development Approach**

The 2026 BPTP bikeway network builds on the 2012 Plan and incorporates recent regional and local planning efforts, including the MTC Regional Active Transportation Plan, VTA Bicycle Superhighway Plan, and Safe Routes to School maps.

**Primary Criteria**: The first round of network development synthesized these plans to identify areas of agreement and highlight routes with less consensus.

**Secondary Criteria**: Where multiple options existed, routes were refined by prioritizing directness to key community destinations, lower traffic stress, alignment with high-demand travel flows, and the ability to overcome major barriers.

# 0.4.1 RECOMMENDED NETWORK

**Figure EX 2** shows the updated bikeway network and bicycle friendly zones developed using the network corridor criteria explained in the previous section. It presents the complete vision of the bicycle network, including both the existing facilities and the low-stress network.

Bicycle-Friendly Zones are cohesive areas with concentrations of destinations, commercial activity, and pedestrian activity. These areas should see area-wide investment in bicycle-friendly amenities such as signal timing and traffic calming. A bicycle friendly zone is an area where cycling is convenient, comfortable, and direct on all of the streets within a designated area and is the preferred method of transportation.

# **0.4.2 LOW-STRESS BICYCLE NETWORK**

**Figure EX 3** shows the Low-Stress Bicycle Network map. The Low-Stress Bicycle Network is the foundation for citywide bicycle connectivity, focused on delivering safe, comfortable, and familiar routes in the near term. It builds upon the City's existing network of low-stress streets, primarily composed of shared-use paths and neighborhood-based Bicycle Boulevards, to rapidly expand access with minimal disruption and promote broad community support.

# 0.4.3 COMPLETE VISION NETWORK

Figure EX 4 shows the Complete Vision Bicycle Network map. The Complete Vision Network represents the long-term vision for a fully connected, all-ages-and-abilities bikeway system. This map also includes existing bicycle facilities that are not being upgraded to illustrate the full network once fully implemented. The Complete Vision Network includes some lower-priority projects that may be reevaluated as the City grows.

A total of 138 projects have been identified in 2026 BPTP to achieve the Complete Vision Network. These consist of 94 bicycle projects, 33 crossing and intersection projects, 5 special projects, and 5 recommended studies.

Figure EX 2: Recommended Bicycle Network

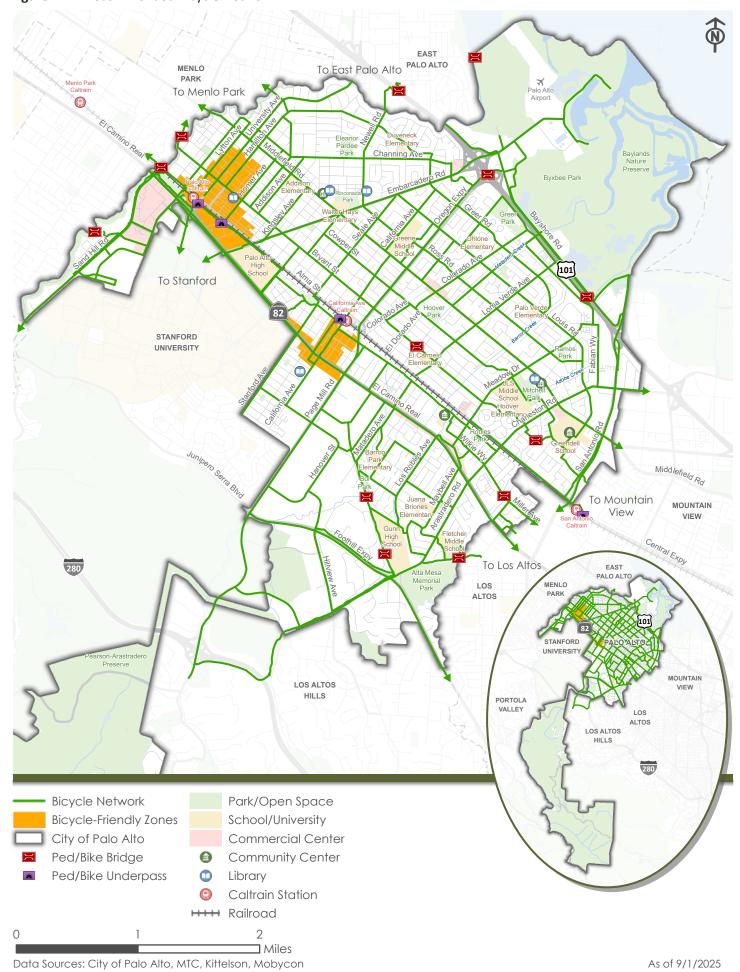



Figure EX 3: Low-Stress Bicycle Network

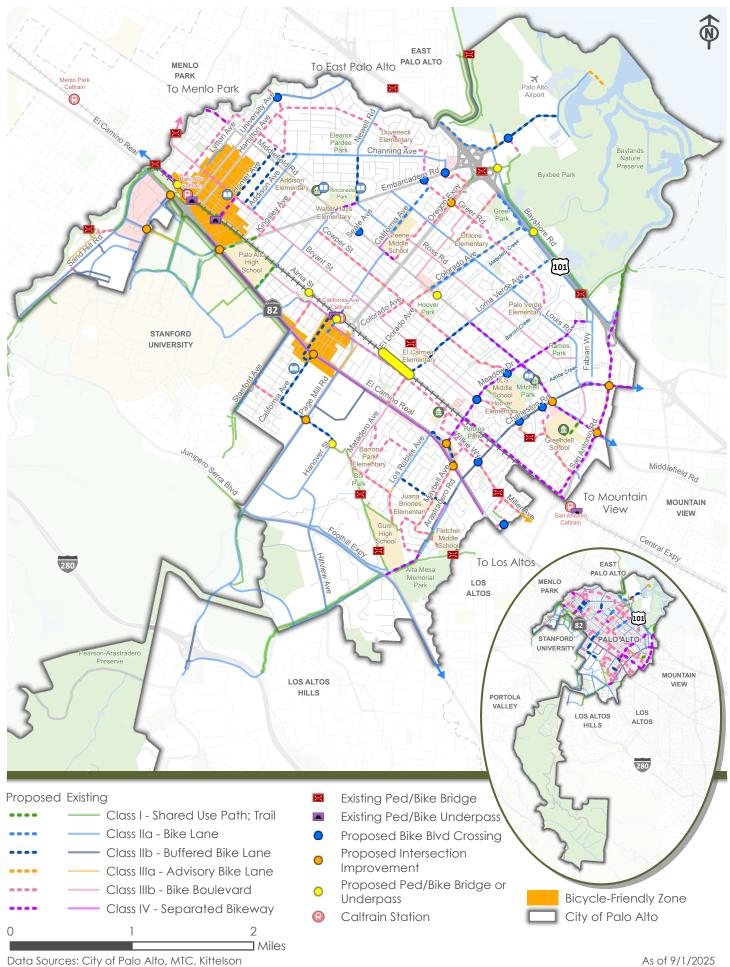
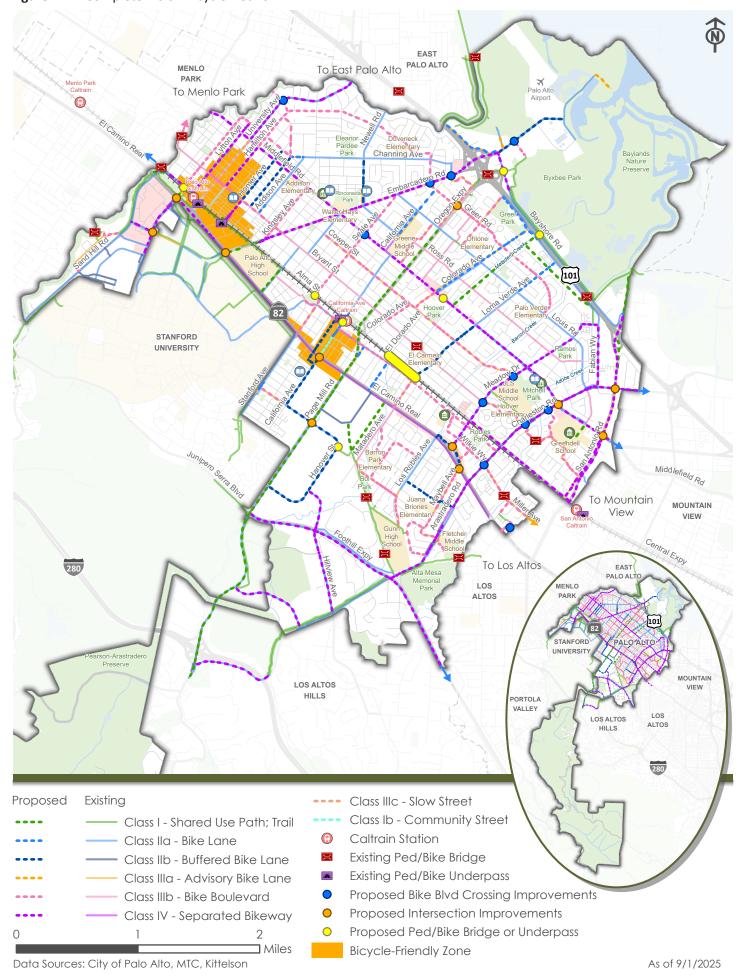




Figure EX 4: Complete Vision Bicycle Network



### 0.4.4 PEDESTRIAN DISTRICT GUIDELINES AND TOOLBOX

The pedestrian district toolbox includes a range of selected treatments aimed at improving pedestrian safety and enhancing the pedestrian experience. The elements range from infrastructure improvements, such as raised crossings or curb extensions that improve yielding rates, to aesthetic changes, such as benches or public art, that can elevate the walking experience. Together, these elements will meet universal needs for safety and accessibility and create conditions making walking comfortable and an enjoyable experience for all.

Priority pedestrian areas are key to creating a walkable, accessible, and enjoyable City. They offer areas where walking is prioritized to allow people of all ages and abilities to get around without competing with vehicles. Within these areas, slower vehicle movement is encouraged, and opportunities are provided for people to pause and enjoy their surroundings. Three pedestrian districts and three priority areas which are focus areas for pedestrian recommendations are included in the 2026 BPTP, these include:

#### **Pedestrian Districts**

- University Avenue Pedestrian District
- California Avenue Pedestrian District
- Midtown Pedestrian District

#### **Pedestrian Priority Areas**

- El Camino Real Neighborhood Commercial Center
- Embarcadero Neighborhood Commercial Center
- San Antonio Road Area





# 0.5 Project Prioritization

Project prioritization helps direct the City's resources and develop a near-term implementation strategy. This 2026 BPTP prioritizes intersections and bikeway corridors, studies, and special projects, for implementation over the next ten years. An initial prioritization was conducted to develop scores for each roadway segment in Palo Alto based on quantitative criteria to assess the level of alignment with the objectives of safety and connectivity. Projects that scored higher than 70 points were advanced to supplemental evaluation along with a subset of additional projects selected for further review. The supplemental evaluation considered project readiness, project cost, and project support to determine the top priority projects for near-term implementation. **Table EX** 2 presents the prioritization factors and evaluation criteria used in the prioritization process.

Table EX 2: Prioritization Factors and Evaluation Criteria

| PRIORITIZATION           | FACTOR                   | CRITERIA                                          |  |
|--------------------------|--------------------------|---------------------------------------------------|--|
|                          |                          | High-Injury Corridors                             |  |
| Initial Evaluation       | Safety                   | Recommended Walk & Roll SRTS suggested route maps |  |
|                          | Connectivity             | Bicycle Level of Traffic Stress                   |  |
|                          |                          | Access to Transit                                 |  |
|                          | Project Cost and Funding |                                                   |  |
| Supplemental Evaluation* | Project Readiness        | High, Medium, and Low                             |  |
|                          | Project Support          |                                                   |  |

Note: \*Only the projects that scored 70 or more points with a few exceptions in the Initial Evaluation advance to the Supplemental Evaluation.

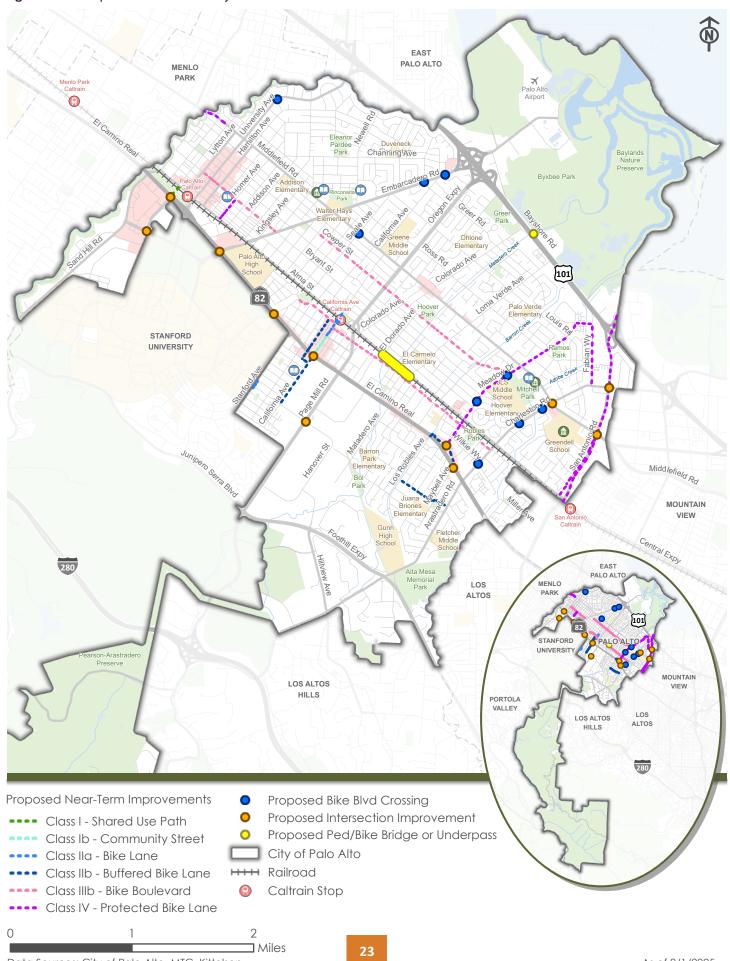


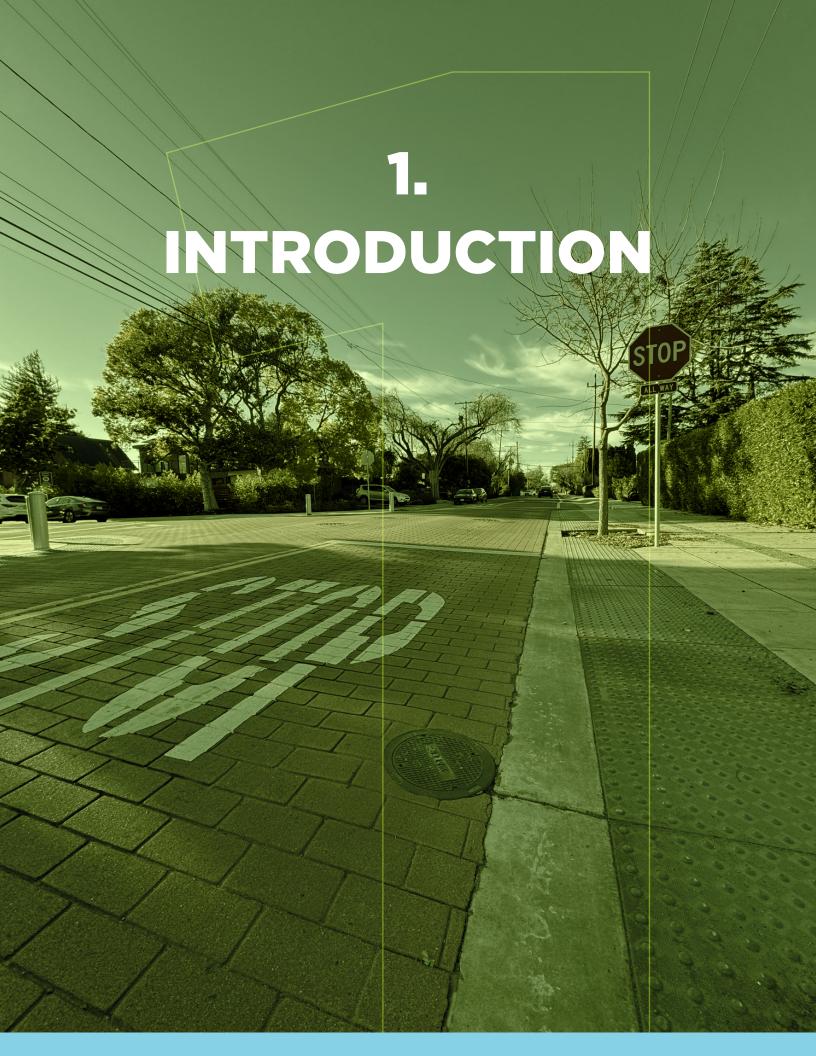
### **Near-Term Implementation:**

A total of 16 bicycle projects (covering approximately 12 miles of the proposed network) and 22 intersection and crossing projects have been identified for near-term implementation. These projects are illustrated in **Figure EX 5**. The estimated cost of implementing all 16 bicycle projects is **\$12.8** million.



### **Cost Estimation:**


The total cost to implement all 94 bicycle projects included in the 2026 BPTP is estimated at approximately **\$78 million**. This does not include cost for intersection and crossing improvements as they vary widely by project and cannot be accurately estimated at this stage.




### **Funding Strategy:**

Bicycle and pedestrian projects can be funded through a range of local, regional, state, and federal sources. To enhance its competitiveness for these funds, the City of Palo Alto should ensure its projects align with the core goals of the funding programs—typically centered on equity, safety, sustainability, and connectivity.

Figure EX 5: Proposed Near-Term Projects





Famous as the birthplace of Silicon Valley, the City of Palo Alto (City) is also a pioneer in active transportation, home to the nation's first bicycle boulevard on Bryant Street. With its relatively flat geography, mild climate, abundant green spaces, and vibrant, historic downtown, the City offers an ideal setting for walking and bicycling. Strong connections to Stanford University and regional transit further enhance its appeal, helping Palo Alto achieve some of the highest walking and biking rates in the Bay Area and nation.

The City last updated its Bicycle and Pedestrian Transportation Plan (BPTP) in 2012. That plan established key planning, policy, and implementation strategies to enhance the safety and appeal of walking, biking, and rolling for both transportation and recreation. Since then, the share of residents driving alone to work has decreased significantly from 64.4% in 2012 to 51.65% in 2023. The Covid-19 pandemic also brought major shifts in travel behavior, including a sharp rise in telecommuting. By 2023, 27.9% of Palo Alto residents worked from home, nearly 2.5 times the rate in 2019 (9.7%). These changes, along with the growing use of emerging mobility options such as e-bikes and ridesharing, have prompted the City to initiate an update to the BPTP to better respond to current trends and future needs for walking and biking.

The 2026 BPTP reflects community needs and desires, considers recent trends in cycling and bicycle technology, and addresses changes in bicycle and pedestrian planning and design. It builds upon extensive planning and design efforts already underway by the City, including the implementation of the 2012 BPTP, Safe Streets for All (SS4A) Safety Action Plan, and land use planning such as the 2023-2031 Housing Element Update, Downtown Housing Plan, and the San Antonio Road Area Plan. The 2026 BPTP was drafted in collaboration with the City and the community through multiple phases of engagement occurring over the course of BPTP development.



A pedestrian is someone traveling on foot along sidewalks, crosswalks, or pathways. This also includes individuals using assistive devices such as canes, walkers, or wheelchairs.

A bicyclist is a person riding a bicycle, which may include pedal-powered bicycles, electric bicycles (e-bikes) with pedal-assist or throttle features, and adaptive bicycles such as hand-cycles or tricycles.

Shared micromobility refers to the use of small, low-speed vehicles like bicycles and scooters that are available for public rental on a short-term basis.

<sup>1</sup> U.S. Census Bureau. 2012 and 2023 American Community Survey, Table S0801: Commuting Characteristics by Sex. Accessed June 28, 2025.

### 1.1 Purpose

The 2026 BPTP serves as a comprehensive action plan for the City to provide improved bicycle and pedestrian facilities for its residents, employees, and visitors. The purpose of the 2026 BPTP is to gather meaningful input from the community, evaluate progress since the 2012 plan, and update the City's approach to policies, programs, and infrastructure that support walking and biking.

To achieve this purpose, the 2026 BPTP investigates safety data to propose impactful recommendations, explores the role of emerging transportation technologies such as electric-bicycles and micromobility devices, and establishes a long-term vision to make walking and biking easier, safer, and more accessible for everyone. This plan is also intended to support the City's broader goals, including those in the 2030 Comprehensive Plan, the Sustainability and Climate Action Plan, and the City's Safety Action Plan.

#### Who Can Use the Bike Lane?

All bicycles are allowed on the bikeway network, including modified types such as unicycles, cargo bikes, bikes with trailers, and longtail bikes. E-bikes with pedal-assist speeds up to 28 mph are permitted on most bikeways but are not allowed on unpaved trails (See Palo Alto Open Space and Park Rules and Regulations for more information).

#### Who Can Use the Sidewalk?

Pedestrians can use sidewalk. In Palo Alto, riding on sidewalks in the California Avenue and Downtown Business Districts is prohibited (See Palo Alto MC 10.64.130 (c)).

# 1.2 Plan Organization

### **Chapter 1: Introduction**

This chapter summarizes the vision statement and objectives that guided the development of 2026 BPTP. It includes performance measures that will help track the City's progress toward these goals, describes the relationship between other planning efforts and 2026 BPTP, and summarizes the public engagement efforts.

### **Chapter 2: Existing Facilities**

This chapter documents the existing walking and bicycling infrastructure in Palo Alto. It analyzes the walking and bicycle activity, barriers and safety conditions. It includes information on the use of micromobility and e-bikes, and bicycle parking.

### **Chapter 3: Recommendations**

This chapter includes the bicycle and pedestrian recommendations. It includes the process for developing bikeway network corridor criteria. For pedestrians, it includes recommendations related to the pedestrian district guidelines and toolbox. Lastly, it includes recommended policies and programs.

### **Chapter 4: Implementation and Funding**

This chapter includes a prioritization framework classifying the recommended projects into near- and long-term categories. Additionally, it includes planning level cost estimates and identifies potential funding sources.

# 1.3 Benefits and Barriers to Walking and Biking

Walking and biking offer significant public health, environmental, and economic benefits that align with the goals for sustainable transportation. The Caltrans' Toward an Active California plan highlights how active transportation improves physical and mental health, reduces greenhouse gas emissions, and supports equitable access to mobility.<sup>2</sup> Additionally, walking and biking reduce auto ownership costs, estimated at \$8,500 annually per car and save \$830 million in congestion, collision, and vehicle maintenance costs for the state of California. Furthermore, active transportation enhances community character, supports local businesses, and results in increased land values.

However, key barriers remain. State and national reports emphasize challenges such as high-speed traffic, incomplete or disconnected pedestrian and bicycle networks, missing first- and last-mile connections, and a lack of secure bicycle parking. In Palo Alto, these issues are echoed by local feedback that calls for safer crossings, better lighting, and more low-stress, separated bicycle facilities. Equity also remains a concern, with a need to ensure access to high-quality infrastructure for all ages and abilities.

# What does "All Ages and Abilities (AAA)" mean?

To truly encourage walking and biking, facilities must be designed for everyone not just confident adult men who have historically been the focus of street design. An All Ages and Abilities network ensures that children, seniors, women, people with disabilities, people of color, low-income users, bike share riders, and those carrying goods can travel safely and comfortably. These groups often face unique barriers, including safety concerns, visibility challenges, accessibility needs, inequitable investment, or inadequate infrastructure. By prioritizing comfort, traffic separation, and equity, All Ages and Abilities design expands the reach of walking and bicycling, enhances mobility and independence, and makes active transportation a safe and appealing choice for all.



# 1.4 Vision, Objectives, and Performance Measures

To guide the 2026 BPTP Update, a vision statement and set of objectives were created based on community input gathered during the visioning workshop and early engagement activities. The 2026 BPTP also includes performance measures that will help track the City's progress toward these goals.

### 1.4.1 VISION STATEMENT

We envision a city where sustainable, safe, efficient, equitable, and enjoyable transportation thrives. Together, we will create a comfortable and connected street and trail network that supports walking, biking, and rolling for people of all ages and abilities. We continue to be a leader in Safe Routes to School and invest more in active transportation infrastructure, education, and encouragement programs.



### 1.4.2 OBJECTIVES

To achieve the vision for the 2026 BPTP, the following objectives were developed that guide the recommendations.



**Safe and Inclusive:** Prioritizing safety for all transportation network users regardless of age and ability and ensuring equitable access to pedestrian and bicycle infrastructure across the community while reducing fatal and severe injury collisions.



**Connected and Accessible:** Featuring a convenient and interconnected network of sidewalks, bike lanes, and trails that provide efficient travel options and easy access to transit and important destinations, encouraging a shift away from driving and improving environmental health through lower vehicle miles traveled and greenhouse gas emissions.



**Community-Led and Cooperative:** Fostering community engagement and participation in promoting active transportation, supported by education, programming, and infrastructure investments, in a way that cultivates learning for network users of all ages.



**Comfortable and Enjoyable:** Enhancing the comfort and enjoyment of walking and cycling through amenities such as shade, greenery, and well-designed streetscapes.



**Integrated and Collaborative:** Collaborating with neighboring cities to create a seamless, integrated, and efficient regional network of pedestrian and bicycle infrastructure.

### 1.4.3 PERFORMANCE MEASURES

**Table 1** lists performance measures that have been established to track progress toward achieving the Plan vision and objectives and document the results of investments in biking, walking, and rolling in Palo Alto.

**Table 1:** Performance Measures

| OBJECTIVE                     | PERFORMANCE MEASURE                                                                           | REPORTING PERIOD            |
|-------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|
| n n                           | Annual pedestrian and bicycle collisions per 100,000 residents                                | Annual                      |
| Safe and Inclusive            | Annual pedestrian and bicycle killed and severe injury (KSI) collisions per 100,000 residents | Annual                      |
| 20                            | Walk/bike/roll to school and commute mode shares                                              | Annual (school mode share); |
|                               |                                                                                               | Annual (commute mode share) |
| Connected and Accessible      | Walking and biking volumes at key locations                                                   | Annual                      |
| 2,20                          | Number of walking and biking promotion events held per year at schools in the City            | Annual                      |
|                               | Number (and percent) of schools with at least one<br>Transportation Safety Representative     | Annual                      |
| Community-Led and Cooperative | Number of open street events held                                                             | Annual                      |
|                               | Number of active pedestrian and/or bicycle advocacy groups                                    | Annual                      |

Source: Kittelson & Associates, Inc. 2025

**Table 2** outlines potential performance measures that could be introduced as the 2026 BPTP is implemented and as walking, biking, and rolling network grows, prompting the need to expand how the 2026 BPTP is tracked. Biannually (every 2 years), the City of Palo Alto can consult with the Palo Alto Pedestrian and Bicycle Advisory Committee (PABAC) to determine if the annual performance measures exhibit trends (compared to baseline conditions and year-over-year) that illustrate a clear path forward for allocating resources. If it is determined that additional direction is needed to invest in the network to achieve 2026 BPTP vision and goals, then performance measures such as the following could potentially be established. Developing these measures will require further research and a formalized methodology including identifying reliable data sources that could be tracked periodically.

Table 2: Potential Performance Measures

| OBJECTIVE                    | PERFORMANCE MEASURE                                                                                                                                                    | REPORTING PERIOD |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Safe and Inclusive           | Number of top pedestrian and bicycle KSI collision or high injury network locations improved or studied                                                                | Annual           |
|                              | Percentage of existing affordable housing projects within 1,000 feet of completed and connected all ages and abilities (AAA) cycling infrastructure (bikeways, trails) | Annual           |
| X                            | Miles of bikeway facilities (per each bikeway type and total network)                                                                                                  | Annual           |
| Connected and Accessible     | Share of transportation budget spent on walk/bike/roll improvements                                                                                                    | Annual           |
| <b>FEDD</b>                  | Percentage of cycling infrastructure mileage that are AAA routes or Level of Traffic Stress1 (LTS) 1/2                                                                 | Annual           |
| Comfortable and<br>Enjoyable | Canopy coverage percentage of designated walking and bicycling routes.                                                                                                 | Annual           |
|                              | Number of completed walking/bicycling projects that improve cross-jurisdictional gateways                                                                              | Every 3 years    |
| Integrated and Collaborative | Percentage of transit stops and stations accessible on AAA cycling routes.                                                                                             | Every 3 years    |

Source: Kittelson & Associates, Inc. 2025

Notes: ¹Level of traffic stress (LTS) is an approach that quantifies the amount of discomfort that people feel when they bicycle close to traffic. It is further described in section 2.5.

# 1.5 Setting

Located between the open space preserves of the foothills and the tidal flats of San Francisco Bay, Palo Alto encompasses an area of approximately 26 square miles, nearly half of which is designated as parks, open space, and Baylands. With an established grid network of streets, vibrant business districts, a well-known park and trail system, and direct proximity to Stanford University, Palo Alto is an ideal place for walking and biking. Flat terrain, tree-lined streets, and a temperate climate also make Palo Alto a relatively easy place to bicycle. Palo Alto's main transportation corridors are Interstate 280, Highway 101, Highway 84 (the Dumbarton Bridge), State Route 82 (El Camino Real), and Oregon Expressway/Page Mill Road. Within the City, commuter rail stations include the Palo Alto University Avenue stop (one of the most frequently used in the Caltrain system) and the California Avenue station. Bus service is primarily provided by the Santa Clara Valley Transportation Authority (VTA) and limited service is provided by SamTrans (San Mateo County Transit District), Dumbarton Express, and Standford's Marguerite Shuttle. Since 2012, the City of Palo Alto's population has remained relatively consistent with around 66,000 residents, whereas the median household income has increased by 55 percent. Image 1 and Table 3 shows the key demographic indicators as obtained from 2023 U.S. Census ACS 1-Year estimates.

Image 1: Palo Alto Demographic Indicators



65,881

Population



97.6%

High School Graduate or Higher



2,846

Population per sq. mile



\$184,068

Median Household Income



51:49

Female: Male



\$97,307

Per Capita Income



2.35
Average Household Size



3.5% Unemployment Rate

Source: U.S. Census Bureau, ACS 2023 1-Year Estimates.

Table 3: Palo Alto Demographic Indicators

| DEMOGRAPHIC INDICATOR             | ESTIMATE                         |
|-----------------------------------|----------------------------------|
| Total Population                  | 65,881                           |
| Population Density                | 2,846 Population per square mile |
| Sex ratio (males per 100 females) | 98.6                             |
| Average Household Size            | 2.35                             |
| High School Graduate or Higher    | 97.6%                            |
| Median Household Income           | \$184,068                        |
| Per Capita Income                 | \$97,307                         |
| Unemployment Rate                 | 3.5%                             |
| Mean Travel Time to Work          | 20.4 minutes                     |

Source: U.S. Census Bureau, ACS 2023 1-Year Estimates.

### 1.5.1 KEY DESTINATIONS

There are several key destinations, community amenities, and resources, including medical and education centers, schools, grocery stores, childcare centers, pharmacies, parks, libraries, and transit stops, within a walkable distance of half a mile and a bikeable distance of two miles of many Palo Alto residents.

**Figure 1** identifies key destinations, or existing activity generators, that will benefit from improved bicycle and pedestrian connections.

**Figure 2** illustrates the 10-minute walk and bike sheds (area that is accessible within 10-minutes of walking or biking based on the existing street network without consideration of available existing facility) for major transit stops, which include Caltrain stations and bus stops served by rapid bus service. These walk and bike shed areas represent the majority of populated areas within the City. Bicycle and pedestrian infrastructure improvements on streets and sidewalks connecting to these stops are critical in providing safe and comfortable connections to transit.

Figure 1: Existing Activity Generators

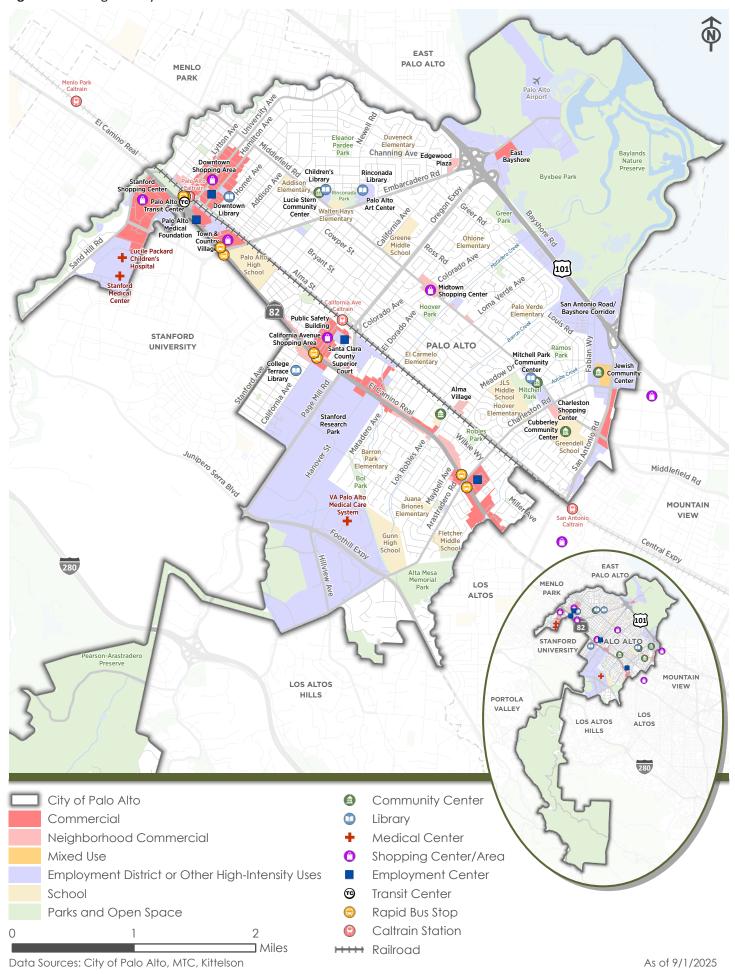
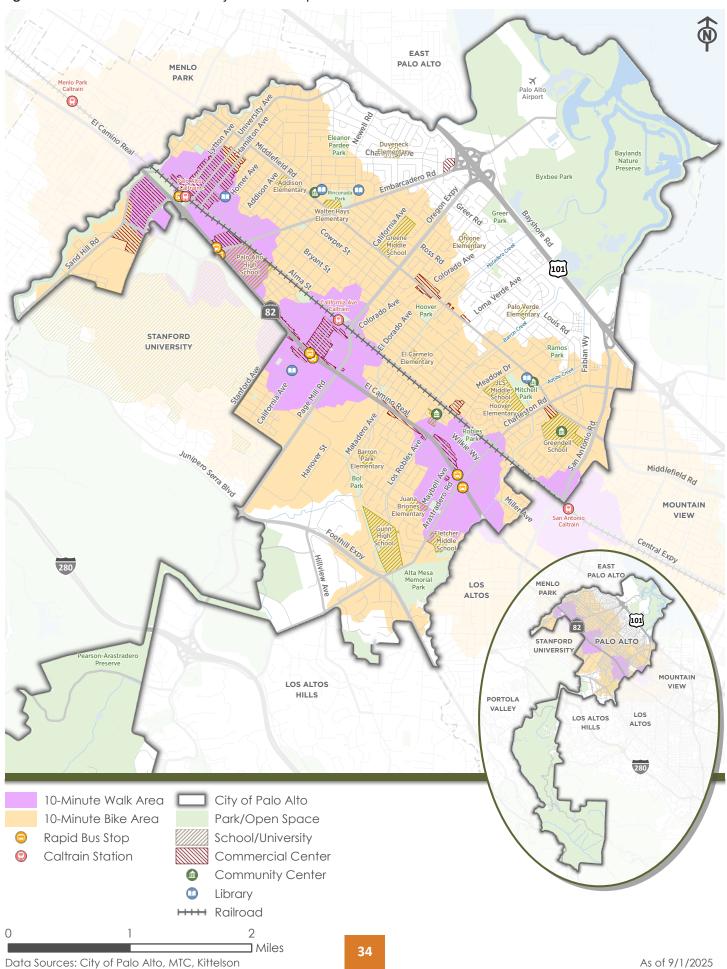




Figure 2: Walk and Bike Sheds for Major Transit Stops



# 1.6 Relationship to Other Documents

The 2012 BPTP, along with a variety of local, regional, state and federal plans, legislation, and policy directives, provides guidance for the development and safe operation of bicycle and pedestrian facilities. **Appendix A: Literature Review** provides a more detailed review of existing plans and policies.

Across various plans, there is strong alignment on promoting sustainability, climate action, and increasing the rate of people walking and biking. Common vision and goals include:

- Increasing biking and walking trips for all purposes
- Constructing and maintaining safe and accessible streets for walking and biking and people of all ages and abilities
- Developing a network of bikeways, pathways, and traffic-calmed streets that connect various business districts, residentials areas, open spaces and parks
- Improving the aesthetics of walkways and bike paths to attract more walking and biking trips
- Reducing the overall vehicle miles traveled (VMT)
- Seeking to improve the quality of life, as well as environmental quality, economic health, and social equity

NRONG WAY

The 2030 City of Palo Alto Comprehensive Plan introduces programs and policies such as collecting bicycle counts and conducting surveys to understand bicycle use (Program T1.16.1); encouraging participation in local walking and biking events (Program T1.16.4); providing facilities that encourage walking and biking (Policy T-1.19); and prioritizing investments for enhanced pedestrian access and bicycle use within Palo Alto (Program T1.19.2).<sup>3</sup> Furthermore, the policies align with the Metropolitan Transportation Commission's (MTC) Regional Active Transportation Plan<sup>4</sup> and City's Safe Routes to School (SRTS) Program.

The common themes from the review of documents surrounding the needs and challenges include:

- Limited access to commercial areas
- Insufficient bike parking
- Safety concerns at crossings and high-traffic areas
- Environmental risks
- Funding uncertainty
- Bicycle theft, and
- Poor infrastructure maintenance

<sup>3</sup> City of Palo Alto. 2030 Comprehensive Plan. (2014) Accessed from <a href="https://www.paloalto.gov/Departments/Planning-Development-Services/Housing-Policies-Projects/2030-Comprehensive-Plan">https://www.paloalto.gov/Departments/Planning-Development-Services/Housing-Policies-Projects/2030-Comprehensive-Plan</a>

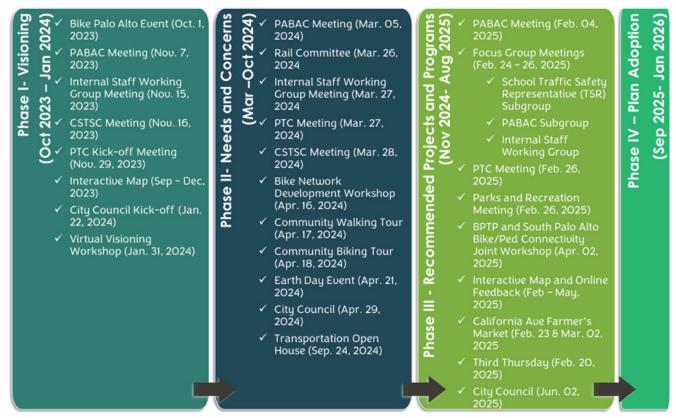
<sup>4</sup> Metropolitan Transportation Commission. Regional Active Transportation Plan. (2023) Accessed from <a href="https://mtc.ca.gov/planning/transportation/bicycle-pedestrian-micromobility/regional-active-transportation-plan">https://mtc.ca.gov/planning/transportation/bicycle-pedestrian-micromobility/regional-active-transportation-plan</a>

The following active transportation projects were recommended as a part of the plans reviewed:

- Across barrier connections across the City (Adobe Creek Highway 101 Overcrossing (completed), Caltrain/Alma Barrier Crossing at Matadero Creek (ongoing via the South Palo Alto Bike/Ped Connectivity Project), etc.)
- Trails and Shared Use Pathway projects (Embarcadero Road / Rinconada Park Sidepath, Adobe Creek Reach Trail (completed) etc.)
- Bicycle boulevard projects (Castilleja-Park-Wilkie Bicycle Boulevard, Bryant Street Bicycle Boulevard Update, etc.)
- Intersection spot improvements (El Camino Real Intersection Through-Markings (completed), Charleston Road at Middlefield Road Bicycle Through-Lanes (completed), etc.)
- Infrastructure Programs (Bicycle Parking Corral / Rack Installation Program (on-going), Pedestrian Countdown Signals & Crossings Program (ongoing), etc.)
- System rehabilitation and Maintenance (Castilleja Street-Park Boulevard, Lytton Avenue (completed), etc.)
- Design, Feasibility, and Planning (Middlefield Road "Complete Street" Plan Line Study, Embarcadero Road Plan Line Study (completed), etc.)
- Non-Infrastructure Education Encouragement (Citywide Traffic Counts and Data Collection, Bike Palo Alto! / Palo Alto Sunday Streets (on-going) etc.)
- Freeway interchange improvements (I-280/Page Mill Interim Improvements (completed))
- Planned Bicycle Bridge/Undercrossing (Stanford Avenue /Seale Avenue, San Francisquito Creek Trail (Bay Trail Crossing Complete), Adobe Creek Bridge (complete))

# 1.6.1 RELATIONSHIP TO CITY'S ONGOING EFFORTS

At the time of the 2026 BPTP development, the City of Palo Alto was advancing several related planning efforts, including:


- Safe Streets for All (SS4A) Safety Action Plan
- 2023-2031 Housing Element
- San Antonio Road Area Plan
- Downtown Housing Plan
- South Palo Alto Connectivity Project
- Quarry Road Transit Connection at El Camino Park
- Car-Free Streets: California Avenue and Ramona Street
- El Camino Real Pavement, Rehabilitation, and Bikeways
- Cubberley Community Center Project

The BPTP team engaged with staff and consultants leading these initiatives to ensure coordination and consistency across planning efforts. Recommendations from projects that were further along in their development, such as the SS4A Safety Action Plan and the 2023–2031 Housing Element, were incorporated into the BPTP as appropriate. The Safety Action Plan prioritizes addressing risks for pedestrians on major downtown streets, pedestrians on arterials at night, youth bicyclists, broadside collisions between bicyclists and vehicles, and bicycle crossings on high-stress streets. The Housing Element highlights that improvements to walking and biking infrastructure can reduce household transportation costs and enhance residents' quality of life. It also promotes strategies such as Pedestrian-Transit Oriented Development (PTOD) and mixed-use land development to foster more walkable and bikeable communities. Other efforts, including the San Antonio Road Area Plan and the South Palo Alto Connectivity Project, were still in progress at the time of 2026 BPTP development. The 2026 BPTP recognizes that the outcomes of these ongoing projects will continue to inform and influence the recommendations presented in this plan.

# 1.7 Public Outreach Summary

The development of the 2026 BPTP was guided by an extensive, four-phase community engagement process: 1) Visioning; 2) Needs & Concerns; 3) Recommended Projects and Programs; and 4) Plan Adoption. The community engagement effort included a combination of digital outreach and in-person events. Events were promoted on the City's website, social media channels, "Transportation Connect" mailing list, tabling and community events, Uplift local newsletter, and at the Committee and Working Group meetings.

Image 2: Four Phases of Engagement



Notes: PABAC - Pedestrian and Bicycle Advisory Committee; CSTSC - City School Traffic Safety Committee; PTC - Planning and Transportation Commission



The initial phase focused on establishing a shared vision through a variety of public engagement activities. A variety of methods were used to engage the public, including an interactive map, public survey (developed and distributed in partnership with the Safe Streets for All Action Plan team), a series of seven committee and working group meetings, an in-person pop-up event at Bike Palo Alto, and a virtual community visioning workshop. **Appendix B: Phase 1 – Visioning Community Engagement Summary** summarizes Phase 1 community engagement efforts.

The interactive map received nearly 1,000 unique comments, with 54 percent citing safety concerns and 29 percent requesting new infrastructure. Many comments emphasized the need to close connectivity gaps in the bicycle network, improve safety, expand bike lanes for greater comfort, and provide infrastructure near schools.

Engagement with committees and a staff working group surfaced several key themes: (1) safety, especially for students; (2) demand for high-quality walking and biking infrastructure; (3) the need for across-barrier connections over obstacles like U.S. 101 and Caltrain; (4) interest in transformative technologies (e.g., e-bikes, sensors); and (5) alignment of transportation planning with future growth areas such as San Antonio Road.

At the Bike Palo Alto event, residents echoed the importance of separated bikeway and identified El Camino Real as a major barrier. The visioning workshop led to the development of a vision statement and the objectives presented in Chapter 2.

**Image 3:** Virtual Visioning Workshop held on January 31, 2024

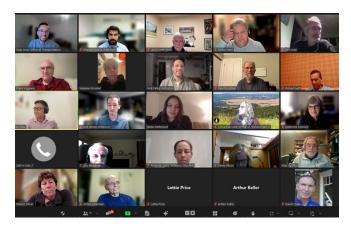



Image 4: Bike Palo Alto Event held on October 1, 2023



#### **Key Themes from Phase 1:**

- Safety is the top priority, particularly for students traveling to and from school.
- Strong demand for separated or wider bike lanes and safer street crossings.
- Need for a seamless network that crosses major barriers (e.g., highways, rail).
- Direct connections to schools, transit hubs, and key community destinations.
- Integration of e-bikes and other micromobility options.
- Emphasis on high-quality design, including comfort, aesthetics, wayfinding, and shade.
- Education, outreach, and ongoing community input are essential.



#### PHASE 2:

# **NEEDS & CONCERNS**

The second phase of engagement included a series of committee and working group meetings and a weeklong series of events and workshops that included a bicycle network development workshop, a community walking tour, and a community cycle tour. Appendix C: Phase 2 – Needs & Concerns Community Engagement Summary summarizes Phase 2 community engagement efforts.

The Bikeway Network Development workshop guided participants to identify key destinations, connect destinations through a schematic "Star" network, and apply the schematic network to the street grid. The resulting networks highlighted the need for crossing across railway tracks and opportunities to improve facilities on major roads such as Middlefield Road, El Camino Real, and Embarcadero Road.

The community walking tour, hosted in partnership with Avenidas (a senior activity center), explored University Avenue and the Palo Alto Caltrain Station area. Feedback from the tour contributed to the development of the Pedestrian Design Guidelines.

The community bike tour, organized with the Silicon Valley Bicycle Coalition, involved 24 community members and covered a range of existing bicycle facility types over a seven-mile bike ride. Participants emphasized the need for smoother transitions between street types, stronger connectivity, and infrastructure that supports riders of all ages and abilities.

Image 5: Bicycle Network Development Workshop



Image 6: Community Walking Tour



#### **Key Themes from Phase 2:**

- Strengthen the existing network by addressing critical gaps.
- Prioritize improvements along key corridors, including San Antonio Road, Alma Street, Embarcadero Road,
   Middlefield Road, and El Camino Real.
- Enhance sidewalk continuity, wayfinding, and placemaking in pedestrian-oriented areas such as University Avenue and California Avenue.
- Improve transitions between different types of bicycle facilities to create a smoother, more consistent experience.



#### PHASE 3:

# RECOMMENDED PROJECTS AND PROGRAMS

This phase sought feedback on draft project and program concepts through focus group meetings (3), committee meetings (3), commission meetings (2), a public workshop, tabling and public events, online interactive map feedback and electronic feedback submissions. **Appendix D: Phase 3 – Recommended Project & Programs Community Engagement Summary** summarizes Phase 3 community engagement efforts.

Discussions with focus groups, commission and committee members highlighted concerns about the cost and return on investment on bikeways on "Big Streets." There appeared to be consensus on the need for micromobility supporting infrastructure, pedestrian-oriented streets, implementation of bike boulevards, Quick-Build projects, wayfinding, and, most importantly, safety enhancements.

A joint workshop for the 2026 BPTP and South Palo Alto Bike/Ped Connectivity<sup>5</sup> project was held at the Mitchell Park Community Center. Key takeaways included strong support for expanding the pedestrian toolbox with features such as pedestrian beacons, pedestrian-only zones, raised crossings, wider sidewalks, permanent wayfinding, and improved bike parking. Feedback on separated bikeway was mixed.

In addition to in-person events, an online interactive map and feedback form were made available on the project website. The map tool collected over 400 public comments, with 40 percent expressing support for improvements along corridors like Homer Avenue, Channing Avenue, Quarry Road, Charleston Road, and Oregon Expressway. Some (13%) raised concerns about specific treatments, while 24 percent opposed certain proposals, particularly where they could impact vehicle traffic—such as on San Antonio Road, Middlefield Road, and Embarcadero Road. Several commenters suggested leveraging creek corridors for non-motorized transportation. The feedback form received over 100 responses, which largely supported making Palo Alto more bike- and pedestrian-friendly but also raised concerns about the safety and practicality of certain proposed projects, particularly those involving busy arterial roads and parking removal.

#### **Key Themes from Phase 3:**

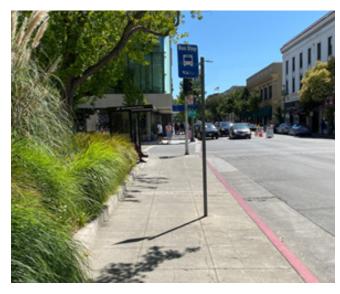
- Mixed reactions to "Big Streets" projects while they provide direct connections, many questioned their overall return on investment.
- Strong call for a clearer prioritization framework that accounts for real-world constraints.
- Desire for more pedestrian-focused recommendations.
- Emphasis on improving overall network connectivity and cohesion.
- Support for non-infrastructure strategies such as education, policy tools, funding mechanisms, and planning for emerging mobility modes.

<sup>5</sup> City of Palo Alto. South Palo Alto Bike/Ped Connectivity Accessed from www.paloalto.gov/bikepedcrossings



The final phase involved presenting the draft 2026 BPTP Update to committees, commissions and Council for review and adoption.





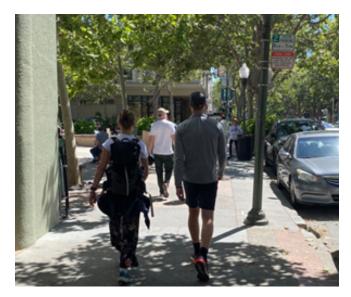

This chapter provides an overview of walking and biking in Palo Alto and presents relevant demographic data, existing walking and biking infrastructure, the High Injury Bicycle and Pedestrian Network, and the results of the bicycle level of traffic stress analysis. This inventory and analysis of existing conditions sets the stage for identifying pedestrian and bicycle needs and informs the prioritization process and network recommendations.

A pedestrian is someone traveling on foot along sidewalks, crosswalks, or pathways. This also includes individuals using assistive devices such as canes, walkers, or wheelchairs. A bicyclist is a person riding a bicycle, which may include pedal-powered bicycles, electric bicycles (e-bikes) with pedal-assist or throttle features, and adaptive bicycles such as hand-cycles or tricycles. Shared micromobility refers to the use of small, low-speed vehicles like bicycles and scooters that are available for public rental on a short-term basis.

# 2.1 Existing Pedestrian Facilities

Facilities that support people walking include sidewalks, shared-use paths, and trails, as well as crossing facilities such as curb ramps and marked crosswalks. Amenities such as street furniture, pedestrian-scale lighting, pedestrian-oriented wayfinding, shade, benches, water fountains, and landscaping also serve to support and create an environment that is convenient and inviting for people walking.




Sidewalk on Hamilton Avenue.

Source: Kittelson & Associates, Inc.



Marked crosswalks and curb ramps at University Avenue and Ramona Street.

Source: Kittelson & Associates, Inc.



Sidewalk shade on University Avenue.

Source: Kittelson & Associates, Inc.



Pedestrian-oriented wayfinding signage on Hamilton Avenue.

Source: Kittelson & Associates, Inc.

Sidewalks are generally provided throughout Palo Alto on its arterial and residential streets, providing walking connectivity to destinations such as schools, parks, retail, and transit. However, there are some gaps in the sidewalk network, including around key walking destinations such as rail and bus rapid transit stops. For example, the presence of sidewalk gaps along Palo Alto Avenue (near Palo Alto Transit Station) and along San Antonio Road (near San Antonio Transit Station) affect the directness and convenience of walking to and from high quality transit service. In addition, some neighborhoods may lack complete sidewalk networks on their residential streets, such as those within proximity of San Antonio Transit Station.

Marked crosswalks are provided at signalized and unsignalized intersections in the City. However, there are locations where consistent marked crosswalks are lacking. For example, at-grade arterials and expressways which bisect the City can have marked crosswalks that are limited and distant from one another. In addition, some signalized intersections do not provide marked crosswalks at all four legs, requiring pedestrians to undertake a three-stage crossing; for example, this condition occurs in proximity of Palo Alto Transit Station. Some signalized intersections also lack pedestrian crossing signals especially in key commercial areas like Downtown Palo Alto. The unsignalized intersections of side streets at arterial streets often lack marked crosswalks in any direction; for example, this condition is present near California Avenue Transit Station along streets such as Page Mill Road, California Avenue, and El Camino Real.

# 2.2 Existing Bicycle Facilities

Facilities that support people bicycling include bike lanes, bike boulevards, separated bikeway, shared-use paths, and trails, as well as crossing facilities such as protected intersections and conflict zone markings. Amenities such as bicycle parking, bicycle-oriented wayfinding, and bicycle signals also serve to support and create an environment that is convenient and inviting for people bicycling.

The City of Palo Alto has been a pioneer in developing bicycle facilities, having implemented the first Bicycle Boulevard in the United States on Bryant Street in the 1970s. The corridor is named in honor of Ellen Fletcher, a longtime councilwoman and former Palo Alto Vice-Mayor who helped transform the City into a nationally recognized bike-friendly community through her persistent advocacy.

The California Department of Transportation (Caltrans) defines four classes of bicycle facilities: Class I, II, III, and IV, as illustrated in **Image 7**. In addition to these statewide classifications, the City of Palo Alto uses further subclassifications: Class IIa – standard bike lanes, Class IIb – buffered bike lanes, Class IIIa – bike routes, and Class IIIb – bike boulevards.

Class I Sidepath Roadway Travel Lanes Separation Class II Parking I Bike Lane I Travel □ Buffered Bike Lane □ Sidewalk Class III Ø₩ Sidewalk **Parking** Sidewalk Shared Travel Lanes Class IV Separated Bike Parking Separated Bike Sidewalk Travel Lanes Lane

Image 7: Types of Bicycle Facilities

Source: Caltrans, Toward an Active California, State Bicycle and Pedestrian Plan, 2017.

**Figure 3** illustrates the existing bikeway network in Palo Alto and surrounding jurisdictions. In 2012, the City had 59.3 miles of bikeways. Since then, approximately 14 miles have been added, bringing the total to 73.5 miles as of 2025. Notably, there were no Class II buffered or Class IV separated bikeway in 2012; today, the City boasts 3.3 miles of buffered bike lanes and 4.3 miles of separated bikeways. **Table 4** includes comparison between 2012 bicycle network mileage with existing network in 2025.

**Table 4:** Existing Bicycle Network in 2012 vs 2025

| FACILITY TYPE               | 2012 | 2025 |
|-----------------------------|------|------|
| Class I Multi-Use Path      | 13.9 | 11.7 |
| Class II Bike Lane          | 33.2 | 34.6 |
| Class II Buffered Bike Lane |      | 3.3  |
| Class III Shared Lane       | 8.0  | 12.6 |
| Class III Bicycle Boulevard | 4.2  | 7.1  |
| Class IV Separated Bikeway* |      | 4.3  |
| TOTAL                       | 59.3 | 73.5 |

Source: 2012 BPTP

Note: Includes the recently constructed El Camino Real separated bikeway.

2012 lane mile data is sourced from the 2012 BPTP; 2025 lane mileage is calculated using the 2025 roadway centerline file. The Class I length has not decreased between 2012 and 2025—differences are due only to the calculation method.

## 2.2.1 EXISTING DOWNTOWN BICYCLE PARKING FACILITIES

In December 2024, a team conducted a comprehensive inventory of bicycle parking facilities along University Avenue, Hamilton Avenue, and Lytton Avenue between Middlefield Road and the Palo Alto Downtown Caltrain Station. Figure 4 shows the distribution of bicycle parking locations within this area. The team identified a total of 142 locations, providing capacity for up to 679 bicycles in a variety of rack types, including inverted U – circular, inverted U – rectangle, series inverted U, elevated racks, wave racks, and lockers.

High utilization was observed at many locations, particularly near University Avenue and the Caltrain Station. Most bike parking is conveniently located on or near sidewalks. However, some individuals were observed securing bicycles to sign poles or trees, likely for convenience or due to limited availability. The detailed observation and analysis from the bicycle parking survey is presented in **Appendix E: Bicycle Parking Data Collection Summary**.



Figure 3: Existing Bicycle Facilities Map

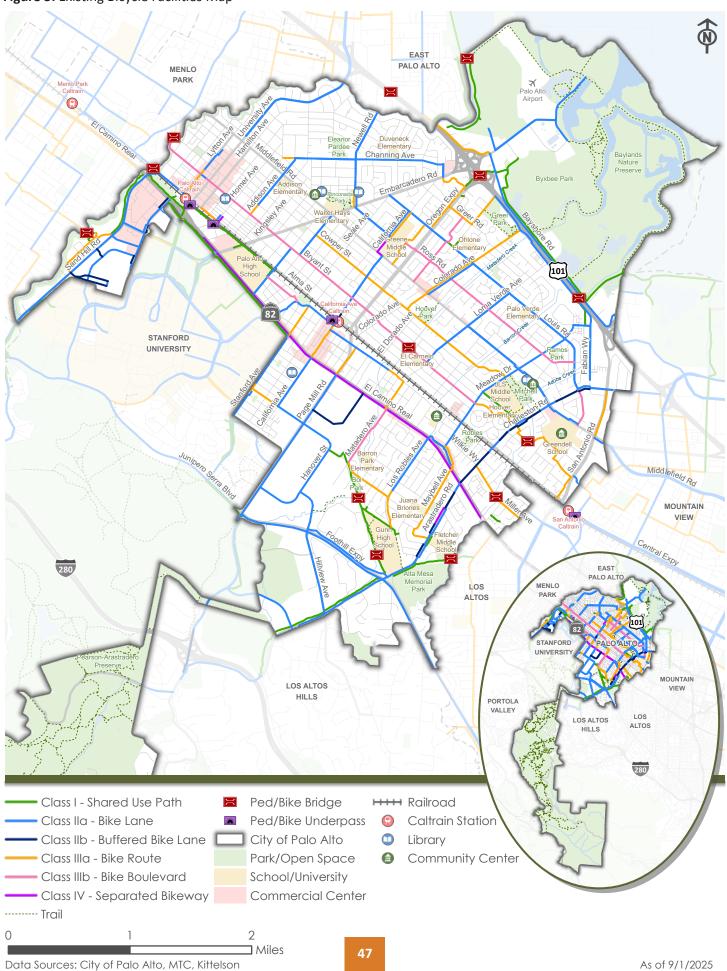
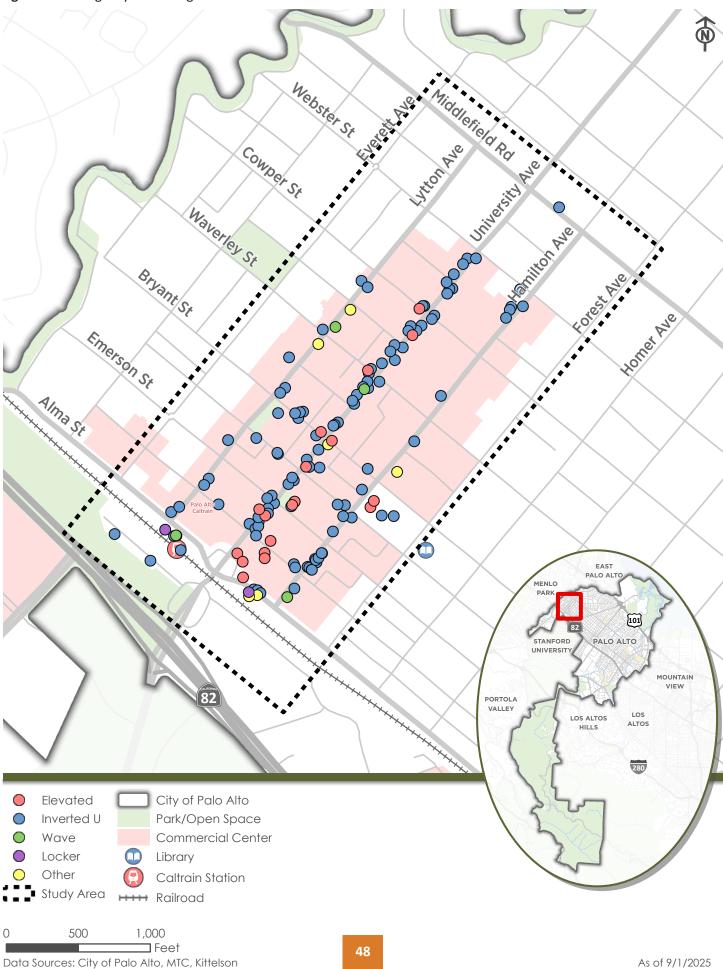




Figure 4: Existing Bicycle Parking Location



# 2.3 Walking and Biking Activity

Existing walking and biking activity data was analyzed, including travel characteristics such as the purpose of the trip, trip duration, time of day, origin and destination, and traveler demographics. This information is used to identify improvements that would lead to the highest return on investment.

The 2026 BPTP utilizes surveys, counts, and location-based data from Replica to understand the existing walking and biking activity. The Spring 2023 data from Replica was included as part of this analysis for bicycle and pedestrian trips originating within two miles of city limits.

Additional details are provided in **Appendix F: Future Activity Levels and Benefits Analysis Memorandum**.

Replica (Big-Data provider) uses a comprehensive modeling technique that simulates the movements of residents, visitors, and commercial vehicles based on a synthetic population. This synthetic population is statistically representative of our community and constructed from a blend of mobile location data, consumer/resident data, built environment data, economic activity data, and, when available, bike and pedestrian counts. <sup>1</sup>

Replica uses cell phone telemetry data to determine the relative popularity of points of interest. However, it's important to note that this data isn't utilized to determine the mode of transportation for a trip. This is because the GPS-derived speed of a device lacks the precision necessary to differentiate between modes such as bus trips and biking trips. Instead, the determination of a trip's mode is based on factors such as the proximity between the origin and destination, the availability of roadways suitable for bicycles and pedestrians, as well as household and commute characteristics. These variables collectively influence the mode choice.

Replica's methodology allows us to explore mobility patterns with a granularity previously unattainable, offering detailed insights into how, when, and why different population segments navigate our City. Such detailed modeling can uncover latent needs and opportunities for infrastructure improvements that might not be evident from traditional data sources alone.

1 For more information on Replica methodology, visit: <a href="https://documentation.replicahq.com/docs/seasonal-mobility-model-methodology-summary-places">https://documentation.replicahq.com/docs/seasonal-mobility-model-methodology-summary-places</a>



## **Walking Activity**

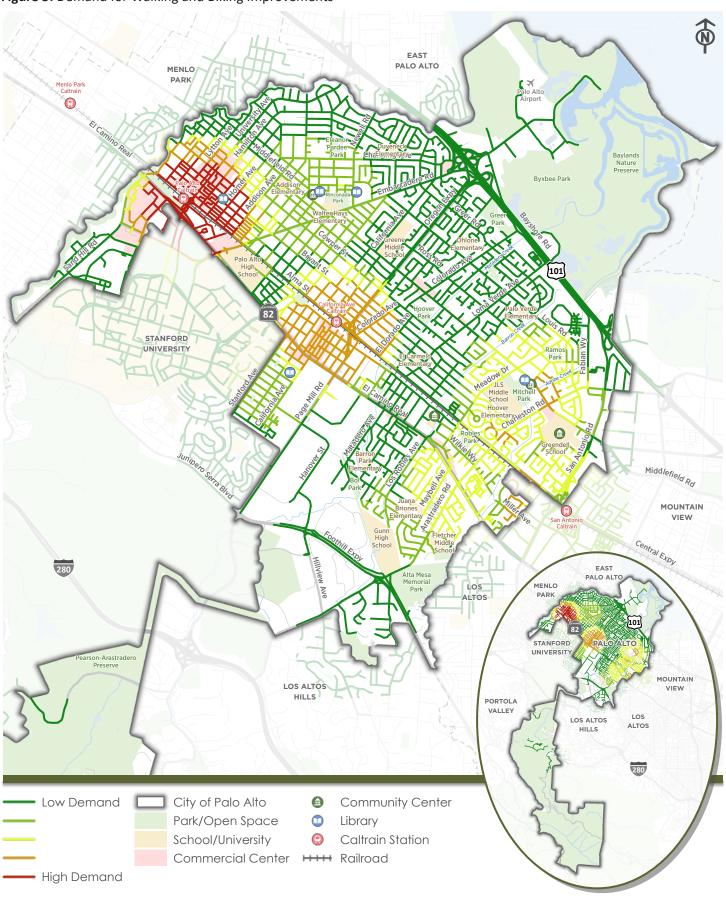
Based on Replica data, the highest percentage of walking trips were associated with shopping (31%), work (9%), and restaurant (9%) related trips. With only 7% of the population, Hispanic and Latino travelers represent 20% of the total walking trips. With about 15% of the population, people aged 18-34 made almost 37% of the total walk trips. The peak time for pedestrian trips occurs between 3 and 5 p.m. Most walking trips are under 5 minutes with a mean of 11 minutes and median of 7 minutes. Most walking trips (56%) are under 0.5-mile, and 96% of trips are under two miles. Major destinations include Stanford University with other walking hubs in downtown, Barron Park, and Adobe Meadow/Meadow Park.

## **Biking Activity**

Based on Replica data, the highest percentage of biking trips was associated with schools and colleges (17%), followed by shopping (11%) and work (8%) trips. With only 7% of the population, Hispanics and Latinos represent 20% of the total bike trips. With about 15% of the population, people aged 18-34 made almost 45% of the total bike trips. The highest percentage of trips in the morning occurs at 7 a.m., constituting around 11% of the overall bike trips. Over 59% of trips take place between 12 noon and 9 p.m., with the peak time observed at 3 p.m., representing 13% of the total bike trips. The average bike trip is 14.2 minutes, and the median travel time is 10 minutes. The average bike trip length is 2.5 miles, and 56% of trips are less than two miles in length, 23% are between 2 and 4 miles, and 20% are over two miles.

## **Walking and Biking in Numbers**

To assess existing walking and biking activity at key locations, 12-hour bicycle and pedestrian counts were conducted from 7 a.m. to 7 p.m. at 32 locations citywide on both a weekday and a weekend in May 2024. The highest pedestrian activity was recorded along University Avenue on both days, followed by Embarcadero Road and California Avenue. Pedestrian volumes were relatively consistent across the morning, midday, and evening peak periods, with slightly higher activity observed during the morning peak. Bicycle activity was highest along Bryant Street, particularly near Churchill Avenue. On weekdays, bicycle volumes peaked in the morning, while weekend activity was more evenly distributed throughout the day.


# 2.3.2 POTENTIAL AND FUTURE ACTIVITY

Approximately 49% of all vehicle trips are less than two miles (10-minute biking distance), presenting an opportunity for a potential transition to walking and biking. With a diverse land use mix and improved bicycle and pedestrian infrastructure, there is a possibility to encourage a mode shift towards active transportation. Furthermore, the City is exploring the option of shared micromobility options, and the rising popularity of e-bikes could further assist the City in achieving its climate action goals of reducing transportation-related Greenhouse Gas (GHG) emissions by 65% below 1990 levels.

**Figure 5** shows the latent demand score for walking and biking. The latent demand score is a measure of the relative amount of walking or biking activity that would be expected on each roadway segment based on proximity to key destinations and the quality of the existing pedestrian or bicycle facility.

The highest demand for pedestrian and bicycle facilities is around the Downtown Caltrain Station and California Avenue Caltrain Station. This map was developed based on the key destinations and their relative usage. The other locations with the highest demand include areas near Mitchell Park and JLS Middle School stretching west of El Camino Real along Arastradero Road. Investing in bicycle infrastructure improvements along these roadways would be most beneficial in serving the major activity generators.

Figure 5: Demand for Walking and Biking Improvements



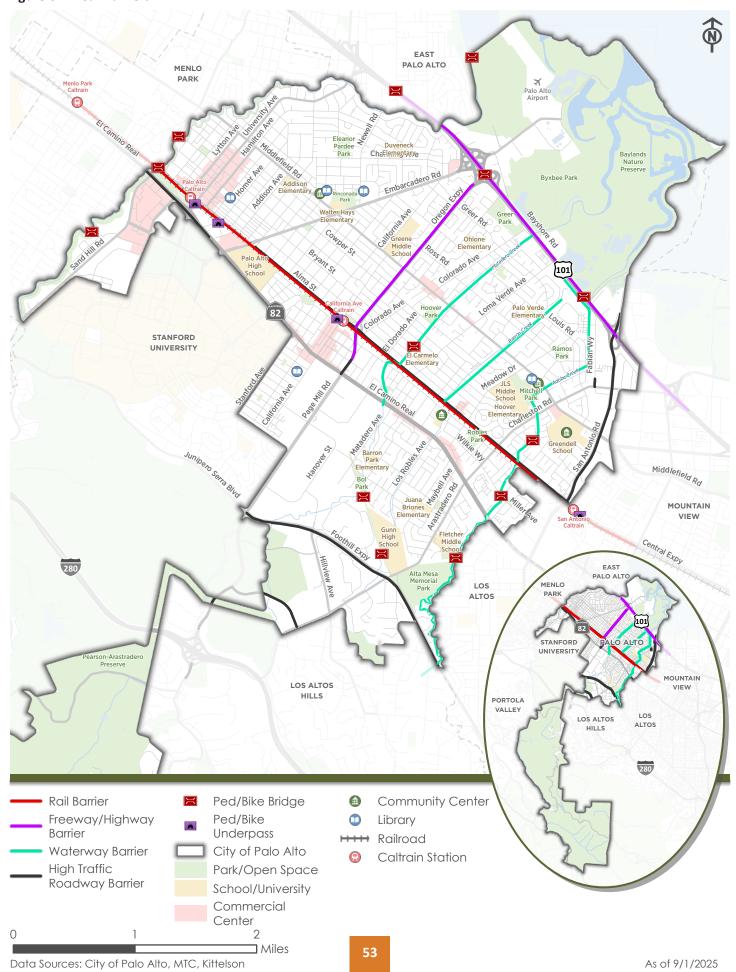
# 2.4 Barriers to Walking and Biking

Barriers to safely and comfortably walking and biking in Palo Alto can take many forms, such as:

- Linear barriers, including freeways/highways, water bodies, and rail lines that lack comfortable crossings.
- **Gaps** in pedestrian facilities, including sidewalks, curb ramps, crosswalk markings, and signals, or the street network itself (e.g., disconnected cul-de-sacs).

Major barriers in Palo Alto were analyzed to determine where people may need to take detours and increase the length of their walking and biking trips. This assessment is summarized below, with additional details provided in **Appendix G: Major Barriers Analysis Memorandum**.

Linear barriers in Palo Alto consist of the following, as illustrated in **Figure 6**:


- Freeways and highways Major roadway barriers such as the Bayshore Freeway (US 101), which provides
  limited crossing opportunities at bicycle and pedestrian bridge at Adobe Creek and Embarcadero, spaced-out
  ramp locations, as well as expressways such as the Oregon Expressway which do not provide marked crossing
  opportunities at several side-street intersections.
- Water bodies Channels such as Adobe Creek or Matadero Canal cannot be crossed by an easily accessible street or pedestrian bridge.
- **Rail lines** Freight and passenger rail lines often provide few and distant crossing opportunities for all modes, significantly increasing the distance of walking trips.

Freeways/highways, water bodies, and rail lines were analyzed to answer the following questions:

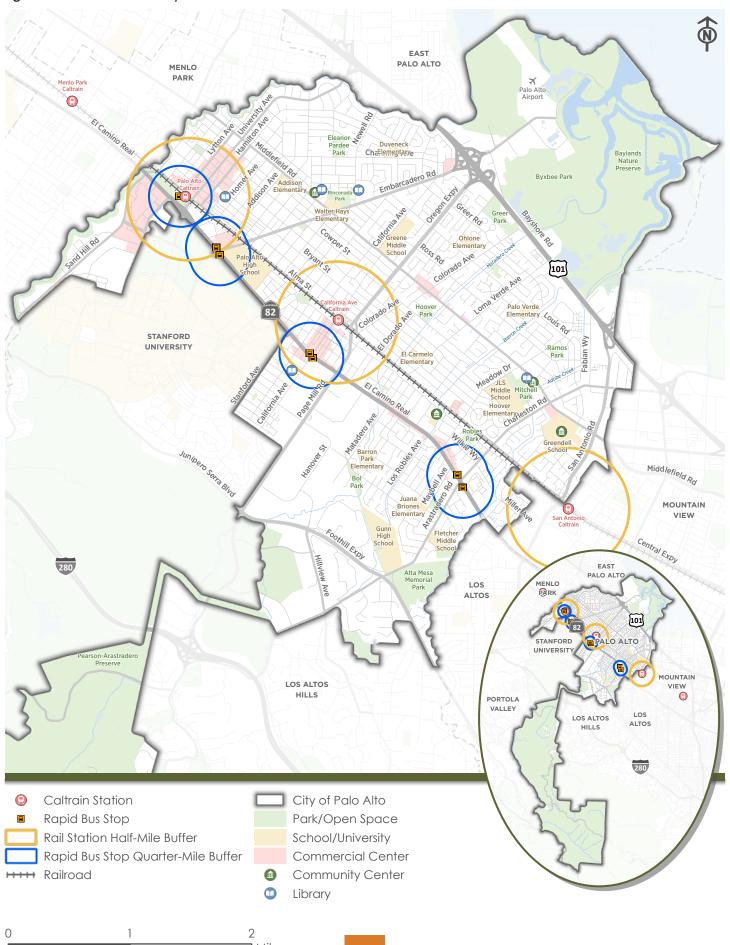
How far does someone need to walk to cross a barrier at an available crossing location? Is there a lack of available crossings at a barrier that requires someone to travel a significant distance around that barrier?



Figure 6: Linear Barriers



Note that the linear barriers assessment specifically focuses on freeways/highways, water bodies, and rail lines, and does not assess major streets which can be stressful for walking and bicycling and serve as barriers. This assessment found that a number of linear barriers affect the convenience of walking and bicycling in Palo Alto:


- A lack of consistently available crossing opportunities across Highway 101 results in noticeable detours
  for walking trips. The most significant gap in crossing opportunities occurs between the two walking and
  bicycling bridges over the highway, limiting access to the Adobe Creek Loop Trail.
- People walking and bicycling may need to divert and increase their trip lengths to pass around Adobe Creek, especially to the south. This highest level of diversions occur in the area between the Los Altos-Palo Alto Bike Path and the Foothill Expressway, where the creek runs between the Alta Mesa Memorial Park to the west and residences to the east.
- Crossing Matadero Canal may require detours that approximately double the walking or bicycling trip distance, which can be increased due to the presence of the rail line.
- There are multiple areas along the rail line where substantial walking and bicycling diversions are required
  for crossing. These include the approximately 0.65-mile gap between the Churchill Avenue and California
  Avenue crossings and the approximately 1.3-mile gap between the California Avenue and Meadow Drive
  crossings in south Palo Alto.

Barriers to transit access consisting of gaps in pedestrian facilities and street network connectivity were assessed in the areas surrounding the City's rail stations and high-frequency bus stops, as shown in **Figure 7**. Gaps in safe and convenient walking access to high-quality transit vary throughout the City:

- Near the Palo Alto Station, Palo Alto Transit Center, and El Camino Real/Embarcadero Road bus stops, barriers to transit access consist of channelized turn lanes, crossing locations with missing marked crosswalks, and sidewalk gaps, including longer segments where a sidewalk is only provided on one side of the street.
- Near the California Avenue Station and El Camino Real/California Avenue bus stops, barriers to transit access include missing crosswalks, sidewalks (south side of the California Avenue Caltrain Station parking lot), and a channelized turn-turn lane at the intersection of El Camino Real and Page Mill Road.
- Near the San Antonio Station and El Camino Real/Charleston Road bus stops, barriers to transit access primarily consists of a lack of sidewalks in residential neighborhoods and along a portion of San Antonio Road.



Figure 7: Transit Barrier Study Areas



# 2.5 Bicycle Level of Traffic Stress

Bicycle level of traffic stress (LTS) is a rating given to a road segment or crossing indicating the traffic stress it imposes on bicyclists. Levels of traffic stress range from 1 to 4 with LTS 1 indicating low stress facility and LTS 4 indicating a high stress facility, as shown in **Image 6**.

Image 8: Relationship between LTS and Comfort



The segment analysis considers roadway functional classification, vehicle volume, posted or prevailing vehicle speeds, number of vehicle lanes, the presence of on-street parking, and vehicle parking and bicycle lane widths. **Figure 8** shows the LTS results from segment analysis. Streets with the highest stress levels or least comfortable conditions for bicyclists are typically those with narrow bike lanes (less than 5.5 feet), higher speeds (over 35 mph), multiple travel lanes, and adjacent on-street parking. Based on these criteria, the most stressful segments were identified along Alma Street between Embarcadero Road and San Antonio Road, Oregon Expressway between the US 101 ramps and El Camino Real, San Antonio Road between Casey Avenue (Mountain View) and Alma Street, and Foothill Expressway between Page Mill Road and the eastern city limit.

The crossing analysis considers the right-turn lane configuration and length, bike lane approach, vehicle turning speeds, and the presence of a median refuge. Among the 1,233 intersections, 139 are signalized and are assigned LTS 1 as traffic signals do not create a barrier and provide a protected way across. The remaining low stress intersections are typically located on residential streets characterized by low speeds and minimal vehicular activity. Notably, the corridors with the highest stress levels, including El Camino Real, Alma Street, San Antonio Road, and Oregon Expressway, are associated with the majority of high stress intersections. **Figure 9** shows the LTS results from the crossing analysis. Detailed LTS methodology and evaluation summary is presented in **Appendix H: Bicycle Level of Traffic Stress Memorandum**.

Figure 8: Segment LTS Results

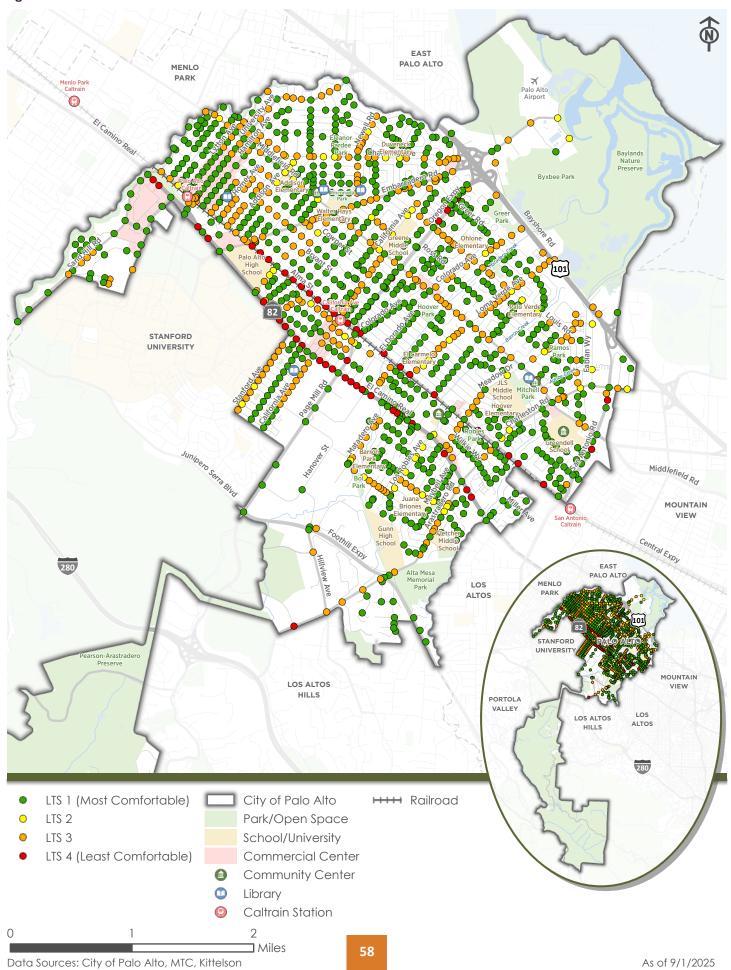




Figure 9: Intersection LTS Results



# 2.6 Collision Analysis

Analyzing pedestrian- and bicyclist-involved collisions helps understand the location, severity, circumstances, and timing of collisions affecting people walking and biking. Recent collision data from 2018 to 2022 was analyzed to help determine the streets and types of improvements that should be prioritized to make it safer for people walking and biking. This assessment is summarized below, with additional details provided in **Appendix I**: **Collision and Safety Analysis Memorandum**.

**Table 3** presents an overview of the five-year collision data. For the five years under review, a total of 104 pedestrian and 257 bicycle collisions were reported in the City of Palo Alto, with three collisions involving both pedestrians and bicyclists. Around 12%, or 12, of the pedestrian collisions resulted in a fatality (3 collisions) or severe injury (9 collisions). Around 5%, or 13, of the bicycle collisions resulted in a fatality (one collision) or severe injury (12 collisions). These collisions are organized by year and by severity in **Figure 10** and **Figure 11**; they are mapped by severity in **Figure 12** and **Figure 13**.



Key pedestrian and bicycle collision trends are summarized below:

- Severity: Collisions involving people walking or biking were more likely to result in an injury or a fatality
  compared to motor vehicle collisions. Approximately 12% of pedestrian collisions and 5% of bicycle collisions
  resulted in a fatality or severe injury.
- **Temporal Trends**: The number of pedestrian and bicycle collisions has been decreasing over the most recent five-year period (2018-2022) likeley reflecting the impact of the COVID-19 pandemic on traffic patterns.
- **Bicycle Collision Types**: The most commonly-cited collision types for bicyclist-involved collisions were broadside collisions (61%) followed by sideswipe collisions (13%). For fatal and severe injury bicycle collisions specifically, the most common collision types were broadside collisions (54%), followed by head-on and hit object collisions (15% each).
- **Pedestrian Collision Factors**: The most commonly-cited primary collision factors (PCFs) for pedestrian-involved collisions were pedestrian right of way (51%) followed by pedestrian violation and improper turning (13% each).<sup>2</sup> For fatal and severe injury pedestrian collisions specifically, the most common PCFs were pedestrian violation at (42%), improper turning (25%), and pedestrian right of way at (17%).
- **Bicycle Collision Factors**: The most commonly-cited PCFs for bicycle-involved collisions were improper turning (21%), automobile right of way (19%), and riding on the wrong side of the road (13%). For fatal and severe injury bicycle collisions specifically, the most common PCFs were improper turning and traffic signals and signs (23% each).<sup>3</sup>

An analysis of the collision data and Palo Alto's roadway network was conducted to identify a set of bicycle and pedestrian high-injury streets, together called a High-Injury Network (HIN). For the 2026 BPTP, the Bicycle HIN is defined as the top 10 roadway segments with the highest concentration of bicycle collisions, weighted by severity. Similarly, the Pedestrian HIN is defined as the roadway segments with the highest concentration of pedestrian collisions. Note, the Palo Alto Safety Action Plan also identifies an HIN which accounts for collisions involving all travel modes, including collisions involving motor vehicles only. The bicycle and pedestrian HIN constitutes the worst-performing street segments based on both the frequency and the severity of collisions involving people walking and biking. The bicycle HIN and pedestrian HIN are shown in **Figure 14**.

#### **Bicycle HIN Includes**

- Wilton Ave between Park Blvd and El Camino Real
- W Meadow Dr between Alma St and El Camino Way
- Alma St between Meadow Dr and El Verano Ave
- Gailen Ave between Bibbits Dr and Grove Ave
- Quarry Rd between El Camino Real and Welch Rd
- Hamilton Ave between Alma St and Guinda St
- Melville Ave between Channing Ave & Embarcadero Rd
- California Ave between Park Blvd and Hanover St
- Charleston Rd between Alma St and Embarcadero Rd
- E Meadow Dr between Fabian Way and Alma St

#### **Pedestrian HIN Includes**

- High St between Lytton Ave and Channing Ave
- Quarry Rd between El Camino Real & Vineyard Ln
- El Dorado Ave between Alma St & Cowper St
- South Ct between Oregon Expy & Matadero Creek
- Hamilton Ave between Alma St and Guinda St
- California Ave between Park Blvd and Hanover St
- Waverly St between Lytton Ave and Churchill Ave
- Charleston Rd between Alma St & San Antonio Rd
- University Ave between Alma St & Woodland Ave
- Loma Verde Ave between Alma St & Bayshore Rd

<sup>2</sup> Pedestrian Right-of-Way Violation – Occurs when a driver fails to yield to a pedestrian who has the legal right-of-way, such as at a marked or unmarked crosswalk (CVC §21950).

Pedestrian Violation – Refers to instances where a pedestrian fails to follow traffic laws, such as crossing outside of a crosswalk (CVC §§21954, 21955).

Improper Turning – Describes a collision caused by a motorist making a left or right turn that violates traffic regulations, such as turning from the wrong lane or failing to yield appropriately (CVC §§22100–22101).


<sup>3</sup> Traffic Signals and Signs - describes a party disobeying a traffic control device, such as a traffic signal or roadside sign (CVC §§38280-38302).

Table 5: Collision Data Summary (2018-2022)

| PARTIES INVOLVED | FATAL    | SEVERE<br>INJURY | MODERATE<br>INJURY | MINOR<br>INJURY | REPORTED<br>TOTAL |
|------------------|----------|------------------|--------------------|-----------------|-------------------|
| Pedestrian       | 3 (2.9%) | 9 (8.7%)         | 49 (47.1%)         | 43 (41.3%)      | 104               |
| Bicyclist        | 1 (0.4%) | 12 (4.7%)        | 175 (68.1%)        | 69 (26.8%)      | 257               |

Source: Transportation Injury Mapping System (TIMS) data from January 1, 2018, through December 31, 2022

Figure 10: Total Number of Pedestrian Collisions by Year and Severity



Source: Transportation Injury Mapping System (TIMS) data from January 1, 2018, through December 31, 2022

Figure 11: Total Number of Bicycle Collisions by Year and Severity



Source: TIMS data from January 1, 2018, through December 31, 2022

Figure 12: Pedestrian Collisions by Severity (2018 – 2022)

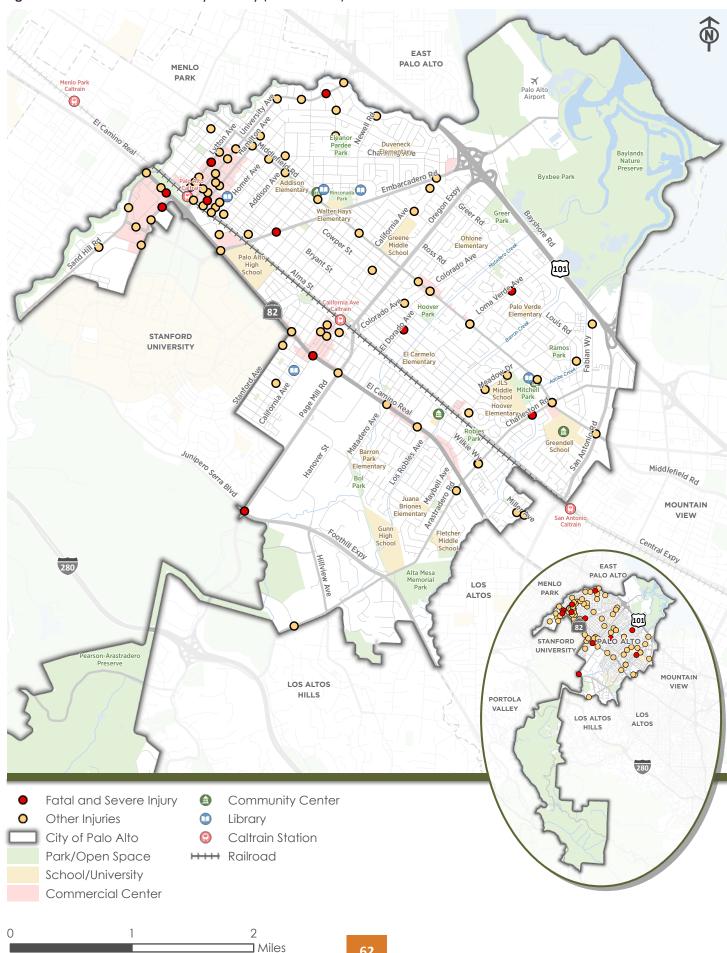



Figure 13: Bicycle Collision by Severity (2018 – 2022)

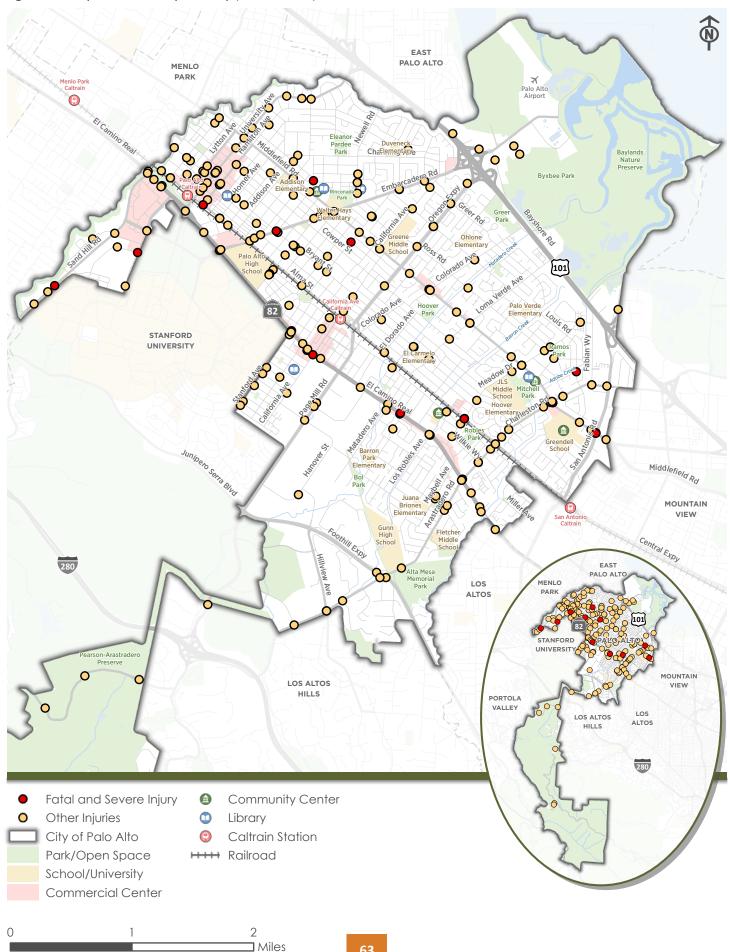
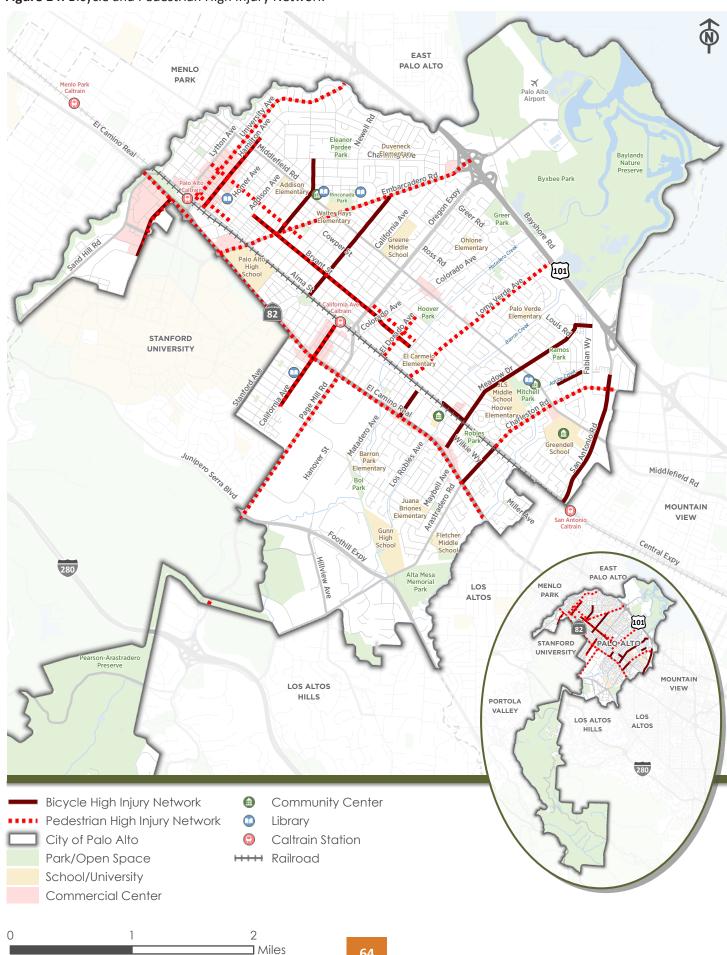




Figure 14: Bicycle and Pedestrian High Injury Network



# 2.7 Shared Micromobility and E-bikes

Electrification of the transportation system has expanded in various ways with the development of electric bicycles (e-bikes) (which now out-sell electric cars in the USA) and e-scooters. The widespread use of internet-connected mobile phones has also allowed shared mobility to take off with bike, e-bike, and e-scooter sharing systems being implemented in cities around the world. A summary of shared micromobility and e-bikes is presented in this section and additional information is presented in **Appendix J: E-Bikes and Shared Micromobility Memorandum**.

Electric Bicycles: The State of California Department of Motor Vehicles (DMV) defines e-bikes as "a bicycle equipped with fully operable pedals and an electric motor of less than 750 watts." California Vehicle Code § 312.5 preempts cities from regulating e-bike traffic provisions unless the legislature specifically authorizes it. Within this definition, the DMV has established three classes of e-bikes.

- Class 1: A low-speed, pedal-assisted electric bicycle equipped with a motor which provides assistance only when the rider is pedaling and ceases to provide assistance when a speed of 20 mph is reached.
- Class 2: A low-speed, throttle-assisted electric bicycle equipped with a motor used exclusively to propel the bicycle and not capable of providing assistance when a speed of 20 mph is reached.
- Class 3: A low-speed, pedal-assisted electric bicycle equipped with a speedometer, and a motor which provides assistance only when the rider is pedaling and ceases to provide assistance when a speed of 28 mph is reached.

E-bikes enable people to travel further by bicycle and can contribute to increased mode shifts and decongestion if they are replacing trips that would otherwise be made by personal automobile. Studies show that e-bike riders travel further and cycle more often with one study from 2020 finding that after purchasing an e-bike, riders increased their total bicycle usage from 1.3 miles to 5.7 miles per day and that their share of all trips made by bike increased from 17% to 49%.

Although the advantages of e-bikes far outweigh the disadvantages, there are some challenges that must be addressed. E-bikes can allow users to travel at relatively high speeds, which may present a safety risk to e-bike users and other active transportation users (pedestrians, traditional cyclists) around them when there is a great speed differential. Additionally, while e-bikes are not drastically different than traditional bicycles, safely and effectively accommodating them in the transportation system requires wider facilities and additional separation to enable faster riders to overtake slower ones. Facility recommendations and design guidance developed for this BPTP Update consider potential increases in bike volumes and greater speed differential related to increases in e-bike usage.



<sup>4</sup> California Vehicle Code. Defining electric bicycle classes and standards. Accessed from <a href="https://codes.findlaw.com/ca/vehicle-code/veh-sect-312-5/">https://codes.findlaw.com/ca/vehicle-code/veh-sect-312-5/</a>

**Shared Micromobility**: The United States Department of Transportation Federal Highway Administration (FHWA) defines micromobility as "any small, lowspeed, human- or electric-powered transportation device, including bicycles, scooters, electric-assist bicycles, electric scooters (e-scooters), and other small, lightweight, wheeled conveyances." Generally, micromobility vehicles (or devices) are expected to operate in the same road space as bicycles, using bike lanes and paths if available, otherwise sharing the roadway with motorists. While there is no California statewide law specifically permitting or prohibiting riding a bicycle on a sidewalk, the State DMV does not allow motorized scooters to be used on sidewalks and does not allow them to exceed 15 mph. In Palo Alto, riding on sidewalks in the Cal Ave and Downtown Business Districts is prohibited.<sup>5</sup> E-scooter users under the age of 18 must wear a helmet and users must have a valid driver's license.

Over the past decade, a variety of shared micromobility systems have emerged with the most common being shared e-scooters and e-bike share systems. While e-bikes and e-scooters are the most common form of micromobility, some niche forms are emerging including e-cargo bikes, mopeds, and neighborhood electric vehicles (NEVs), although these forms of mobility are yet to become widespread.

Advancements in technology have allowed many systems to now use a hybrid docked and dockless system based on geofencing. Municipalities and operators can now designate specific zones for parking shared micromobility vehicles, reducing the need for docking infrastructure while still allowing the municipality control over where vehicles can park.

California's New Daylighting Law (AB 413) makes it illegal to park a vehicle within 20 feet of a crosswalk (marked or unmarked) regardless of whether the curb is painted red. This applies only to the direction of travel when you are approaching a crosswalk. This provides an opportunity for the City to allow parking of bicycles and shared micromobility.<sup>6</sup>

The City of Palo Alto adopted a one-year bicycle and electric scooter sharing pilot program in March 2018 (City Manager Report #8546) and developed permit guidelines for vendors to operate within the City of Palo Alto. The City Council extended pilot program in 2019 (Resolution #9822), in 2020 (Resolution #9882), and in 2021 (Resolution #9914). The pilot program implementation was initially delayed due to staff resources and delayed further as a result of the COVID-19 pandemic. The pilot program expired on September 30, 2022, and other shared micromobility partnerships have not been secured since the 37-bike system run by Motivate was discontinued.

The City of Palo Alto began the Shared Micromobility Feasibility Study in December 2024 to determine a program structure that would best serve the City's goals for mobility, environmental sustainability, and fiscal solvency. The recommendations from the Feasibility Study will inform the design of a new pilot program. As a part of the study, the City is exploring opportunities to collaborate with neighboring jurisdictions for a regional shared micromobility system, including joining the Bay Wheels partnership with MTC and Motivate (a subsidiary of Lyft). In early 2026, City staff will present recommendations to City Council for a pilot program to be initiated in summer of 2026.



5 City of Palo Alto. Bicyclist FAQs: Sharing the Road. Accessed from <a href="https://www.paloalto.gov/files/assets/public/v/1/transportation/safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-schools/sharing-safe-routes-schools/sharing-safe-routes-to-schools/sharing-safe-routes-to-s

the-road\_-bicyclist-faqs-1.pdf

6 California Bicycle Coalition. Nine Uses for Daylighting Space. Accessed from <a href="https://www.calbike.org/nine-uses-for-daylighting-space/">https://www.calbike.org/nine-uses-for-daylighting-space/</a>





The vision for the BPTB Update includes creating a safe, comfortable bicycle and pedestrian network that can be enjoyed by people of all ages and abilities. To build on the strengths of the existing bikeway network, the recommended bikeway network is structured around two tiers: The Low-Stress Bicycle Network and the Complete Vision Bicycle Network.

## **Low-Stress Bicycle Network**

The Low-Stress Bicycle Network forms the foundation for citywide bicycle connectivity, expanding on existing low-stress routes between neighborhoods. Built primarily around Bicycle Boulevards, this network uses traffic-calmed local streets to provide safe, comfortable routes through residential areas. It also includes key connections to adjacent cities and destinations. Major streets with separated bikeways are included on the Low-Stress Bicycle Network only where the street network is disconnected and major roadways are the only way to/through a neighborhood. The City's near-term investments will focus on the Low-Stress Network, closing gaps in the existing network and providing greater access to transit and schools within the next ten years.

## **Complete Vision Bicycle Network**

The Complete Vision Bicycle Network represents the long-term vision for a fully connected, all-ages-and-abilities bikeway system. It expands the Low-Stress Network by adding separated bikeways on major streets, filling critical gaps and enabling direct connections to destinations. Implementation of this network involves more significant changes to street design, delivering transformative improvements in safety, access, and mobility. This network includes new railroad crossings and connections to those longer-term crossings.

This chapter describes the network corridor criteria, project identification and prioritization process, and pedestrian districts and recommendations.



# 3.1 Bicycle Network Corridor Criteria

To guide bicycle network development, the following development approach and network corridor criteria were applied. The approach includes primary network development criteria which was further supplemented with secondary criteria for network refinement. The detailed network corridor criteria and development approach is provided in **Appendix K: Network Corridor Criteria and Development Approach**.

# 3.1.1 PRIMARY NETWORK DEVELOPMENT CRITERIA

The network is built on the 2012 BPTP and refined with recent planning efforts in Palo Alto and the region including MTC Regional Active Transportation Plan; VTA Bicycle Superhighway Implementation Plan, and SRTS suggested route maps. The first round of network development synthesized these plans into a bikeway network where these plans align and agree, as well as identifying street segments and routes with less planning consensus. The primary network development criteria are presented in **Table 4**.

Table 6: Primary Network Development Criteria

| ATTRIBUTE                                         | SOURCE                                                                                         | CRITERIA                                                                                        | RATIONALE                                                                                                   |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| 2012 Plan<br>Network                              | Palo Alto 2012 Bicycle<br>and Pedestrian<br>Transportation Plan                                | Route included in the 2012 plan network                                                         | Foundation of the plan update.                                                                              |  |
| Existing Bicycle Facility                         | 2024 Existing Bicycle<br>Facilities map                                                        | Route exists today as a formal bicycle facility                                                 | Existing routes have value by virtue of their presence and current use.                                     |  |
| Palo Alto<br>Bicycle Map                          | Palo Alto Bicycle Map                                                                          | Route included in the City published user map.                                                  | User map published by the City of Palo Alto, identifying bike friendly routes today.                        |  |
| High Injury<br>Network for<br>Bicyclists          | 2024 High Injury<br>Network for Bicyclists                                                     | Route identified as a high injury network street in the 2024 BPTP Collision and Safety Analysis | Route is a potential safety hazard today, may be enhanced to become an important or improved network link.  |  |
| 2016 Bike<br>Boulevard<br>Improvements<br>Project | City of Palo Alto<br>Bike Boulevards<br>Improvements Project                                   | Route included in Bike<br>Boulevard Improvement<br>Project                                      | Detailed planning of future bicycle boulevard implementation offers a more recent vetting of viable routes. |  |
| Network<br>Development<br>Workshop                | 2024 Network<br>Development Workshop<br>Outcomes                                               | Route identified on the<br>2024 Network Development<br>Workshops                                | Network development workshops identified key destinations and potential direct routes between them.         |  |
| Regional Active<br>Transportation<br>Plans        | MTC Regional Active<br>Transportation Plan; VTA<br>Bicycle Superhighway<br>Implementation Plan | Route identified as a part of<br>the regional AT network or<br>Bicycle Superhighway Plan        | Regionally significant connection between communities.                                                      |  |
| Safe Routes to<br>School                          | SRTS route maps                                                                                | Route identified on a SRTS suggested route map                                                  | Important connection to schools as a priority destination                                                   |  |

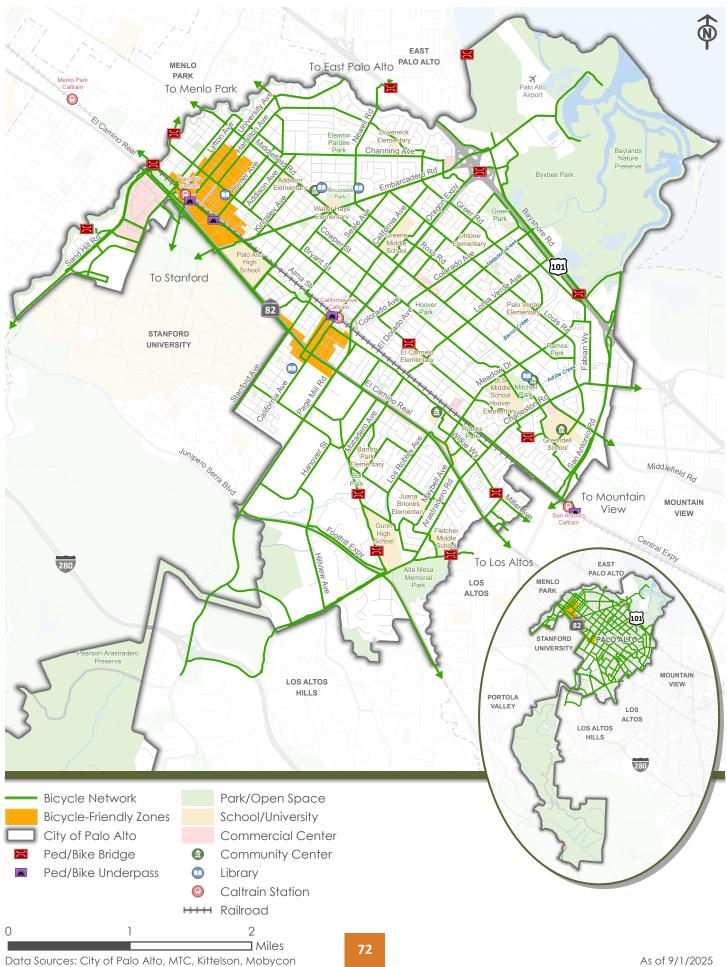
Source: Mobycon, 2025

## 3.1.2 SECONDARY CRITERIA FOR NETWORK REFINEMENT

Where multiple route options exist, secondary criteria were used to support route selection and refinement. When selecting between alternative routes the following was considered:

- More direct route to community destinations, as identified in the Community Destinations map.
- Traffic stress conditions as identified in the LTS Analysis to identify routes with more favorable existing conditions.
- Direct alignment with high demand flows as identified in the Activity Analysis map of bicycle Origins and Destinations.
- Routes that overcome barriers identified in the Major Barriers Analysis.

# 3.2 Recommended Bicycle Network and Facilities


## 3.2.1 BICYCLE NETWORK

**Figure 15** shows the updated bikeway network and bicycle friendly zones developed using the network corridor criteria explained in the previous section. The map extends outside the City limits to illustrate the potential regional connections. It presents the complete vision of the bicycle network, including both the existing facilities and the low-stress network.

Bicycle-Friendly Zones are cohesive areas with concentrations of destinations, commercial activity, and pedestrian activity. These areas should see area-wide investment in bicycle-friendly amenities such as signal timing and traffic calming. A bicycle friendly zone is an area where cycling is convenient, comfortable, and direct on all of the streets within a designated area and is the preferred method of transportation. The commercial areas around University Avenue and California Avenue are the two proposed zones in the BPTP Update. All streets within these districts should have elements of traffic calming so that bicyclists and other micromobility users can conveniently and comfortably share the space. Additionally, signage should be included to indicate to people that they are in a bicycle-friendly zone.



Figure 15: Recommended Bicycle Network



## 3.2.2 BICYCLE FACILITIES

The 2026 BPTP introduces an updated set of bicycle facility types aimed at enhancing safety and supporting design innovations and advancements since completion of the 2012 BPTP.

#### **Class III Bike Routes**

Class III bike routes prioritize motor vehicles over people riding bicycles and feature minimal signage and striping. In the 2026 BPTP, the Class III Bike Route is not proposed. Instead, bike boulevards or advisory bike lanes are proposed to prioritize bicycling and include traffic calming features to promote the use of facility by users of all ages and abilities. Existing bike routes such as Cowper Street or Oregon Avenue (see Image 9) that are already part of the bike network will be upgraded to either bike boulevards or advisory bike lanes. For routes located on higher-traffic or higher-speed streets, context-appropriate facilities are proposed based on traffic and geometric conditions.

Image 9: Existing Bike Route on Oregon Avenue



#### **Sharrows**

In the 1990s, sharrows were introduced as an innovative, quick solution for creating safer cycling infrastructure. Sharrows are pavement markings that indicate bicycles and motor vehicles can share the same travel lane, encouraging drivers to accommodate bicyclists and guiding cyclists to the safest lane position. While sharrows became widely popular across the U.S., experience has shown that they are not the ideal solution for safety. For bicyclists and vehicles to safely share a lane, traffic volumes and speeds must be low—criteria often unmet on roads where sharrows are used today, leading to unsafe conditions. As a result, in 2026 BPTP, sharrows are not proposed as a bicycle facility. Roads in the bike network with existing sharrows (Image 10) will be upgraded to more convenient and comfortable infrastructure, such as bike boulevards or dedicated bike lanes.

Image 10: Existing Sharrow Pavement Marking



# **Enhanced Bikeway Option: Floating Bicycle Lanes or Restricted Hours Bicycle Lanes**

In the 2012 BPTP, enhanced bikeway options such as a floating bicycle lane or restricted hours were proposed and implemented to accommodate cycling and parking needs. Since then, they have been found to be ineffective due to non-compliance and lack of enforcement. These enhanced bikeway options are **not included in the 2026 BPTP**. Existing floating bicycle lanes or restricted hours bicycle lanes are upgraded to other bicycle facilities.

Image 11: Existing Restricted Hours Bicycle Lane



The 2026 BPTP proposes the six bicycle facility types illustrated and described in Image 12 and Image 13.

Image 12: Updated Bicycle Facility Types



Image 13: Bicycle Facility Types

#### TYPE OF FACILITY

#### TIPE OF FACILITY





# DESCRIPTION

A shared use path is a physically separated path from vehicles that can be used by both pedestrians and bicyclists. They should be implemented on high volume collectors and arterial roads where speeds and volumes are high. They can also be implemented through parks and recreational areas. The City of Palo Alto has an extensive existing shared use pathway network that is used for both recreational and non-recreational use as they are low-stress routes that are attractive, comfortable, and for people of all ages and abilities.

**Considerations**: Shared use paths must be designed with care at intersection crossings, to promote visibility and proper yielding behavior. At high user volumes, increased width or user-separated zones should be considered.

**Challenges**: Major challenges in planning and designing a shared use path include limited right-of-way and gaps in the trail network that hinder connections to key destinations. Environmental considerations, such as potential impacts to habitat areas or heritage trees, also pose constraints. In addition, trail maintenance can be difficult when responsibilities are shared across multiple agencies.

**Class IIa Bicycle Lanes** 





A bicycle lane is a dedicated lane for bicycles that is visually separated from the motor vehicle lane through pavement markings. As they are only visually separated, bike lanes should only be implemented on low-to-moderate collector roads where the speeds are less than or equal to 30 mph. Repurposing the public space for dedicated bicycle facility. Bike lanes should be at a minimum of 5 feet but preferably 6 feet when space allows.

**Considerations**: Existing bike lanes that are 4 feet should be updated when possible.

**Challenges**: Major challenges in designing bicycle lanes include limited right-of-way, safe crossings at intersections, and conflicts with right-turning vehicles.

#### TYPE OF FACILITY

#### **DESCRIPTION**

**Class IIb Buffered Bicycle Lanes** 





A buffered bicycle lane is similar to a painted bicycle lane, but it has an extra painted buffer to create more space between bicyclists and motorists. A buffered bike lane should be implemented on collector roads with low to moderate volumes, around 4,000-6,000 vehicles per day (vpd).

**Considerations**: Parking lane or travel lane reconfiguration may be necessary to create space for buffered bike lanes.

**Challenges**: Major challenges in designing bicycle lanes include limited right-of-way, safe crossings at intersections, and conflicts with right-turning vehicles.

**Class Illa Advisory Bike Lanes** 





An Advisory Bike Lanes or Edge Lane Road is a treatment where people riding bicycles and motor vehicles share the road space. These should only be used on local streets or on collectors with low volumes and speeds. With low traffic volumes drivers can negotiate the reduced space, then the travel area can then be reduced to 1 lane for two-way travel, and advisory bike lanes can be painted on either side.

**Considerations**: Advisory bike lanes are an experimental and emerging facility type. Outreach and education should be conducted before any installation to promote user awareness and project success.

**Challenges**: Major challenge with advisory bike lanes is that they are suitable only for roadways with low traffic volumes and low vehicle speeds.

#### TYPE OF FACILITY

#### **DESCRIPTION**

#### **Class IIIb Bicycle Boulevards**





A bicycle boulevard is a low-stress shared roadway, where bicycles are prioritized and share the roadway with motor vehicle traffic. A bicycle boulevard should be implemented on a local street or a collector where speeds are low, and volumes are typically less than or equal to 2,000 vpd. A bicycle boulevard is recognizable based on the wayfinding and traffic calming elements. Gateway treatments should be implemented along major roadway entrances to indicate to drivers that they are entering a bicycle boulevard and to slow their speeds. Stop signs should be oriented to favor bicycle travel. Traffic filters should also be installed along the route to manage traffic access and keep motor vehicle volumes low. Design exceptions should be considered for situations such as Suggested School Walking and Rolling SRTS System Route Maps.

**Considerations**: For bicycle boulevards to provide a low-stress experience, traffic volumes and speeds must be intentionally managed and monitored over time.

**Challenges**: Major challenge with advisory bike lanes is that they are suitable only for roadways with low traffic volumes. In addition, design bike boulevard crossing at major streets can be challenging.

**Class IV Separated Bikeway** 





A separated bikeway, also referred to as a Protected Bike Lane, is a dedicated facility for bicycles that is physically separated from motor vehicle traffic. Separated bikeways should be implemented above 6,000 vpd, or when motor vehicles are travelling above 30 mph, and it is unsafe for them to mix and share the same space. Separated Bikeway travel area width should be 5 feet to 7 feet with an additional 2- to 3-foot or larger buffer depending on the available road space.

**Considerations**: Care should be taken at intersections to improve the visibility and slow the speed of turning drivers. Maintenance of separated bikeway spaces is important to maintain their usability.

**Challenges**: Major challenges in designing bicycle lanes include limited right-of-way, safe crossings at intersections, and conflicts with right-turning vehicles.

Source: Mobycon, 2025

## 3.2.3 BICYCLE FACILITIES SELECTION APPROACH

A simplified facility selection approach to the different types of bicycle facilities was chosen for the updated bikeway network presented in 4.2.1. The approach is informed by the Dutch CROW Design Manual for Bicycle Traffic¹, the FHWA Bikeway Selection Guide², and the NACTO All Ages & Abilities Bikeways guidance³. The bicycle facility selection approach (Image 14) first looked at road classification (local, collector, and arterial). Then traffic volumes followed by posted speeds were examined. Given the limited availability of traffic volumes, the network criteria relied on community input, and on-ground knowledge from the in-person working session in April 2024.⁴ This approach was applied to each segment of the bikeway network and the facilities were selected based on the approach but also considered in the greater network and whether they met the 2026 BPTP vision and objectives.

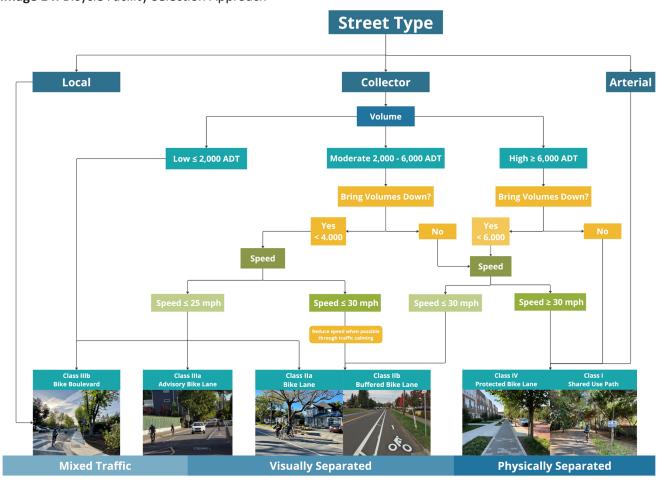



Image 14: Bicycle Facility Selection Approach

Source: Mobycon, 2025

<sup>1</sup> CROW. "CROW Manual Updates Bike Lane Width Recommendations" CROW, 2023.

<sup>2</sup> Federal Highway Administration. Pedestrian and Bicycle Safety Guide and Countermeasure Selection System: FHWA-SA-18-077. U.S. Department of Transportation, 2018.

<sup>3</sup> National Association of City Transportation Officials (NACTO). "Choosing the Age and Ability of Bicycle Facility." NACTO, n.d.,

<sup>4</sup> BPTP Team conducted a series of site visit in April 2024 to understand the roadway context. This is further described in the community engagement section.

### 3.2.4 RECOMMENDED BICYCLE NETWORK

**Figure 16** shows the Complete Vision Bicycle Network map. The Complete Vision Network represents the long-term vision for a fully connected, all-ages-and-abilities bikeway system. This map also includes existing bicycle facilities that are not being upgraded to illustrate the full network once fully implemented. The Complete Vision Network includes some lower-priority projects that may be reevaluated as the City grows. In the near term, the focus will be on developing the low-stress bicycle network, as described in the following section.

## **Low-Stress Bicycle Network**

**Figure 17** shows the Low-Stress Bicycle Network map. The Low-Stress Bicycle Network is the foundation for citywide bicycle connectivity, focused on delivering safe, comfortable, and familiar routes in the near term. It builds upon the City's existing network of low-stress streets, primarily composed of shared-use paths and neighborhood-based Bicycle Boulevards, to rapidly expand access with minimal disruption and promote broad community support.

This approach prioritizes calm, residential routes that are already preferred by many community members, rather than rely on separated bikeway on busy arterial streets. Through public engagement, Bicycle Boulevards were identified as the most comfortable and familiar type of bikeway, offering a practical path forward with fewer trade-offs in terms of cost, complexity, and impacts to vehicle traffic or parking.

The Low-Stress Network emphasizes continuity and citywide coverage. While most of the network is routed along local streets, Class IV protected bike lanes are included in strategic locations—specifically on high-traffic gateway corridors where no safe, parallel alternative exists and where regional connectivity demands it. Additionally, short segments of separated bikeways may be used to close key gaps between Bicycle Boulevards, enhancing network cohesion.

The goal is to create a citywide bikeway system that is connected, calmed, and protected, delivering meaningful benefits to people biking now while laying the groundwork for a more complete network in the future. By focusing on what works well today, the Low-Stress Network allows the city to move quickly and cost-effectively toward a safer, more accessible future for active transportation.

The 2026 BPTP proposed a total of 94 bicycle projects, representing 62 miles of upgraded and new bicycle facilities, as shown in **Table 5**. A total of 63 projects, representing 37 miles of upgraded and new bicycle facilities is proposed as part of the Low-Stress Network. Additionally, 33 Crossing Projects, 5 Studies, and 5 Special Projects are recommended. A list of projects that make up the Complete Vision Network is included in **Appendix L: List of Projects**.

Table 7: Summary of Proposed Bicycle Projects (Complete Vision: Bicycle Network)

|                                   | COMPLETE VISION NETWORK        |                | LOW-STRESS NETWORK             |                |
|-----------------------------------|--------------------------------|----------------|--------------------------------|----------------|
| PROJECT TYPE                      | Number of<br>Proposed Projects | Length (Miles) | Number of<br>Proposed Projects | Length (Miles) |
| Shared Use Path (Class I)         | 14                             | 7.95           | 7                              | 1.27           |
| Bicycle Lane (Class IIa)          | 11                             | 3.78           | 9                              | 3.38           |
| Buffered Bicycle Lane (Class IIb) | 10                             | 5.93           | 9                              | 5.09           |
| Advisory Bike Lane (Class IIIa)   | 2                              | 0.30           | 2                              | 0.30           |
| Bicycle Boulevard (Class IIIb)    | 25                             | 21.00          | 24                             | 19.86          |
| Separated Bikeway (Class IV)      | 32                             | 22.80          | 12                             | 7.50           |
| Total                             | 94                             | 62.29          | 63                             | 37.39          |

Figure 16: Recommended Bicycle Facility Map – Complete Vision Bicycle Network

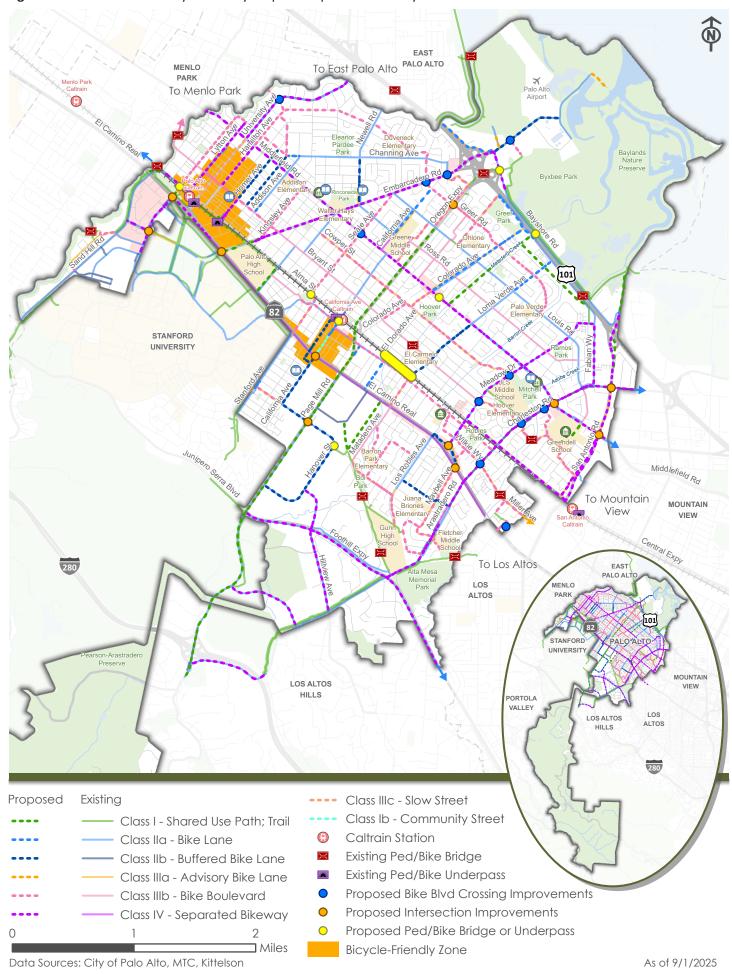
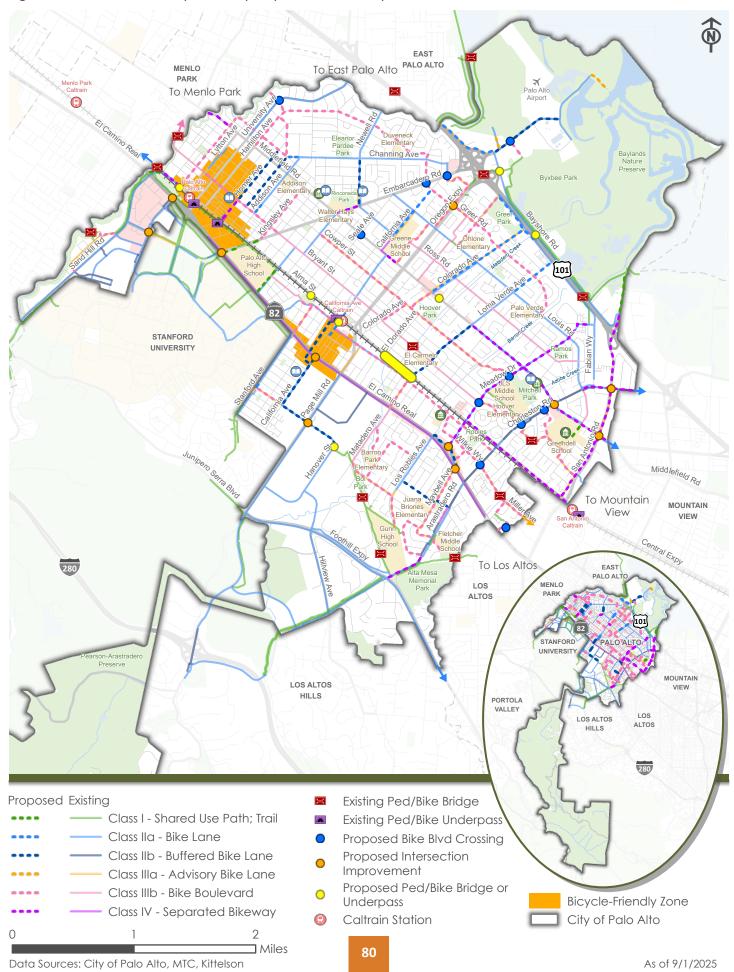




Figure 17: Recommended Bicycle Facility Map – Low-Stress Bicycle Network



# 3.3 Recommended Bicycle Support Facilities

This section includes a description of bicycle support facilities such as signs and bicycle parking.

## 3.3.1 BICYCLE PARKING

Easy access to secure parking makes bicycling a more attractive option. People are more likely to ride if they know they'll find a safe place to lock up their bike near their destination. Lack of parking often leads to uncertainty or inconvenience, discouraging trips by bike. Bicycle parking is generally categorized into short-term and long-term installations. These two kinds of parking serve different needs, and the starting point for most bike parking projects is recognizing whether the installation should serve short-term users, long-term users, or both. If users typically park for two hours or longer, they are likely to value security and shelter above the convenience and ease that should characterize short-term parking. Image 15 shows common short-term bicycle parking options that are currently available in the City.

Image 15: Bicycle Parking Types - Short-Term



**Inverted U - Circular** 



**Inverted U - Rectangle** 



Series Inverted U



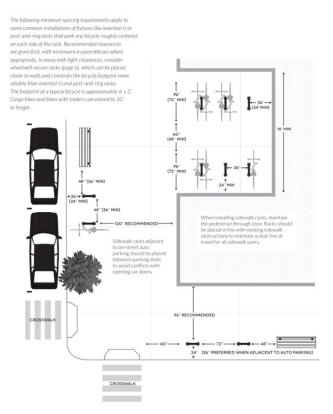
**Elevated** 



Wave

Source: Kittelson, 2025

Short-term bike parking should be visible from and close to the entrance it serves—50' or less is a good benchmark. When installing sidewalk racks, maintain the pedestrian through zone. Racks should be placed in line with existing sidewalk obstructions to maintain a clear line of travel for all sidewalk users. **Image 16** shows guidance on placement and spacing requirements for bicycle racks. Additionally, the City could explore opportunities to install high security smart racks such as integrated electronic locking swingarms.<sup>6</sup>


Long-term parking is designed to meet the needs of employees, residents, public transit users, and others with a need to park for several hours and leave their bicycles unmonitored. Appropriate locations for long-term parking vary with context. Long-term parking facilities should anticipate the presence of a variety of bicycles and accessories, including—depending on context—recumbents, trailers, children's bikes, long-tails, and others. To accommodate trailers and long bikes, a portion of the racks should be on the ground and should have an additional 36" of in-line clearance.

As a part of 2026 BPTP, the City has included the following policy and programs to ensure ample availability of bicycle parking.

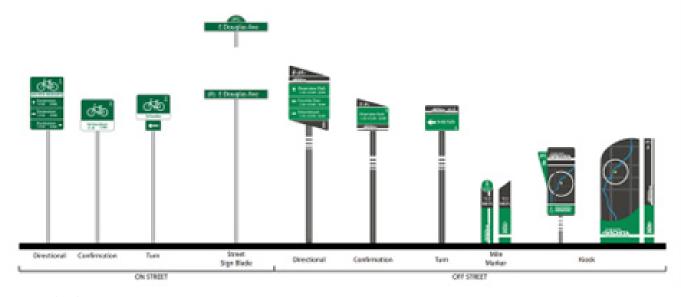
- Bike Parking Inventory & Usage Monitoring Program: Conduct an inventory and monitor usage of bike parking at City properties and City right-of-way (such as sidewalks) and continue to provide sufficient supply. Ensure the City's bike parking program provides facilities that are publicly accessible and available for use by all members of the public, helping achieve a mode shift and corresponding lower motor vehicle emissions and traffic congestion.
- Bike Parking Requirements For New Development: Regularly review the City's minimum short- and long-term bike parking requirements for new development projects and update requirements to reflect changes in parking demand. Update and maintain the City's list of approved bike parking designs to accommodate a variety of bicycle types such as e-bikes and cargo bikes.

Additionally, the City has been working with advocacy groups to reach out to local businesses or groups to help support and promote installation of bicycle parking.

**Image 16:** Placement and Spacing Requirements



Source: APBP Essentials of Bike Parking. 2015




Locker

## 3.3.2 WAYFINDING SIGNS

Wayfinding involves the use of signs, maps, and other visual cues to help people navigate through an area. Effective wayfinding systems improve accessibility and user experience. **Image 16** illustrates the comprehensive bicycle wayfinding sign system family, incorporating both fundamental and enhanced wayfinding components. **Image 17** shows the existing signs in Palo Alto that assist bicyclists in wayfinding.

Image 17: Types of Wayfinding Signs



Source: Alta Planning + Design, 2025



Image 18: Existing Signs in Palo Alto



Bicycle Boulevard Sample Signage



Bicycle Boulevard Sign at Bryant Street and Forest Avenue



Bicycle Wayfinding Signage



**Temporary Wayfinding Signs** 



Sign at Caltrain Station



Wayfinding Sign assisting with confirmation and navigation



Sign regulating direction



Sign regulating parking and bike lanes



Downtown Pedestrian Wayfinding Signs

The 2026 BPTP includes a program to develop a non-motorized wayfinding plan connecting bicycle and pedestrian facilities with key local and regional destinations such as schools, trails, parks, and rail stations. Additionally, the wayfinding facilities will be implemented as part of the bicycle and pedestrian projects.

## 3.3.3 SAFE ROUTES TO SCHOOL PROGRAM

The Safe Routes to School (SRTS) Program represents a local community partnership between the City of Palo Alto, Palo Alto Unified School District (PAUSD), and Palo Alto Council of PTAC. The partnership mission is to reduce risk to students en route to and from school and encourage families to choose healthy, active, sustainable alternatives to driving solo more often.

## **Educating Student Bicyclists and Pedestrians**

Palo Alto's history as a bicycle-friendly town is about more than its flat terrain and many bicycle facilities, it's about shared community values. Since the 1960s, transportation staff, the Palo Alto Police Department and the school district have met regularly to reduce risk to students en route to and from school and encourage families to choose healthy, active, sustainable alternatives to driving solo more often.

In 2025, SRTS partners recognized the thirty-year anniversary of the Palo Alto School District (PAUSD), Parent Teacher Association (PTA), and City of Palo Alto-supported Safe Routes to School (SRTS) education program. Educational efforts, in tandem with engineering and encouragement programming, are foundational to helping families enjoy safe, active, healthy, sustainable school commutes in Palo Alto. Beyond Education, Encouragement and Engineering, Engagement, Evaluation, and Equity considerations guide partnership outcomes and considerations. Key 30-year achievements include:

- National Recognition Compared with national walk/bike school commute percentages of 11 percent, more than 53 percent of Palo Alto students walk and bike to school. Since 2016, students have completed approximately 17 million walk/bike school commutes, reducing risk for families who walk and bike and improving access for families who must drive.
- 2. Lifelong Safety Skills Over 23,000 students in the Palo Alto Unified School District now receive 560 minutes, (nine hours) of in-school transportation safety education between grades K-6 compared with 45 minutes of third grade education in 1991. Palo Alto's Bicycle Life Skills program, including Bicycle Rodeo events, have helped thousands of families gain confidence and learn important road-sharing safety skills. Palo Alto is one of the few communities to offer such robust safety education programming. In 2025, transportation safety education was expanded to middle and high schools, and the City is constructing the Bay Area's first bicycle safety education traffic garden to enhance offsite programming to even more students throughout Palo Alto and the surrounding community.
- 3. Car Trip Reductions A 76-mile network of dedicated school commute bicycle lanes, boulevards and shared-use pathways, bicycle rack and facilities upgrades at all PAUSD campuses and the subsequent 2016 development of twenty Walk and Roll Suggested School Route to help families navigate this network has helped prevent the carbon emissions equivalent of more than 3,500 gasoline-powered cars annually, eliminating roughly 3,824,000 car trips from local roadways between 1994 and 2025.
- 4. **Parent Involvement** During the past three decades, more than 450 parent volunteers have stepped up to serve as PTA-appointed Transportation Safety Representatives at each PAUSD school. Parents are essential to validating SRTS Partner projects and programming and setting community expectations. PTA Transportation Safety Events like biannual Walk and Roll to School days and 3rd-grade bicycle skills rodeos engage more than 2,000 parents and students annually, significantly Since 1994, the Palo Alto PTA has been at the forefront of hosting monthly City School Transportation Safety Committee meetings, demonstrating that SRTS is more than a program, it's a community value.

#### TRAFFIC GARDEN/ PALO ALTO BIKE SAFETY PARK

The City installed a Traffic Garden at the Ventura Community Center. The course, roughly the size of two basketball courts, serves as a hands-on classroom for young cyclists to learn road safety and cycling skills.





#### Safe Routes to School Policies

In the face of changing transportation habits, SRTS policies ensure families have a voice in shaping Palo Alto's local transportation landscape. SRTS is directly referenced in four City Comprehensive Plan 2030 Programs and Policies. In 2021, the PAUSD Board of Education-approved a dedicated SRTS policy. SRTS is also cited in the 2022 Sustainability and Climate Action Plan (S/CAP). In 2025, unanimous support from the PAUSD Board of Education, City Council and Palo Alto Parent Council of PTAs (PTAC) led to the renewal of an updated SRTS Partnership Agreement, rededicating Palo Alto to the SRTS Partnership's mission, goals and objectives. The 2026 BPTP builds off these efforts by prioritizing bicycle and pedestrian connectivity to schools, and by recognizing the foundational nature of this work within the Office of Transportation.

#### **Moving Toward the Future of Safe Routes to School**

Between 2017 and 2022, a City School Transportation Safety Committee-approved Palo Alto a Five-Year Action Plan. Core objectives are paraphrased below:

- 1. Adopt and institutionalize key SRTS practices and policies
- 2. Provide SRTS education programs, materials and communications
- 3. Expand and enhance events and encouragement programs and materials
- 4. Gather data to assess and improve SRTS program outcomes
- 5. Engineer routes to school to develop a more safe and efficient network for families
- 6. Increase awareness & engagement between City Departments and the community
- 7. Commit to an equitable distribution of SRTS resources

Five-Year Plan yearly strategic objectives yielded a mean completion rate of 72 percent, while Five-Year Work Plan ongoing objectives yielded a 100 percent completion rate. Several emergent trends, including a post-pandemic contraction of parent involvement, transit service reductions, restricted school access and the adoption of new transportation modes suggest that a second SRTS Five-Year Action Planning process may help support 2026 BPTP implementation, in addition to helping reverse net losses in post-pandemic active school commute mode share at the secondary level.

For three decades, the SRTS Partnership has shaped Palo Alto's identity as a leader in student bicycling and walking. Its achievements, millions of active commutes, improved infrastructure, and parent engagement, demonstrate the power of collaboration. While pandemic-related disruptions and emerging mobility trends present new challenges, the Partnership's history of resilience and innovation provides a strong foundation for Palo Alto to continue supporting safe, healthy, and sustainable school commutes for the next generation.

The 2026 BPTP further supports SRTS program by enhancing the bicycle and pedestrian connectivity to schools. Additionally, it includes the following programs:

"Enhance and sustain the City/PAUSD/PTA/Youth community partnership to reduce risk to students enroute to and from school, and encourage more families to choose healthy, active, sustainable alternatives to driving solo more often. Grow and strengthen community-wide support through the SRTS 6 E's (Education, Encouragement, Engineering, Engagement, Evaluation, and Equity) model for safe, active, healthy, sustainable, school commutes. Safe Routes to School Action Plan Updates: Revisit incomplete 2019 Safe Routes to School 5-Year Action Plan yearly strategic objectives and determine whether to move forward to complete those goals."

# 3.4 Pedestrian District Guidelines and Toolbox

This section identifies priority pedestrian areas within Palo Alto and presents a toolbox of potential pedestrianoriented treatments for use within these areas. These guidelines build upon existing foundational planning, bring in new ideas and innovations, and address changes and developments since the prior plan was adopted in 2012.

# 3.4.1 PEDESTRIAN DISTRICT TOOLBOX

The pedestrian district toolbox includes a range of selected treatments aimed at improving pedestrian safety and enhancing the pedestrian experience. The elements range from infrastructure improvements, such as raised crossings or curb extensions that improve yielding rates, to aesthetic changes, such as benches or public art, that can elevate the walking experience. Together, these elements will meet universal needs for safety and accessibility and create conditions where walking is comfortable and an enjoyable experience for all.

Implementing pedestrian-oriented enhancements help in advancing the plan objectives of supporting a City that is Safe and Inclusive, Connected and Accessible, and Comfortable and Enjoyable.

Image 18 lists pedestrian toolbox enhancements.

Detailed information about these tools and their recommended application in the three pedestrian districts and two priority areas is available in Appendix M: Pedestrian District Guidelines.

# 3.4.2 PEDESTRIAN DISTRICTS

Priority pedestrian areas are key to creating a walkable, accessible, and enjoyable City. They offer areas where walking is prioritized to allow people of all ages and abilities to get around without competing with vehicles. Within these areas, slower vehicle movement is encouraged, and opportunities are provided for people to pause and enjoy their surroundings. Walking should be the preferred mode of choice for all trips within these areas with wider sidewalks that support high volumes of pedestrian activity through building a well-connected pedestrian network.

**Figure 18** maps three pedestrian districts and three priority areas which are focus areas for pedestrian recommendations. These areas were identified based on prior planning efforts, including the 2030 Comprehensive Plan, and the Palo Alto Economic Development Strategies Plan, as well as community input and on-the-ground knowledge from the inperson working session held in April 2024.<sup>7</sup>

<sup>7</sup> BPTP Team conducted a series of site visit in April 2024 to understand the roadway context. This is further described in the community engagement section.

# **Enhanced** Crossings









Street Design







Aesthetic and Functional Elements









Activation and Engagement









Flexible Street Use









Major Intersection Treatments

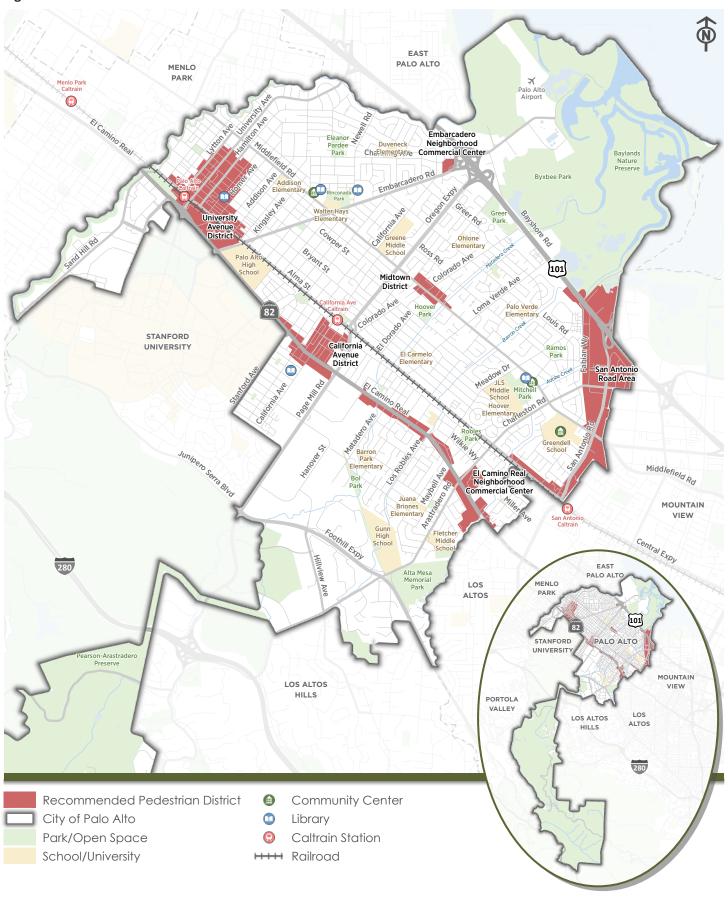









Figure 18: Recommended Pedestrian District Location

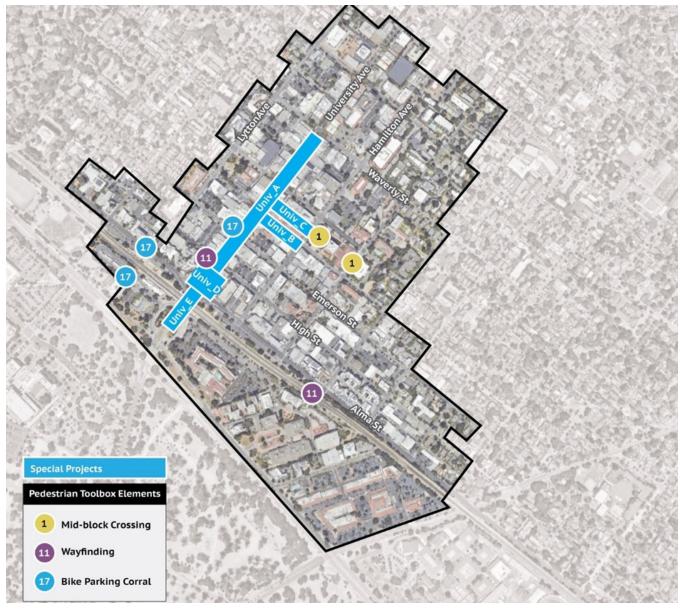


These pedestrian districts and priority areas include:

#### Pedestrian Districts:

- University Avenue Pedestrian District
- California Avenue Pedestrian District
- Midtown Pedestrian District

#### **Pedestrian Priority Areas**

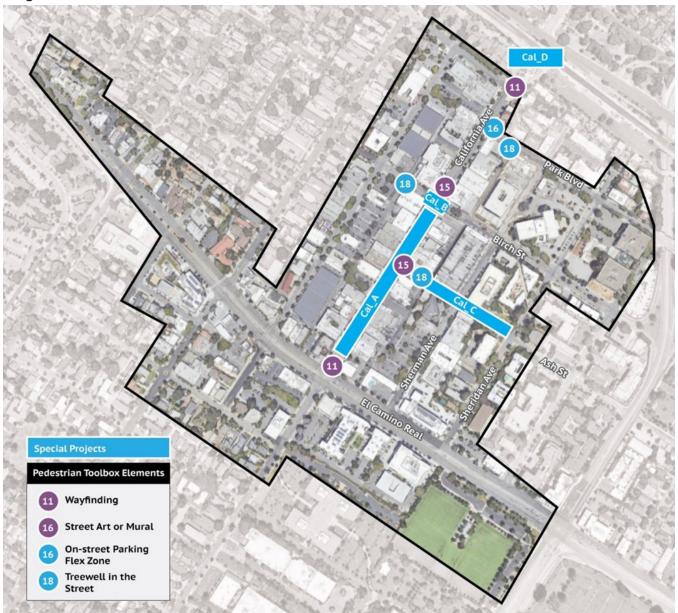

- El Camino Real Neighborhood Commercial Center
- Embarcadero Neighborhood Commercial Center
- San Antonio Road Area

#### **Pedestrian District Recommendations**

#### **University Avenue Pedestrian District**

Downtown Palo Alto's historic main street and original civic/commercial core; today it functions as the City's primary regional and commercial center and the "front door" many visitors remember.

Image 20: University Avenue Pedestrian District




Note: Numbers refer to the pedestrian toolbox elements recommended at these locations. Additional information about Pedestrian Toolbox Elements and Special Projects is provided in **Appendix M: Pedestrian District Guidelines**.

- Add midblock raised crossings (Hamilton Ave) and update existing midblock crossing (Forest Ave) to prioritize pedestrians.
- Install bike/micromobility corrals at key destinations (Caltrain lot at Alma Street, Palo Alto Transit Center, Lytton Plaza) and anchor district wayfinding at University & Alma and the Homer Tunnel, coordinated with the MTC pilot.<sup>8</sup>
- Advance special projects: raised side-street crossings on University (Univ\_A); permanent pedestrianized Ramona Street (Univ\_B); alleyway activation (Univ\_C); University & Alma interchange reconfiguration (Univ\_D)(continuous/wider sidewalks, gateway, wayfinding); and improvements to the Transit Center/ University undercrossing.

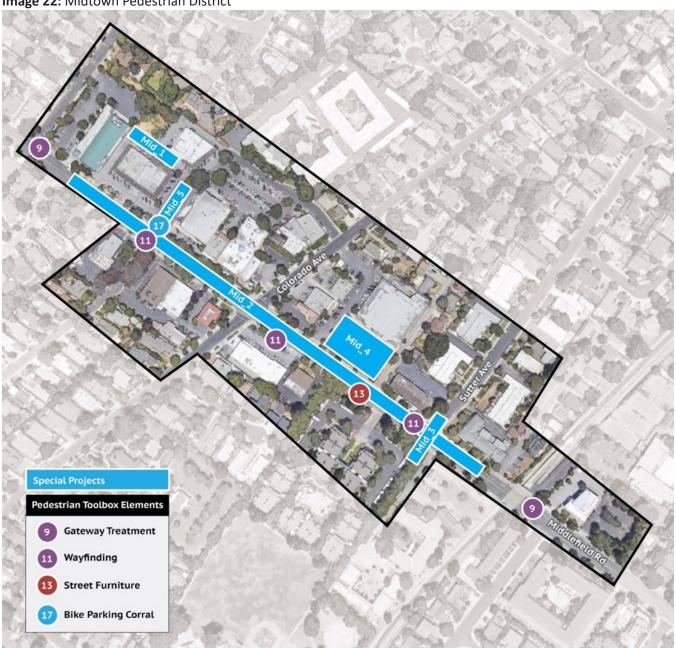
8 The MTC Regional Mapping & Wayfinding Project, <a href="https://mtc.ca.gov/operations/transit-regional-network-management/regional-mapping-wayfinding">https://mtc.ca.gov/operations/transit-regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-management/regional-network-network-management/regional-network-management/regional-network-network-management/regional-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-network-ne

Image 21: California Avenue Pedestrian District



Note: Numbers refer to the pedestrian toolbox elements recommended at these locations. Additional information about Pedestrian Toolbox Elements and Special Projects is provided in **Appendix M: Pedestrian District Guidelines**.

#### **California Avenue Pedestrian District**


A pedestrian activity center with compact blocks, back alleys, and active ground-floor commercial uses; recognized in City policy as a Multi-Neighborhood/Community-Serving center.

- Use on-street flex zones for placemaking and add street treewells on Park Blvd, Ash St, and Birch St.
- Provide wayfinding at El Camino Real/California Ave and the Caltrain station; add street art at key approaches.

#### **Midtown Pedestrian District**

A mid-century neighborhood shopping area that has grown into a vital, neighborhood-serving hub; identified in recent plans as a neighborhood serving place for everyday needs.

Image 22: Midtown Pedestrian District



Note: Numbers refer to the pedestrian toolbox elements recommended at these locations. Additional information about Pedestrian Toolbox Elements and Special Projects is provided in Appendix M: Pedestrian District Guidelines.

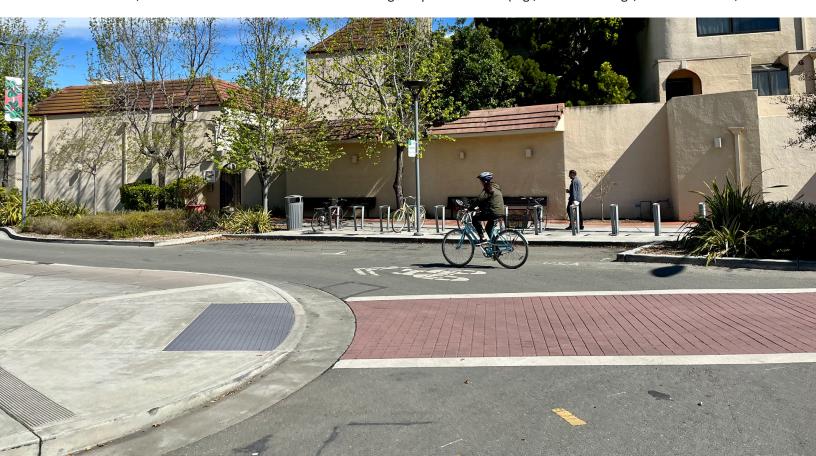
- Apply gateway treatments at Middlefield (Moreno Ave to the west; Matadero Canal to the east), plus bike corrals, street furniture, and wayfinding.
- Advance special projects: a Midtown master street plan (Mid\_1); a Middlefield Rd road diet (Mid\_2) (raised intersections, continuous/wider sidewalks, pedestrian signals, flex zones, street furniture, treewells); a Sutter Ave mid-block crossing with ped signals (Mid\_3); temporary parking-lot activation (Mid\_4); and a central plaza parkway (Mid\_5).

#### **Commercial Center Recommendations**

#### **El Camino Real Neighborhood Commercial Center**

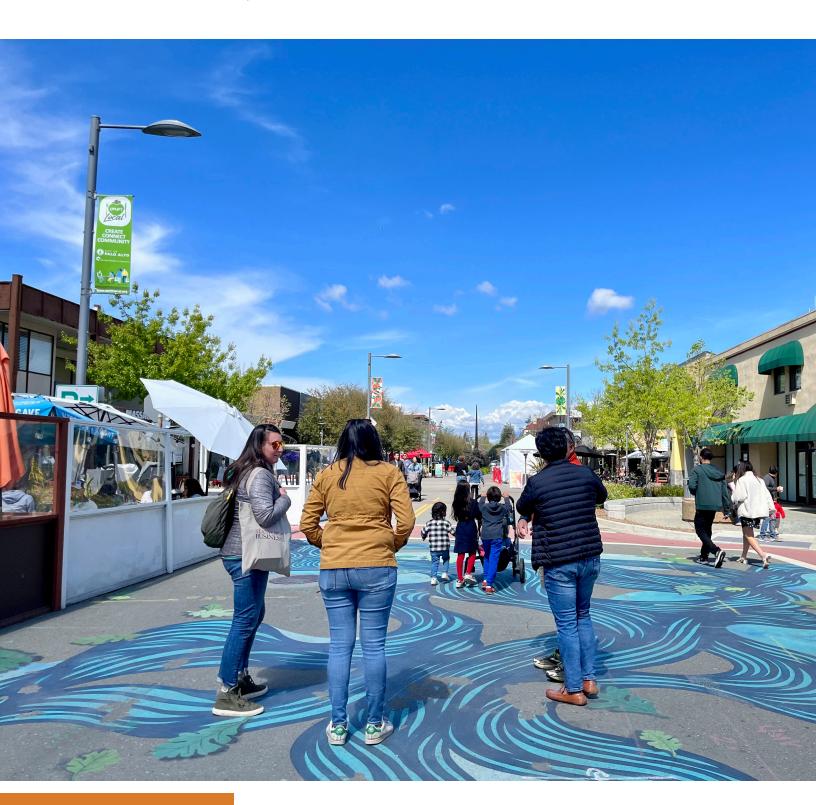
A linear, citywide commercial corridor with a diverse mix of shops, restaurants, and services serving both residents and visitors.

- Treat the corridor as a multimodal main street: add raised crossings on unsignalized side streets and provide street furniture to improve waiting areas.
- Enhance Corridor walkability, bike lanes, and streetscape upgrades are underway as part of ongoing revitalization by caltarans in coordination with the City.


#### **Embarcadero Neighborhood Commercial Center (Edgewood Plaza)**

A neighborhood hub anchored by the Edgewood Plaza Shopping Center, known for its mid-century modern character and a mix of groceries, cafés, and local businesses—remaining a vibrant, accessible destination for nearby residents.

Provide bike parking corrals and wayfinding to local businesses and trail connections (notably the US-101/St.
 Francis Dr link), to support short local walking and biking trips.


#### San Antonio Road Area

A STET district to be guided by the same framework as other pedestrian districts—prioritizing walking, slower movement, and a connected sidewalk network—using the plan's toolbox (e.g., raised crossings, wider sidewalks,



bike corrals, gateway/wayfinding) as sites redevelop.

- As sites redevelop, apply the plan's pedestrian toolbox to create a walk-first environment: raised crossings/ raised intersections, curb extensions/reduced curb radii, continuous and wider sidewalks, bike corrals, and flexible curb zones.
- Coordination with the City's San Antonio Road Area Plan



# 3.5 Policies and Programs

As part of developing the Plan, the City identified policies, programs, and practices to improve conditions for walking and biking in Palo Alto. City staff from multiple departments participated in discussions to assess how the City is implementing existing policies, programs, and practices and ranked the highest priorities for inclusion in the Plan. This section presents the 2026 BPTP's recommended programs and policies. It provides recommended strategies and actions to support walking and biking in Palo Alto as well as best practices that the City can undertake in developing programs to encourage active transportation.

The recommendations are organized under the 2026 BPTP's five objectives, identified previously in section 1.4.2 Objectives:

- Comfortable and Enjoyable
- Community-Led and Cooperative
- Safe and Inclusive
- Connected and Accessible
- Integrated and Collaborative

Recommended strategies are summarized below and presented in more detail in **Appendix N: Policy and Program Recommendations**.



#### **Comfortable and Enjoyable**

- Active Transportation Design Policy and Standards: Adopt a policy to develop or adopt design standards and specifications based on recent research and modern best practice for pedestrian, bicycle, and transit friendly street design and green stormwater infrastructure.
- Older Adult Mobility Program: Support older adult mobility options, including a Trishaw Pilot

via Cycling Without Age, to provide access to statistically low-risk transit, possibly operated by trained student and/or older adult volunteers along low volume residential streets.

- Program: Conduct an inventory and monitor usage of bike parking at City properties and City right-of-way (such as sidewalks) and continue to provide sufficient supply. Establish a program for members of the public to request site inspections and evaluation for installation of bicycle racks or parking corrals. Ensure the City's bike parking program provides facilities that are publicly accessible and available for use by all members of the public, helping achieve a mode shift and corresponding lower motor vehicle emissions and traffic congestion.
- Development: Regularly review the City's minimum short- and long-term bike parking requirements for new development projects and update requirements to reflect changes in parking demand. Update and maintain the City's list of approved bike parking designs to accommodate a variety of bicycle types such as e-bikes and cargo bikes.
- Walk- & Bike-Friendly Development: Consider prioritizing or requiring certification that encourages bicycle- and pedestrian-friendly developments, such as Leadership in Energy and Environmental Design (LEED) or Fitwel certification. Encourage developments that limit vehicle parking.
- Wayfinding Plan: Develop a non-motorized wayfinding plan connecting bicycle and pedestrian facilities with key local and regional destinations such as schools, trails, parks, and rail stations. Evaluate cut-throughs, short connections, ramp access, and ADA compliance. Continue to expand wayfinding facilities as the bicycle and pedestrian networks are implemented and in coordination with Caltrans. Develop a Wayfinding Signage Program specific to El Camino Real to help cyclists connect to the local bicycle network.
- Bike Racks on Buses: Work with Santa Clara Valley Transportation Authority (VTA) and coordinate

with their Wheels on the Bus Pilot Program, to monitor the use of bike racks on buses and determine if demand is being accommodated.

- TDM Program: Promote and expand the Transportation Demand Management (TDM) program and continue to support implementation of TDM programs in an effort to increase the share of trips made by walking and biking and advance the City's sustainability, climate action, vehicle miles traveled and carbon reduction goals. Pursue full participation of Palo Alto employers in the Transportation Management Association (TMA) and pursue expanding the TMA from Downtown to California Avenue and other areas of the City when appropriate.
- Crossing Guards: Periodically evaluate school crossing guard locations and warrants to determine their appropriateness and evaluate opportunities for new locations. As part of the evaluations, consider factors such as the needs of younger bicyclists who may cross while walking, and incorporate collision and location data to assist in identifying opportunities for pilot locations that could increase the walk to school mode share.
- Development Review Updates: Development review and roadway design will be evaluated by metrics that focus on safety risk, user comfort, and access for all users including pedestrians and bicyclists such as kinetic energy risk, level of traffic stress, and travel time by mode. Clearly communicate to help residents understand why proactive enhancements to support low-stress network buildout may be needed.

## **Community-Led and Cooperative**

Alto library and local community partners that has space, capacity and expertise to create a bicycle lending library that enables residents to check out different types of bicycles, supplies, including trailers, and educational materials, including bike blenders, bike trivia wheels, safety vests for events, helmets and more; consult with agencies

that have implemented similar programs such as the City of Oakland and San Mateo County Libraries.

**TDM Pilot Program for City Employees:** 

Conduct a City of Palo Alto TDM pilot to improve facilities and encourage employee use of active transportation vehicles, given the high percentage of City vehicles that are used for <2 mile single occupant trips around town. Determine how best to pilot and incentivize trips to focus on both the right tool for the trip relative to the distance.

right tool for the trip relative to the distance. Formally incorporate a variety of bicycle types and trailers into the City vehicle fleet for employees to use. Provide access to different types of bikes/ trailers and access to an improved storage facility, conduct regular rides and safety trainings, ensure bicycles are regularly maintained and that there are risk management and anti-theft provisions to ensure safety and security.

- Long-Term Education Program: Create a longterm education program to change the travel habits of residents, visitors, shoppers, and workers by informing them about transportation alternatives, incentives, and impacts. Work with the PAUSD and with other public and private interests, such as the Chamber of Commerce and Commuter Wallet partners, to develop and implement this program.
- Bike Education Program: Partner with groups to advertise and carry out bike safety and education classes in the City, including classes oriented towards children, older adults, and non-English speakers.
- fund the participation of employees working on bicycle and pedestrian facilities in professional organizations and conferences in order stay upto-date on the state of the practice and successes in other cities. Provide resources and support for employees to further their education, develop new skills, and keep up with changing patterns and transportation technologies.
- Interactive Map Tool: Update the City's website to enhance its static bicycle facility and Safe Routes to School (SRTS) Walk & Roll Suggested Route maps with interactive mapping applications when these are viable. Work with PAUSD, PATMA, and other partners to share this resource.

- Community Rides Program: Partner with organizations to lead all ages and abilities bicycle rides throughout the calendar year, including rides that utilize recently-implemented projects.
- Valet Parking Program for Events: Collaborate with the Community Services Department to partner with and budget for organizations to provide bike parking and/or bike valet services at City-sponsored or other large events.
- Street Closures Open Streets: Prioritize street closures on areas located on the High Injury Network (identified in the Safety Action Plan), where high bicycle and pedestrian activity is expected, and where there is community support.
- Street Closures School Streets Pilot: Implement a Street Closure School Streets Pilot Program that can be used to gather data and outcomes that could then be applied to other schools. Community input will be used to identify locations for the pilot. School streets implement timed closures that prevent vehicles from entering the specified school zone. Restrictions are in place for approximately 15 to 90 minutes during drop-off and pick-up times and is enforced using signage and physical barrier(s). During this time, only pedestrians and cyclists can enter the School Street zone, aside from exempt vehicles (e.g. residents living in the zone).
- Active Transportation Incentives Program:
   Encourage or require PATMA to provide additional bicycle/scooter incentives citywide.
- Safe Routes to School: Enhance and sustain the City/PAUSD/PTA/Youth community partnership to reduce risk to students enroute to and from school, and encourage more families to choose healthy, active, sustainable alternatives to

- driving solo more often. Grow and strengthen community-wide support through the SRTS 6 E's (Education, Encouragement, Engineering, Engagement, Evaluation, and Equity) model for safe, active, healthy, sustainable, school commutes. Aim to:
- Adopt and institutionalize key SRTS practices and policies and gather best practices.
- Provide, expand, and enhance school and community-based SRTS education programs and materials.
- Promote and encourage use of the new traffic garden at the Ventura Community Center to increase bike education.
- Expand and enhance encouragement programs to communicate the value of SRTS.
- Gather data to assess and improve outcomes.
- Engineer routes to develop a more safe and efficient network.
- Deepen awareness and engagement with City staff, Council, and community representatives to advance and institutionalize SRTS.
- Commit an equitable distribution of resources to encourage broad community participation.
- Maintain a Secondary School SRTS Coordinator to develop a youth SRTS program for grades 6-12
- Safe Routes to School Action Plan Updates:
   Update the 2019 Safe Routes to School 5-Year
   Action Plan, relaunch the process to establish
   strategic objectives and define a five-year action



- plan to advance safe routes to school.
- Community Partnerships Program: Consider establishing or working with existing advocacy groups to reach out to local businesses or groups to help support and promote walking and bicyclerelated projects and to maximize public-private funding opportunities.
- Bike and Pedestrian Count Program: Establish regular citywide bicycle and pedestrian counts at key corridors, intersections, destinations, and require that intersection traffic counts collected for development projects' transportation studies include bicyclist and pedestrian volumes. Utilize the counts collected in 2024 to establish a baseline for select locations. Enhance bicycle count efforts and collect more data to guide decisions by installing permanent automatic counters along key bikeways in representative locations. Using bike counters with displays along popular routes can encourage people to bike more often.
- Performance Reporting Program: Collect data and conduct analysis as part of periodic status reports detailing the City's performance in relation to metrics recommended in this plan.
- Community Feedback Program: Expand survey efforts such as the Palo Alto Community Survey and the Performance Reports and National Citizen surveys to collect information related to walking and bicycling facility quality, Plan implementation, and programs.

## Safe and Inclusive

Institutionalize Safety: Via the 2025 Safety Action Plan, the City has committed to reducing traffic fatalities and serious injuries on the City's roadways. Institutionalize safety into all aspects of policies, planning, program, design, implementation, and maintenance.

- Safe Routes to Work, Shopping, Downtown, Community Services, and Parks: Where the Walk and Roll Map Suggested School Routes overlap with the HIN, prioritize speed management and pedestrian/bicycle enhancements, especially at intersections.
- Review Protocols for Updating Suggested Walk and Roll Maps: Develop protocols to review the City's walk and roll suggested routes to school to proactively determine if traffic controls or other engineering modifications may be needed to improve student safety.
- Speed Management Program: Implement a proactive speed management program following the FHWA Safe System Speed Management Framework to guide location specific interventions in all focus areas. Lower speed limits and design speeds on streets within the bike network and without separated bikeways to 25 mph or lower.
- Systemic Uncontrolled Crosswalk Placement/ Enhancement Program: Develop a systemic uncontrolled crosswalk placement/enhancement program for pedestrian safety and accessibility, and proactively design proposed crossings to provide bicyclists and pedestrians with contextappropriate facilities such as marked crossings, bike boxes, bike signal heads, bike detection, and leading bicycle intervals (LBIs)/leading pedestrian intervals (LPIs), audible and/or countdown signals, accessible push buttons, and curb ramps.
- **Update Traffic Calming Program**: Systemically identify speed management needs and opportunities (such as speed humps and neighborhood traffic circle) and prioritize into a yearly implementation program based on kinetic energy risk, equity, proximity to schools, community input, and similar factors. Most funds should be programmed proactively, but some can be reserved for quick response discretionary purposes. Implement speed management strategies to moderate vehicle speeds to a contextually appropriate target speed. It is recommended that that the Traffic Control Maintainer II position in Public Works (eliminated during the pandemic) be restored, so City staff can respond more quickly to add, maintain, or repair roadway safety infrastructure such as delineators, bollards, signage, guardrails, crash attenuators, faded striping and curb paints, and other features.

- Near-Miss Reporting Program: Utilize SafeTREC Street Story mapping portal (https://streetstory.berkeley.edu/city/palo-alto) to enable and encourage residents to provide information on near-misses and other safety information that would otherwise not be included in regularly-reported safety reports and statistics.
- The City's Office of Transportation Traffic Engineering Team: Add or reallocate staff to administer quick-build or traffic safety programs, including coordination, evaluation, planning, and engineering.
- Prioritize Maintenance of Bicycle and Pedestrian Facilities: Incorporate and prioritize bicycle and pedestrian facility maintenance needs into the City's transportation maintenance program standards and funding.
- Prioritize Bikeways in the Repaving Program:
   Prioritize repaving of existing bikeways as part of the repaving program.
- Incorporate Pedestrian Improvements Into Repaving Program: Change the approach to the repaving program to include pedestrian improvements including sidewalk widening and curb extensions. This would require additional funding and a change in City processes for completing road and sidewalk repairs or installations.

# Connected and Accessible

Better Bikeways: Incorporate best design practices and guidance, such as those outlined in the NACTO Urban Bikeway Design Guide, when designing and implementing walking, biking, and rolling facilities to create a network that meets the needs of users of all ages and abilities; this includes guidance on recommended facility widths and low-stress intersection treatments. Design and implement safer roads to facilitate travel by vulnerable users through appropriate walking and biking facilities in the context of adjacent vehicle facilities, speeds, and volumes, including sufficient width and horizontal separation. Implement strategies to provide better bike crossings of major streets, such as diverters, daylighting, dedicated signals and phasing, pavement markings, and protected intersections.

- Bicycle and Pedestrian Projects Capital Improvement Program: Establish dedicated funding for implementation of projects identified in the Bicycle and Pedestrian Transportation Plan Update and Pedestrian District Guidelines.
- Station Access Program: Coordinate with Caltrain to deliver local station area access improvements that meet universal design principles such as curb ramps, tactile and audio crossing cues, improved sidewalks, slower traffic speeds, shorter crossing distances, and increased crossing time. Partner with Caltrain to encourage plans for low-stress active transportation facilities to Caltrain stations and coordinate to ensure that grade separation projects adjacent to stations reflect multi-modal access needs.
- Signal Modification Program: Incorporate the crossing needs of bicyclists and pedestrians and encourage safe driver behavior when reviewing and adjusting signal timing at City traffic signals.
- Bicycle Detection Pilot Project: Implement innovative "blue light" (or other) bicycle detection indicators and signs at complex bicycle crossings. Consider adding "Bicycle Detected" signal heads to recommended bike routes intersecting with arterials.
- Update CIP Funding to Prioritize Bicycle and Pedestrian Access and Route: Allocate funding and prioritize implementation of bicycle and pedestrian projects as part of the City's Capital Improvement Program (CIP).
- Identify Funding Opportunities: Continue to monitor federal, state, and regional funding opportunities to augment local funds to implement recommended walking, biking, and rolling improvements.
- Maintain Dedicated Funding Source: Maintain (and increase as available) the existing dedicated funding for BPTP implementation in the City's CIP.

- Quick-Build Program: Implement quick-build pilot/trial projects of the Plan's walking and bicycling infrastructure recommendations.
- First-/Last-Mile Connection to Caltrain Stations:
   Implement bikeways with connections to Caltrain stations to promote access.
- Existing Trail Access Improvements Project: Enhance on-street intersections along the existing trail network, key existing bridge/overpass approaches, and school route shared use paths, to improve ADA access, bikeway connectivity, and convenience for all users. Priority upgrades include: modifying or replacing substandard safety corrals with bollards and associated striping/ signage; installing accessible curb ramps and regrading poor transitions; pedestrian-scaled lighting; installing high visibility crosswalks at key locations; and landscaping maintenance/removal.
- Safe Routes for Private Schools: At the request of private schools with dedicated staff available to support Safe Routes to School program development, and as resources are available, provide guidance to private schools regarding Safe Routes programming and developing Walk and Roll suggested route maps to reduce vehicle trips.

### **Integrated and Collaborative**

- Update Municipal Code to Revise Walking, Biking, and Rolling Guidance: Review the City's municipal code and ordinances to remove language that can discourage walking, biking, and rolling (such requirements to cross at crosswalks and at a right angle, to report secondhand bike purchases to the police department, and for skateboarders to wear reflective devices while riding between sunset and sunrise). Update code to align with State guidelines and create consistent language (e.g., for bike access on bridges, over and underpasses).
- Regional Network: Continue to consult with other agencies on bicycle and pedestrian improvement projects that abut or intersect jurisdictional boundaries to ensure consistency in facilities, including Cities (East Palo Alto, Menlo Park, Los Altos, and Mountain View), Counties (Santa Clara

# POTENTIAL CHANGES TO PEDESTRIAN AND BICYCLE ADVISORY COMMITTEE STRUCTURE

#### **Membership Structure & Term Limits**

 Establish staggered term limits (e.g., 3-year terms, renewable once) to ensure fresh perspectives while maintaining continuity.

#### **Representation Balance**

- Limit the number of representatives from the same organization or stakeholder group to avoid overrepresentation.
- Ensure a balance of residents, business representatives, and institutional partners (e.g., major employers).

#### **Demographic Representation**

- Update membership criteria to reflect the community's demographics, with attention to age, gender, race/ethnicity, and income diversity.
- Establish specific seats for underrepresented groups, such as youth, seniors, people with disabilities, and residents of underserved communities.

#### **Duties & Responsibilities**

- Revise duties to align with the 2026 BPTP
   Vision and Objectives and current needs
- Expand the committee's role to include reviewing performance measures


#### **Transparency & Accountability**

- Require annual reports summarizing recommendations, progress, and community input.
- Create clear conflict of interest guidelines for members representing organizations with potential project interests.

and San Mateo), Caltrans, and Caltrain. Partner with VTA and adjacent jurisdictions to develop a connected network prioritizing access while minimizing distance between regional access points.

- **PABAC Structure**: Work with the Palo Alto Pedestrian and Bicycle Advisory Committee (PABAC) to evaluate existing role and structure, discuss membership and the potential to include members and/or liaisons from local non-profit organizations, advocacy groups, transportation management associations, City committees, and other groups, and propose changes that increase efficiency and effectiveness of the committee.
- Effective Regulation and Education on Electric Bikes for Youth Safety: Advocate for comprehensive statewide regulations and safety initiatives to ensure the responsible use of electric-bikes bicycles, electric scooters, and other electric mobility devices, particularly by youth. Prioritize youth safety through effective regulation and education. For example, mandatory safety courses, stricter age restrictions and helmet laws, public awareness campaigns, and investment in bicycle infrastructure to create safer riding environments.
- **Electric Bicycle Engagement Strategy**: Work with the Palo Alto Police Department to develop strategies to encourage the safe use of e-bikes on public roads.
- Discouraging Driver Speeding: Work with the Palo Alto Police Department and other partners when
  implementing and publicizing engineering, education, and enforcement efforts discouraging vehicle speeding
  in the city, particularly near schools and high-injury locations.
- Transit Integration: Some bikeway and crossing recommendations are on routes and at intersections
  currently served by various transit. The City will coordinate with transit providers to provide comfortable and
  convenient bike lanes, paths, and crossings to and from transit stations and to provide bike parking at transit
  hubs with clearly marked routes to people navigate to transit easily.
- **Caltrans Coordination**: Work with Caltrans to streamline permitting and integrate connected bikeways into Caltrans projects; improve bikeway design approaching and crossing Caltrans facilities.
- **Implementation Updates**: Work with other jurisdictions and agencies to ensure that new or upgraded facilities are reflected in each agencies' respective bikeway maps and applications.
- Green Street Principles: Incorporate stormwater management into bicycle and pedestrian planning by
  applying the design strategies outlined in the NACTO Urban Street Stormwater Guide. Green infrastructure
  elements should be integrated into street design to manage stormwater, improve sustainability, and extend
  the life cycle of transportation infrastructure. Stormwater management plans should be overlaid with
  recommended bicycle and pedestrian improvements to identify opportunities for co-investment and multibenefit projects.





This chapter provides an overview of the project delivery process, project prioritization process, project cost estimates, and identifies funding sources to advance implementation.

# **4.1 Project Delivery Process**

This 2026 BPTP adopts a long-range vision for Palo Alto's pedestrian and bicycle networks. With implementation of the Complete Vision Network recommendations, every resident in Palo Alto would have access to low-stress, comfortable bikeways that connect to major destinations throughout the City, along with connected sidewalks and frequent and appropriate crossing locations and designs. The recommendations included in 2026 BPTP could require further project-specific planning, data collection, analysis, public engagement, and engineering design before they can be implemented. Some portions of these networks will be implemented under nearterm (less than 10 years), while other recommendations are expected to be advanced beyond that timeframe. Implementation of the proposed network and programs may occur in phases over time and would be dependent on available resources.

When considering when and how to implement these projects, the City incorporates design requirements, including maintaining access for people with disabilities, maintaining access for emergency responders, preserving access for utilities and maintenance, and meeting stormwater requirements, among other considerations. As projects advance to design, studies that consider the inclusion of bikeways or other right-of-way reallocations will be evaluated and potential trade-offs, such as repurposing of parking or travel lanes will be reviewed. The project development process generally consists of:

- Project development, scoping, funding. As the first phase in the development of projects, the City conducts meetings with key stakeholders to define the scope of the project and identify funding opportunities.
- Concept design. Concept design includes identification of a preferred alternative for approval by City Council. This stage typically includes collecting traffic, safety, parking, and operations data and analyzing the data to understand existing conditions, and potential concept design alternatives. Key studies would be conducted to understand the project benefits and impacts. Community engagement would be conducted as part of this effort to identify a preferred design.

- Detailed engineering design. After designs are approved by City Council, detailed engineering will be conducted to answer remaining technical questions, develop accurate cost estimates, finalize the funding plan, and solicit construction bids.
- Construction. Following award of the construction contract, the project will be built with notification to affected residents, property owners, and businesses.

Certain long-term projects may be advanced through quick-build interim improvements, allowing the City to deliver early benefits while funding, design, and other challenges are being resolved. Quick-build strategies—such as paint-and-post treatments, curb extensions, or temporary traffic calming measures—can provide immediate safety and mobility enhancements at relatively low cost. In addition, quick-build implementation offers an opportunity to test design concepts, gather real-time performance data, and evaluate community feedback. This phased approach enables the City to strengthen community buy-in, refine project elements, and build momentum toward full implementation.

Project Initiation & Scoping

Concept Design → Engineering

Construction ←

# 4.2 Project Prioritization

#### **Prioritization Framework**

Project prioritization helps direct the City's resources and develop a near-term list of improvements. This 2026 BPTP prioritizes intersections and bikeway corridors, studies, and special projects, for implementation over the next ten years. An initial prioritization was conducted to develop scores for each roadway segment in Palo Alto based on quantitative criteria to assess the level of alignment with the objectives of safety and connectivity. Projects that scored higher than 70 points were advanced to supplemental evaluation along with a subset of additional projects selected for further review. The supplemental evaluation considered project readiness, project cost, and project support to determine the top priority projects for near-term implementation.

**Table 7** presents proposed prioritization factors and evaluation criteria. The project prioritization included two stages of evaluation. The initial evaluation quantitively prioritizes projects based on the safety and connectivity factors. The second stage (supplemental evaluation) involved the consideration of three feasibility-oriented factors of project readiness, project cost and funding opportunities, and project support. (Only the projects that scored 70 or more points in the Initial Evaluation advance to the Supplemental Evaluation and those that are on the Low-Stress Network are considered for near-term implementation.) Additional information is presented in **Appendix O: Project Prioritization**.

Table 8: Prioritization Factors and Evaluation Criteria

| PRIORITIZATION           | FACTOR                   | CRITERIA                                          |  |
|--------------------------|--------------------------|---------------------------------------------------|--|
|                          |                          | High-Injury Corridors                             |  |
| Initial Evaluation       | Safety                   | Recommended Walk & Roll SRTS suggested route maps |  |
|                          | Commonstinuitur          | Bicycle Level of Traffic Stress                   |  |
|                          | Connectivity             | Access to Transit                                 |  |
|                          | Project Cost and Funding | High, Medium and Low                              |  |
| Supplemental Evaluation* | Project Readiness        |                                                   |  |
|                          | Project Support          |                                                   |  |

Note: \* Only the projects that scored 70 or more points in the Initial Evaluation advance to the Supplemental Evaluation.

Additionally, the list of near term implementation projects was revised based on the feedback from the community and the City Council to prioritize the high-comfort, low-stress, tree-lined streets to encourage the interested but concerned users.

## **Near-Term Implementation**

The 2026 BPTP focuses staff resources to make incremental progress on the highest priority locations shown in **Table 9** (not a ranked list), representing a total of 12 miles of enhancements on the network. The estimated cost of implementing all 16 projects is \$12.8 million. Initially, projects scoring above 70 under the evaluation criteria were considered for near-term implementation; however, based on guidance from City staff, City Council, and community feedback, the list was refined. The remaining 78 bicycle projects would be considered for long-term implementation.

Table 9: Near-Term Bicycle Projects

| Table 5. Near-term bicycle Projects |                                                                      |                                                                                                                                                                                                                                                                                                                                                                   |                  |  |
|-------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| PROJECT<br>NUMBER                   | PROJECT<br>NAME                                                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                       | COST<br>ESTIMATE |  |
| SUP_1                               | Quarry Road<br>Transit Connection<br>Project                         | Construct an extended trail from the intersection with El Camino Real to the Palo Alto transit center and Mitchell Lane.                                                                                                                                                                                                                                          | \$599,250.00     |  |
| SB_11a                              | Middlefield Road<br>Separated Bikeway<br>Connection to<br>Menlo Park | Construct a new separated bikeway from Menlo Park to Everett Ave to allow for intercity connectivity.                                                                                                                                                                                                                                                             | \$202,745.00     |  |
| SB_12                               | Homer Avenue<br>Separated Bikeway                                    | Upgrade a painted bike lane to a buffered or separated bikeway on north side and Extend the protected bike lane on south side on Homer Avenue from Alma Street to Bryant Street.                                                                                                                                                                                  | \$402,095.20     |  |
| SB_18                               | East/West<br>Meadow Drive<br>Separated Bikeway                       | Upgrade a painted bike lane to separated bikeway on West Meadow Drive from El Camino Way to Alma street and continue onto East Meadow Drive from Alma Street to Fabian Way. Consider raised crossings to slow traffic and create safer crossings for students. (Coordinate with the Middlefield Protected Bike Lane project for safe intersection crossings.)     | \$3,002,134.80   |  |
| SB_20                               | San Antonio Road<br>Separated Bikeway                                | Construct a new separated bikeway along San Antonio Avenue frontage street from Alma Street to E. Bayshore Road. Request new developers to reconstruct street according to new design. Coordinate with the City's San Antonio Area Plan planning efforts and with surrounding towns to create smooth transition between cities.                                   | \$4,220,679.40   |  |
| SB_23                               | Fabian Way<br>Separated Bikeway                                      | Coordinate with the existing South Palo Alto Bikeways Demonstration Project as part of the Palo Alto Safety Action Plan. Upgrade painted bike lane to buffered and/or separated bikeway along Fabian Way from East Meadow Drive until Charleston Road to separate road users and create a more low-stress route for school commutes. Lane reconfiguration needed. | \$1,044,655.40   |  |
| BLVD_2                              | Bryant Street<br>Bike Boulevard<br>Downtown Access<br>Project        | Install traffic diverters, speed bumps, traffic circles, or other similar interventions on Bryant Boulevard between Embarcadero Road and downtown. Include a turn restriction from Embarcadero Road going northbound onto Bryant Boulevard.                                                                                                                       | \$459,337.80     |  |
| BLVD_15                             | Cowper Street<br>Bike Boulevard                                      | Upgrade a bike route to a bike boulevard on Cowper Street from Coleridge Avenue until East Meadow Drive. Install raised crossings at Hoover Park. Implement traffic calming elements and wayfinding along route and gateway treatments at intersections.                                                                                                          | \$1,170,582.00   |  |

| PROJECT<br>NUMBER | PROJECT<br>NAME                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COST<br>ESTIMATE |
|-------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| BLVD_24           | Park Boulevard<br>Bike Boulevard                         | Construct a new bike boulevard along Park Boulevard from Castilleja Avenue to Lambert Avenue, transforming the current bike lanes into a slow, calm shared roadway bicycle boulevard environment. Use modal filters to lower traffic volumes.                                                                                                                                                                                                                                                                  | \$1,204,620.20   |
| BBL_4             | El Camino Way<br>Buffered Bike Lane                      | Upgrade El Camino Way to a buffered bike lane from Los Robles Avenue to Maybell Avenue. Parking removal needed. Intersection improvement and wayfinding at the intersection with West Meadow Drive to connect to the separated bikeway and Wilkie Way bike boulevard. Coordinate with major intersection improvement at El Camino Real and Maybell Avenue intersection and new bike boulevard. Alternatively, consider one-way traffic on El Camino Way to retain parking and accommodate buffered bike lanes. | \$86,486.40      |
| BBL_7             | Cambridge<br>Avenue Buffered<br>Bike Lane                | Stripe a buffered bike lane on Cambridge Avenue and Yale Street from Park Avenue to California Avenue, crossing El Camino Real. This is an alternate route for use when California Ave is occupied with community events.                                                                                                                                                                                                                                                                                      | \$102,995.20     |
| BBL_8             | California Avenue<br>Buffered Bike Lane                  | Upgrade painted bike lane to a buffered bike lane on California Avenue from El Camino Real to Hanover Street. Parking reconfiguration needed to create space for buffered bike lanes. Coordinate with the El Camino Separated Bikeway project and the Hanover Street Buffered Bike Lane project to create smooth intersection crossings.                                                                                                                                                                       | \$107,811.20     |
| BBL_9             | Amaranta - Clemo<br>Buffered Bike Lane                   | Stripe a buffered bike lane on Amaranta Avenue and Clemo Avenue from Los Robles Avenue to Arastradero Road. Consider design details appropriate for a more rural neighborhood context. Coordinate with Arastradero Road Separated Bikeway to create a safe intersection crossing.                                                                                                                                                                                                                              | \$103,331.20     |
| BL_5              | Stanford Avenue<br>Bike Lane<br>connection to<br>Hanover | Upgrade bike route and sharrows to painted bike lane on Stanford Avenue from Harvard Street to Dartmouth Street. Connect to existing bike lanes on Stanford Avenue and new Bike Boulevard on Hanover Street. Coordination is needed with the Stanford University and Escondido Elementary School. Consider a study of impacts of no left turns on to Escondido Road and Hanover Street.                                                                                                                        | \$11,688.90      |
| BL_6              | California Avenue<br>Bike Lane                           | Painted a bike lane on California Avenue from the Caltrain station to Birch Street. Coordinate with California Avenue Streetscape project. Consider reorientation of parking stalls to create more space for bicycling.                                                                                                                                                                                                                                                                                        | \$39,381.30      |
| CS_1              | California Avenue<br>Community Street                    | Community Street design on California Avenue from Birch<br>Street to El Camino Real to align with the California Avenue<br>Streetscape project.                                                                                                                                                                                                                                                                                                                                                                | \$28,143.60      |

Source: Kittelson & Associates, 2025

Note: The costs include only construction expenses; additional funding may be required for planning and engineering assessments.

In addition to the recommended bicycle network projects, the following 22 intersection and crossing projects should be considered for near-term enhancements. Of these, nine projects are on either bicycle or pedestrian HIN. **Figure 19** shows the 38 near-term bicycles, intersection and crossing projects.

Table 10: Priority Intersection and Crossing Projects

| PROJECT<br>NUMBER    | PROJECT NAME                                                   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CROSSING_01          | Seale Avenue Tunnel                                            | Construct an undercrossing of Caltrain and Alma street at Seale Ave                                                                                                                                                                                                                                                                                                                     |
| CROSSING_09          | Matadero Creek<br>Highway 101 Seasonal<br>Undercrossing        | Convert the existing Santa Clara Valley Water District (SCVWD) maintenance road along Matadero Creek under Highway 101 to a seasonal public trail with reconfiguration of the approaches and addition of lighting, railings and signage. Constructing the new undercrossing and other improvements will help implement the Matadero Creek Trail/Midtown Connector project. <sup>1</sup> |
| CROSSING_10          | Southern Palo Alto Bike/<br>Ped Crossing                       | Construct a grade-separated pedestrian and bicycle crossing of Caltrain/Alma Street in the vicinity of Matadero Creek/Park Boulevard or between El Dorado and Loma Verde Avenues. This project closes a 1.3 mile gap between existing crossings at California Avenue and Meadow Street, greatly improving eastwest connectivity in conjunction with other improvements. <sup>2</sup>    |
| BLVD_<br>CROSSING_01 | Chaucer Street crossing of University Avenue                   | Configure the approaches of Chaucer street with bike boxes to prioritize people riding bicycles on this Bicycle Boulevard route.                                                                                                                                                                                                                                                        |
| BLVD_<br>CROSSING_02 | Carlson Streer Crossing of E Charleston Rd                     | Configure the approaches of Carlson Street with bike boxes to prioritize people riding bicycles on this Bicycle Boulevard route.                                                                                                                                                                                                                                                        |
| BLVD_<br>CROSSING_03 | Wilkie Way Crossing of<br>West Charleston Road                 | Configure the approaches of Wilkie Way with bike boxes to prioritize people riding bicycles on this Bicycle Boulevard route.                                                                                                                                                                                                                                                            |
| BLVD_<br>CROSSING_04 | Cowper Street Crossing of East Meadow Drive                    | Construct jogged connection from Mitchell Park Path to Cowper Street Integrate with East Meadow street bikeway upgrades.                                                                                                                                                                                                                                                                |
| BLVD_<br>CROSSING_05 | Seale Avenue Bike<br>Boulevard Crossing of<br>Middlefield Road | Construct a low-stress crossing of Middlefield Road to encourage yielding to bicyclists on this Bicycle Boulevard route. Consider a full intersection median to filter out auto traffic on Seale Ave.                                                                                                                                                                                   |
| BLVD_<br>CROSSING_07 | Greer Road Crossing of<br>Embarcadero Road                     | Configure the approaches of Green Road with bike boxes to prioritize people riding bicycles on this Bicycle Boulevard route.                                                                                                                                                                                                                                                            |
| BLVD_<br>CROSSING_08 | St. Francis Drive crossing of Embarcadero Road                 | Configure the approaches of St Francis Drive with bike boxes to prioritize people riding bicycles on this Bicycle Boulevard route.                                                                                                                                                                                                                                                      |
| BLVD_<br>CROSSING_10 | Bryant St crossing of E<br>Meadow Dr                           | Enhance the crossing of East Meadow Dr with a median island, flashing beacon or hybrid beacon.                                                                                                                                                                                                                                                                                          |
| BLVD_<br>CROSSING_11 | Nelson Dr crossing of E<br>Charleston Rd                       | Enhance the crossing of East Charleston with a bike box and crossing markings for clear connection between the pathway and bike boulevard.                                                                                                                                                                                                                                              |

<sup>1</sup> This project is on VTA's Measure B Bike/Ped Candidate Project List, titled "Matadero Creek Trail and Undercrossing at US 101: <a href="https://www.vta.org/projects/funding/2016-measure-b#accordion-bicycle---pedestrian">https://www.vta.org/projects/funding/2016-measure-b#accordion-bicycle---pedestrian</a>

<sup>2</sup> This project is on VTA's Measure B Bike/Ped Candidate Project List, titled, "South Palo Alto Caltrain Pedestrian/Bicycle Grade Separation": <a href="https://www.vta.org/projects/funding/2016-measure-b#accordion-bicycle---pedestrian">https://www.vta.org/projects/funding/2016-measure-b#accordion-bicycle---pedestrian</a>

| PROJECT<br>NUMBER | PROJECT NAME                                                        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| INTERSECTION_01   | Page Mill Road<br>and Hanover<br>Street Intersection<br>Improvement | Construct protected intersection design features to improve safety and comfort of this intersection.                                                                                                                                                                                                                                                                                                                                  |  |  |
| INTERSECTION_02   | West Meadow Drive and El Camino Way Intersection Improvement        | Construct protected intersection design features to improve safety and comfort of this intersection.                                                                                                                                                                                                                                                                                                                                  |  |  |
| INTERSECTION_03   | Quarry Road and El<br>Camino Real Protected<br>Intersection         | Construct a protected intersection at Quarry Road and El Camino Real as part of the Quarry Road Transit Connection project.                                                                                                                                                                                                                                                                                                           |  |  |
| INTERSECTION_05   | California Avenue and El<br>Camino Real Protected<br>Intersection   | Widen and improve the existing sidewalk undercrossing along University Avenue at the Palo Alto Transit Center. This project will improve bicycle and pedestrian access to transit and between downtown Palo Alto and one of Stanford University's main entrance, and should include lighting, wayfinding and public art enhancements. Include areas beyond the transit center and undercrossing too, like the Quarry Road Connection. |  |  |
| INTERSECTION_06   | Park to Serra Protected<br>Intersection                             | Construct a protected intersection to support circulation<br>between Park Avenue, Serra Avenue bike lanes, El Camino Real<br>and the Serra Avenue pathway.                                                                                                                                                                                                                                                                            |  |  |
| INTERSECTION_07   | E Charleston Road<br>and San Antonio Road<br>Intersection           | Construct protected intersection design features to improve safety and comfort of this intersection in coordination with future bikeway upgrade projects                                                                                                                                                                                                                                                                              |  |  |
| INTERSECTION_08   | E Charleston Road and<br>Middlefield Road                           | Construct protected intersection design features to improve safety and comfort of this intersection in coordination with future bikeway upgrade projects                                                                                                                                                                                                                                                                              |  |  |
| INTERSECTION_09   | Maybell Avenue and El<br>Camino Real                                | Construct protected intersection design features to improve safety and comfort of this intersection in coordination with future bikeway upgrade projects                                                                                                                                                                                                                                                                              |  |  |
| INTERSECTION_10   | Embarcadero Road and<br>El Camino Real Protected<br>Intersection    | Construct protected intersection design features to improve safety and comfort of this intersection in coordination with future bikeway upgrade projects                                                                                                                                                                                                                                                                              |  |  |
| INTERSECTION_11   | Quarry Road and<br>Arboretum Road<br>Protected Intersection         | Construct protected intersection design features to improve safety and comfort of this intersection in coordination with future bikeway upgrade projects                                                                                                                                                                                                                                                                              |  |  |
| INTERSECTION_12   | San Antonio Road and<br>Middlefield Road                            | Construct protected intersection design features to improve safety and comfort of this intersection in coordination with future bikeway upgrade projects                                                                                                                                                                                                                                                                              |  |  |

Source: Kittelson & Associates, 2025

Projects that are not identified for near-term implementation may be advanced as opportunities arise through existing infrastructure programs, as well as new developments, or other funding mechanisms. The comprehensive list of projects is presented in **Appendix L** and includes 138 total projects: 94 bicycle projects, 33 crossing and intersection projects, 3 special projects, and 5 recommended studies.

**Table 11:** Other Priority Projects

| PROJECT<br>NUMBER | PROJECT<br>NAME                                         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study_02          | Embarcadero Road<br>Corridor Study                      | Following the recommendations of the Palo Alto Safety Action Plan, conduct a corridor study to understand potential safety countermeasures for use on Embarcadero Road. This will determine the feasibility of the full corridor Embarcadero Road Separated Bikeway project.                                                                                                                                                                                                                                                        |
| Study_04          | Bryant Blvd & E<br>Meadow Crossing<br>Feasibility Study | Assess the feasibility of a traffic signal or other crossing treatment to facilitate crossings of the Bryant Street Bicycle Boulevard. This Study would be coordinated with SB_18                                                                                                                                                                                                                                                                                                                                                   |
| Study_05          | Cal Ave Station<br>Gap Closure<br>project               | Explore ways to connect Cal Avenue Station over Oregon Expwy to Page Mill Road, over the Page Mill Rd Bridge or via a new connection along the railroad.                                                                                                                                                                                                                                                                                                                                                                            |
| SpecProj_01       | Hamilton Ave<br>Pedestrian Signal<br>Heads              | Install pedestrian signal heads on Hamilton Ave in downtown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SpecProj_03       | Ellen Fletcher Bike<br>Blvd Project                     | Ellen Fletcher Bike Blvd. Project: Work with the Palo Alto Art Center and local volunteers to assign a historic designation to the Fletcher Bicycle Boulevard as the first in the US. Explore collaboration with Palo Alto History Museum. Provide an interactive art installation/digital signage at the El Carmelo/Bryant Bridge that identifies the number of daily cyclists and provides useful education and encouragement messages. Examples are in Fremont. Consider synching with apps like Strava for additional feedback. |

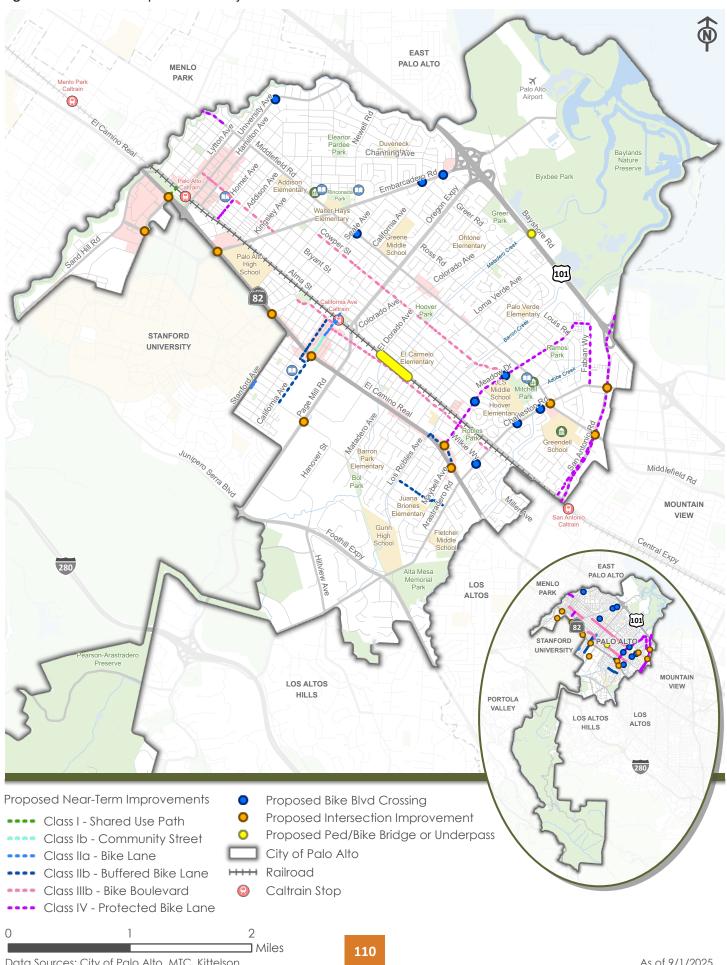




Figure 19: Near-Term Improvement Projects





# 4.3 Cost Estimates

To develop planning-level cost estimates, a sample of recent bicycle projects in Palo Alto provided by the City was reviewed to determine unit costs (cost per mile) for each facility type. These estimates are based on the assumption that corridors include an average of 12 intersections per mile and that contingency costs range from 20% to 40%, depending on the complexity of the facility. Standard assumptions were applied to estimate costs for elements such as mobilization, traffic control, engineering, and construction management. The estimates do not include costs related to right-of-way acquisition, grading or retaining walls, utility relocation, landscaping, striping removal, or lighting, except in the case of Class I Shared Use Paths.

**Table 11** summarizes the planning-level costs for the recommended bicycle projects. For bike boulevards and separated bikeway, it is assumed that half of the projects will fall into the high-cost category and the other half into the low-cost category. Based on these assumptions, the total cost to implement the 94 bicycle projects included in the 2026 BPTP is estimated at approximately **\$78 million**.

Table 12: Planning Level Cost Estimates for Bicycle Projects

| TYPE OF FACILITY                       | COST PER MILE | LENGTH (MILE) | COST         |
|----------------------------------------|---------------|---------------|--------------|
| Class I Shared Use Path                | \$4,700,000   | 7.95          | \$37,365,000 |
| Class IIa Bike Lanes                   | \$141,000     | 3.78          | \$532,800    |
| Class IIb Buffered Bike Lanes          | \$224,000     | 5.93          | \$1,329,400  |
| Class IIIa Advisory Bike Lanes         | \$419,000     | 0.30          | \$124,400    |
| Class IIIb Bike Boulevard (Low Cost)   | \$466,000     | 10.77         | \$5,017,900  |
| Class IIIb Bike Boulevard (High Cost)  | \$720,000     | 10.77         | \$7,753,000  |
| Class IV Separated Bikeway (Low Cost)  | \$358,000     | 11.40         | \$4,080,500  |
| Class IV Separated Bikeway (High Cost) | \$1,886,000   | 11.40         | \$21,496,900 |
| Total (High Cost)                      |               | 62.29         | \$77,699,900 |

Costs for intersection and crossing improvements are not included in the 2026 BPTP, as they vary widely by project and cannot be accurately estimated at the planning stage. The costs could be estimated using the previous bid documents and Caltrans Contract Cost Database.<sup>1</sup>

<sup>1</sup> Caltrans. Contract Cost Database. Accessed from <a href="https://d8data.dot.ca.gov/contractcost/index.php">https://d8data.dot.ca.gov/contractcost/index.php</a>

# **4.4 Funding Sources**

Bicycle and pedestrian projects can be funded through a range of local, regional, state, and federal sources. To enhance its competitiveness for these funds, the City of Palo Alto should ensure its projects align with the core goals of the funding programs—typically centered on equity, safety, sustainability, and connectivity. Besides dedicated funding sources, some bicycle and pedestrian projects can be implemented by integrating project elements into streets scheduled for repaving through the City's five-year paving plan.

Certain grants such as Transportation Fund for Clean Air (TFCA) require a project to reduce motor vehicle emissions or traffic congestion to be eligible for funding.<sup>2</sup> All near-term implementation projects identified in the 2026 BPTP meet this criterion, as they were prioritized for their ability to improve access to transit and encourage mode shift. Similarly, the Active Transportation Program (ATP) requires applicants to show public health, safety, and greenhouse gas reduction benefits, as well as evidence of strong community engagement.<sup>3</sup> The near-term projects satisfy these requirements, having received broad community support while advancing health, safety, and sustainability outcomes.

Project readiness is another key factor; projects that have completed environmental clearance, secured right-of-way, and are close to being shovel-ready are often prioritized. In addition, strong support from key agency partners such as VTA, Caltrans, schools, nonprofit organizations, and neighboring jurisdictions can significantly strengthen a project's application. The list of funding sources is included in **Appendix P: List of Funding Sources**.



<sup>2</sup> Bay Area Air District. TFCA Regional Fund. Accessed from <a href="https://www.baaqmd.gov/funding-and-incentives/funding-sources/regional-fund">https://www.baaqmd.gov/funding-and-incentives/funding-sources/regional-fund</a>

<sup>3</sup> California Transportation Commission. Active Transportation Program. Accessed from <a href="https://catc.ca.gov/programs/active-transportation-program">https://catc.ca.gov/programs/active-transportation-program</a>



The 2026 Bicycle and Pedestrian Transportation Plan Update promotes and encourages active and sustainable transportation in Palo Alto and establishes the City's vision and comprehensive approach to improving conditions for walking, biking, and rolling. The vision is a universally accessible, safe, convenient, and integrated system that promotes walking and biking for people of all ages and abilities. The Plan's performance measures allow for the ongoing tracking of progress towards implementation of the five objectives:



Safe and Inclusive



Connected and Accessible



Community-Led and Cooperative



Comfortable and Enjoyable



Integrated and Collaborative

The Plan provides for both near-term and long-term investment in infrastructure, programs, and policies to support the Plan's vision and objectives. Together, these components create a comprehensive approach that will guide, prioritize, and implement a network of quality bicycle and pedestrian facilities to improve mobility, connectivity, and public health throughout Palo Alto.





